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Abstract

A biorefinery comprises a variety of process steps to synthesize products from

sustainable natural resources. Dynamic plant‐wide simulation enhances the process

understanding, leads to improved cost efficiency and enables model‐based operation

and control. It is thereby important for an increased competitiveness to conventional

processes. To this end, we developed a Modelica library with replaceable building

blocks that allow dynamic modeling of an entire biorefinery. For the microbial

conversion step, we built on the dynamic flux balance analysis (DFBA) approach to

formulate process models for the simulation of cellular metabolism under changing

environmental conditions. The resulting system of differential‐algebraic equations

with embedded optimization criteria (DAEO) is solved by a tailor‐made toolbox. In

summary, our modeling framework comprises three major pillars: A Modelica library

of dynamic unit operations, an easy‐to‐use interface to formulate DFBA process

models and a DAEO toolbox that allows simulation with standard environments

based on the Modelica modeling language. A biorefinery model for dynamic

simulation of the OrganoCat pretreatment process and microbial conversion of the

resulting feedstock by Corynebacterium glutamicum serves as case study to

demonstrate its practical relevance.
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1 | INTRODUCTION

Biorefineries are a promising approach to produce chemicals and fuels

from sustainable natural resources to reduce carbon dioxide emissions

and the dependency on fossil raw materials. Techniques from computer‐
aided process design play an important role in increasing competitiveness

of bio‐based processes compared with existing conventional processes

(Bao, Ng, Tay, Jiménez‐Gutiérrez, & El‐Halwagi, 2011; Kokossis & Yang,

2010; Martín & Grossmann, 2013).

Most conventional industrial processes have been studied and

improved for decades resulting in highly integrated processes with

near optimal cost and resource efficiency. Similar to conventional

processes, a biorefinery comprises a variety of process steps, for

example, biomass pretreatment, microbial transformation, and

downstream processing, to convert bio‐based feedstock into desired

products. A high integration of these process steps and the capability

to produce multiple products is crucial for a competitive biorefinery

(Kokossis & Yang, 2010). This in turn requires plant‐wide biorefinery
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modeling as an important tool at different stages of process

development.

During early‐stage process design, a large number of product and

process alternatives is analyzed and compared with respect to

economic and environmental criteria using mathematical optimiza-

tion. Simple models are used, for example, yield coefficients for

reactions (Bao et al., 2011; Voll & Marquardt, 2012) and short‐cut
methods for separation steps (Ulonska, Skiborowski, Mitsos, & Viell,

2016), combined with detailed models (e.g., equilibrium and kinetic

models) where data are available (Kelloway & Daoutidis, 2014;

Martín & Grossmann, 2013) to identify promising feedstocks and

reaction pathways. More detailed, steady‐state, plant‐wide process

models are used to investigate and improve individual biorefinery

concepts. For example, Tay, Kheireddine, Ng, El‐Halwagi, and Tan

(2011) investigated gasification of lignocellulosic biomass in an

integrated biorefinery using a superstructure optimization frame-

work with models of different complexity.

In the next step, these biorefinery concepts are experimentally

investigated in pilot plants requiring dynamic process models to

improve process understanding and to allow model‐based process

operation and control. As the number of considered process

alternatives decreases, more detailed models can be formulated.

While this is true for most process steps, the complexity of microbial

transformations is usually not represented on the same level of

detail. In the past, mostly unstructured (so called black‐box) models

were used to approximate the reaction kinetics of microbial

transformations.

However, this class of models is not suitable to describe and predict

the complex intracellular metabolism of microorganisms cultivated in

bioreactors for the purpose of bio‐based production. Clearly, to under-

stand these multilevel interactions in a real quantitative manner,

mechanistic pathway modeling in combination with multi‐omics analytics

would be required (Wiechert & Noack, 2011). Although a couple of

promising examples in this direction do exist (Gonçalves et al., 2017;

Hameri, Fengos, Ataman, Miskovic, & Hatzimanikatis, 2018; Noack,

Voges, Gätgens, & Wiechert, 2017; Zieringer & Takors, 2018) this

approach is still hampered by the availability of in vivo enzyme kinetic

data for relevant metabolic reactions.

As an intermediate solution, dynamic flux balance analysis (DFBA)

enables the simulation of consecutive, steady‐state metabolic flux

distributions under changing environmental conditions (Mahadevan,

Edwards, & Doyle, 2002; Palsson, 2008; Zhao, Noack, Wiechert, & von

Lieres, 2017). DFBA is based on a linear equation system covering the

stoichiometry of all intracellular reactions within defined network

boundaries and a differential equation system covering the time‐
dependent behavior of extracellular biomass, substrate, and product

concentration (Mahadevan et al., 2002). In most cases, the system of

equations is under‐determined. Formulation of a cellular optimization

criterion, for example, maximization of growth or ATP production, allows

choosing among the set of solutions to determine one particular

metabolic flux distribution. Finally, the DFBA model represents a system

of ordinary differential equations with embedded optimization criteria

(ODEO; Zhao et al., 2017).

Unfortunately, this type of mathematical problem is hard to solve

and requires specialized solution methods that are commonly

categorized as static optimization approach (SOA), dynamic optimi-

zation approach (DOA), and direct approach (DA). SOA divides the

time horizon into intervals, solves the embedded optimization

problem at the beginning of each interval and performs integration

assuming a fixed flux distribution for the respective interval

(Mahadevan et al., 2002). DOA discretizes the dynamic equations

using collocation methods to obtain a nonlinear problem (NLP) that

needs to be solved only once (Mahadevan et al., 2002). DA uses a

solver to evaluate the embedded optimization problem in each time

step during integration (Hanly & Henson, 2011; Hjersted & Henson,

2006; Zhuang et al., 2011). Höffner, Harwood, and Barton (2013)

have implemented a DFBA simulator that uses first‐order optimality

conditions to reformulate the embedded optimization problem into a

system of differential‐algebraic equations (DAEs).

Based on these solution techniques, the DFBA approach was

successfully used for various applications, for example, for the investiga-

tion of the diauxic growth of Escherichia coli on D‐glucose (Mahadevan

et al., 2002), the optimization of a fed‐batch fermentation process with

Saccharomyces cerevisiae on D‐glucose (Hjersted & Henson, 2006), and the

optimization of co‐cultures with both model organisms on mixtures of

D‐glucose and D‐xylose (Hanly & Henson, 2011).

One particular advantage of the DFBA approach is its ability to

account for changing environmental conditions during (fed‐)batch
operation. Therefore, we chose the multiscale modeling approach by

embedding a DFBA model into a plantwide biorefinery simulation.

Mathematically, this leads to a system of differential‐algebraic
equations with embedded optimization criteria (DAEO).

In this study, we present a framework that enables dynamic

plant‐wide biorefinery modeling and simulation. The framework

builds on Modelica as powerful equation‐based modeling language

and specific libraries for easy implementation of different submodels

describing biomass treatment and microbial transformation pro-

cesses. The integration of a detailed DFBA model into a biorefinery

design process enables conclusions regarding the interaction of

individual process steps, design of potential feedback loops, and

development of model‐based control systems. To demonstrate the

practical relevance of the approach a two‐step biorefinery model is

implemented, describing the dynamics of the OrganoCat pretreat-

ment process and the microbial conversion of lignocellulose‐derived
sugars by the model organism Corynebacterium glutamicum.

2 | METHODS

2.1 | Modelica library for biorefinery modeling

We implemented a library of dynamic models for unit operations that

are widely used in chemical processes, for example, flash unit,

decanter, and distillation column, using the object‐oriented modeling

language Modelica (Fritzson, 2015). Modelica is well‐suited for

modeling biorefineries as it allows replacement of simple models with

more detailed ones as new insights become available and also enables
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replacement of entire process steps if desired. The library uses the

components Modelica.Fluid and Modelica.Media of the Modelica

Standard Library (Casella, Otter, Proelss, Richter, & Tummescheit,

2006; Elmqvist, Tummescheit, & Otter, 2003). The former provides an

interface for one‐ and zero‐dimensional physical modeling of thermo‐
hydraulic components (Casella et al., 2006). The component equations

(e.g., mass and energy balance equations) are decoupled from fluid

property equations (e.g., calculation of specific enthalpy or density). In

this way, the same component model can be used with different fluids

(Casella et al., 2006). The Modelica.Media library defines the fluid and

allows implementation of different models such as ideal gases and

multiphase systems (Elmqvist et al., 2003).

In this study, we built on a similar structure compared with the

open source libraries described above. Balance equations, for example,

mass and energy balances for an ideally mixed phase, are decoupled

from property calculation for the mixture. We formulated lumped

models, that is, no spatial dependency of variables was considered. In

dynamic modeling of relevant unit operations, there is still a large

variety of modeling assumptions that is only covered to a certain

extent, for example, by allowing the user to specify different degrees

of freedom. For property calculation, we implemented relevant

thermodynamic models in Modelica. These routines may be replaced

by a suitable thermodynamic property package interfaced via the

External Object utility of Modelica. The required parameter values

were stored in a Modelica record that defines the medium (in contrast

to a package in the Modelica.Media library). The parameter record also

defines the models to be used for calculation of thermodynamic

properties such as specific enthalpy or molar volume. The property

equations were implemented as Modelica functions.

The respective unit operation model defines either single‐ or

multiphase equations. For multiphase unit operations a quasi‐homo-

geneous modeling approach was used. Consequently, equilibrium was

assumed for the respective phases. Examples for the most relevant

phase equilibria and the associated unit operations are vapor‐liquid
equilibrium (VLE) for flash unit and distillation column or liquid–liquid

equilibrium (LLE) for decanter and extraction column. An equation‐
oriented formulation for phase calculation that allows dynamic

simulation in all phase regimes, that is, in single‐ and two‐phase
region, was implemented based on literature for VLE (Biegler, 2010;

Gopal & Biegler, 1999; Sahlodin, Watson, & Barton, 2016) and LLE

(Müller & Marquardt, 1997; Ploch, Glass, Bremen, Hannemann‐Tamás,

& Mitsos, 2019). The phase calculation may again be performed

externally using a suitable package. Reactors were modeled with

input–output relations based on experimental data or kinetic models if

available. The piping between two building blocks was not considered,

that is, energy and pressure loss were neglected. The graphical

interface allows generation of process models at the flowsheet level.

2.2 | DFBA process model for microbial
transformation

The dynamic model for the microbial conversion step is based on the

DFBA approach given by

( ) = ( ( ) ( ) ) ( = ) =ft t t t tx x v p x x, , , , with 0 ,0̇ (1a)

( ) ∈ (ˆ)
ˆ

t hv varg min
v

(1b)

ˆ =Nv 0s.t. (1c)

ˆ ⩽ ( ( ) )b t tCv x p, , , (1d)

ˆ ⩽ ˆ ⩽ ˆv v v .lb ub (1e)

where x are the nx differential states describing the extracellular

environment with initial conditions given by x0. The differential

equations f depend on the optimal solution v of an embedded

optimization problem. Note that a typical DFBA process model does

not include any algebraic equations outside the embedded optimiza-

tion problem. Therefore, we refer to equation system (1a) as ODEO.

The optimization problem is based on classical FBA. The stoichio-

metry of the reaction network is defined by the stoichiometric matrix

N with dimensions ×n nm v and the vector v̂ covering nv reaction

fluxes. The equations are derived from nm steady‐state mass balances

for the nm intracellular metabolites assuming that the metabolite

pools adjust infinitely fast to changing environmental conditions

(Stephanopoulos, Aristidou, & Nielsen, 2008). Additional constraints

on the reaction fluxes are imposed by Equation (1e), for example, to

consider irreversibility assumptions for some fluxes. The dynamics of

the extracellular environment define upper bounds for uptake rates

of the intracellular reaction network (Equation (1d)).

For a typical biochemical network, the number of metabolic fluxes is

larger than the number of metabolites ( >n nmv ), that is, the constrained

linear system of equations given by (1c), (1d), and (1e) is under‐
determined and a cellular optimization criterion is formulated to

determine one particular flux distribution v. The objective functions

used in literature are either linear, for example, maximization of cell

growth (Hanly & Henson, 2011; Varma & Palsson, 1994) or ATP

production (Raghunathan, Pérez‐Correa, Agosin, & Biegler, 2006) or

nonlinear, for example, minimization of the overall intracellular flux

(Schuetz, Kuepfer, & Sauer, 2007) or maximization of biomass yield per

flux unit (Zhao et al., 2017). In this study, we used a linear objective

function that can be defined by (ˆ) = − ˆh v c vT , where c is the cost vector.

3 | RESULTS AND DISCUSSION

3.1 | Framework for plant‐wide biorefinery
modeling and simulation

We established a framework for dynamic modeling and simulation

of biorefineries that covers several steps, which are illustrated in

Figure 1 and briefly described in the following:

1. We implemented a model library of building blocks in Modelica

enabling dynamic modeling of early process steps such as

pretreatment of lignocellulosic biomass (see Methods section

for more details).
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F IGURE 1 Framework for plant‐wide biorefinery modeling and simulation. For modeling biomass pretreatment processes a library of

dynamic unit operations was implemented in Modelica. Thermodynamic property parameters were extracted from Aspen Plus and converted to
a Modelica record. For modeling the microbial transformation step the visualization tool Omix is used and the resulting metabolic network is
parsed to Modelica code. An external program interprets the code and creates the DFBA submodel. The external program applies the direct
solution method via an interface to LP solver CPLEX. This way, a simple and easy‐to‐use interface is obtained and Dymola or OpenModelica can

be used to solve the resulting multiscale biorefinery model (DAEO). The results can again be interpreted in Omix [Color figure can be viewed at
wileyonlinelibrary.com]
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2. For the microbial transformation step, we apply the visualization tool

Omix (Droste, Miebach, Niedenführ, Wiechert, & Nöh, 2011) to

construct the metabolic network model of interest. The resulting

stoichiometric model is then translated into Modelica code and the

embedded optimization problem is also formulated in Modelica.

3. The DFBA process model is obtained by coupling the embedded

optimization problem to the extracellular environment of a contin-

uous stirred‐tank reactor leading to a submodel for the microbial

transformation step (see Methods section for more details).

4. The coupling of different biorefinery submodels, for example, biomass

pretreatment and microbial transformation, leads to a multiscale

biorefinery model. Mathematically, this model is a DAEO and a tailor‐
made solution method is required to allow process simulation in

standard software such as Dymola1 and OpenModelica2. We use the

direct approach for solving the embedded optimization problem in an

external program that is interfaced to the respective process

simulation software (cf. Zhao et al., 2017, section 3.2).

5. Finally, simulation studies with a compiled version of the DAEO

model can be performed in MATLAB3 and the results can again be

interpreted in Omix.

The Modelica library, the Omix converter and the DAEO toolbox are

available for interested users.

In the following we applied this framework to simulate the

dynamics of the OrganoCat pretreatment process and the subse-

quent conversion of the resulting sugar streams by Corynebacterium

glutamicum in different scenarios.

3.2 | Dynamic model of OrganoCat process

Plant‐derived biomass as feedstock has to be pretreated to make the

native biomolecules accessible for subsequent chemical or microbial

transformation. The effectiveness of a pretreatment depends on

many factors such as type of biomass, process conditions, formation

of unwanted degradation products, recyclability of catalysts, energy

and catalyst costs, and many more. An overview of various

pretreatment processes for lignocellulosic biomass, their advantages

and drawbacks as well as an economic assessment can be found

elsewhere (Hendriks & Zeeman, 2009; Mosier et al., 2005).

In this study, we considered the OrganoCat process (Grande

et al., 2015; Viell, Harwardt, Seiler, & Marquardt, 2013; Vom Stein

et al., 2011) as an example process for pretreatment of lignocellulosic

biomass. It uses a biphasic solvent system for selective depolymer-

ization of lignocellulosic biomass into three separate process streams

under mild reaction conditions (Vom Stein et al., 2011). Two of these

process streams consist of a mixture of C5 (mainly D‐xylose) and C6

(mainly D‐glucose) sugars with defined ratios that are envisioned to

be processed in microbial transformation steps to yield high‐value

products. To discuss the impact of different sugar ratios we define

the fraction of total carbon atoms stemming from D‐xylose as

=
⋅

⋅ + ⋅

c
c c

5

5 6C5
C5

C5 C6
ϕ (2)

with cC5 and cC6 denoting the concentrations of D‐xylose and

D‐glucose, respectively. Note that = 0C5ϕ refers to a pure D‐glucose
solution, while = 1C5ϕ indicates pure D‐xylose.

The dynamic model of the repetitive‐batch OrganoCat process

that was formulated in this study is based on the conceptual process

design of Viell et al. (2013) and the process variation proposed by

Grande et al. (2015). Thermodynamic parameters were equal to the

ones used in steady‐state simulation (Viell et al., 2013) except for the

LLE between water and 2‐MTHF that was described by the NRTL

model using up‐to‐date parameter values from literature (Glass,

Aigner, Viell, Jupke, & Mitsos, 2017). By applying ideal dynamic unit

operations and some additional assumptions (instantaneous flash

units, residence time reactors for enzymatic hydrolysis and oxalic

acid crystallization) a start‐up process was implemented (Figure 2).

In the first process step, lignocellulosic biomass (e.g., beech wood) is

exposed to a biphasic reaction medium consisting of water with oxalic

acid and 2‐MTHF for a fixed reaction time in a batch reactor (Figure 2,

R1). After the reaction time, the cellulose pulp is filtered off and further

degenerated in subsequent process steps. The reactor is refilled with the

biphasic reaction medium and fresh biomass is added. The mass of water,

oxalic acid and 2‐MTHF is assumed constant in each cycle requiring

addition of fresh reaction medium in between two cycles to compensate

for the loss with regard to the removal of wetted cellulose pulp. The

overall mass in the reactor increases from the first to the third cycle

because of dissolved sugars in the reaction medium (Figure 3, R1). After

the third cycle, the reaction medium is directed towards downstreaming

and the reactor is filled with fresh reaction medium. Following the first

biomass pretreatment step, the cellulose pulp contains sugars in solid

form while another portion of sugars is already dissolved in the reaction

medium. Both streams require further processing to obtain dissolved

sugars in the right purity to serve as feedstock for microbial

transformation.

A washing unit (Figure 2, W) is required to reduce the oxalic acid

concentration of the solid cellulose pulp before enzymatic hydrolysis

(Viell et al., 2013). For degradation of cellulose into monomeric

sugars via enzymatic hydrolysis we use a reactor with a fixed average

residence time of 72 hr (Figure 2, EH). After further purification

(mostly instantaneous flash units), a stream with a defined sugar ratio

of = 0.09C5ϕ is obtained (Figure 3) that is a potential feedstock for

microbial transformation with a higher requirement on D‐glucose as

carbon and energy source.

The liquid fraction is separated into an organic and aqueous phase in

a continuously operated decanter (Figure 2 and Figure 3, DEC). After

further purification steps (again mostly instantaneous flash units), the

aqueous phase yields a sugar stream that has a greater portion of

D‐xylose ( = 0.86C5ϕ , Figure 3) as it comprises the original hemicellulose

fraction of the biomass (Figure 2, XYL). The oxalic acid is recycled from

1Dymola, 2018

2https://www.openmodelica.org/

3MATLAB R2017b
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the organic phase via crystallization with an average residence time of

15 hr (Viell et al., 2013). Both the remaining aqueous and organic phase

may be re‐used in the biphasic reactor.

3.3 | Dynamic model of microbial transformation
with C. glutamicum

For the microbial transformation step, we considered the platform

organism C. glutamicum that is known for its capability to produce a

variety of value‐added products including amino acids, organic acids,

aromatic compounds, and proteins (Baritugo et al., 2018). Wild‐type
C. glutamicum cannot naturally utilize D‐xylose, but in recent years

the isomerase pathway and the Weimberg pathway as oxidative

strategies for D‐xylose metabolization could be functionally imple-

mented into this organism (Meiswinkel, Gopinath, Lindner, Nam-

poothiri, & Wendisch, 2013; Radek et al., 2014). Interestingly, there

are two further alternative routes for D‐xylose assimilation known,

namely, the oxido‐reductase and the DAHMS pathway (see, e.g.,

Valdehuesa et al., 2018, for a general overview on these pathways),

but none of these has been tested for C. glutamicum so far.

F IGURE 2 Dymola flowsheet of implemented OrganoCat pretreatment process. The biomass is exposed to a biphasic reaction medium (R1)
to dissolve lignin and hemicellulosic sugars in the reaction medium. The cellulose fraction remains solid and is subsequently washed (W) and

converted into a D‐glucose rich sugar stream (GLC) via enzymatic hydrolysis (EH). The liquid outlet of R1 is decanted (DEC) to obtain an organic
fraction with dissolved lignin and a D‐xylose rich sugar stream (XYL) from the aqueous fraction. Crystallization (CRY) is used to recycle catalyst
oxalic acid from the aqueous fraction [Color figure can be viewed at wileyonlinelibrary.com]
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Therefore we were interested to study each of these pathways

under operation in C. glutamicum alone or in combination toward

their potential to support the conversion of different OrganoCat

media. For in silico analysis, a focused model of the central carbon

metabolism of C. glutamicum was formulated and further extended

with the four different D‐xylose metabolic pathways (Figure 4).

Thereby, we are able to investigate the optimal assimilation

pathways under different extracellular conditions as the solution of

the embedded optimization problem decides upon their activity or

inactivity. The model consists of 50 intracellular metabolites, 59

metabolic fluxes, and six additional exchange fluxes.

The balanced extracellular species are the carbon sources

D‐glucose (GLC) and D‐xylose (XYL), the biomass (X) as well as the

model target product succinate (SUCC) and by‐products lactate

(LAC) and acetate (ACE). Uptake rates for D‐glucose and D‐xylose
were modeled by classical Michaelis–Menten kinetics. In addition, an

upper limit for the overall uptake rate of carbon sources was imposed

to account for potential transport limitations:

+ ⩽v v v .GLC XYL upt,max (3)

Maximization of biomass growth via the specific growth rate μ was

used as optimization criterion in all simulations. The full DFBA model

including kinetic parameter values is given in Appendix A.

3.3.1 | Case study: Growth of C. glutamicum on
OrganoCat media

In a first simulation study, we examined the potential of our

advanced model strain C. glutamicum for aerobic growth on two

different sugar streams as expected outcome of the OrganoCat

pretreatment process (cf. Figure 2, GLC and XYL). The resulting

profiles are shown in Figure 5. To simulate aerobic growth, the

maximum oxygen uptake rate was not constrained, enabling an

optimal oxygen uptake rate and maximum biomass growth under the

changing substrate conditions.

Using the OrganoCat medium with high D‐glucose content

( = 0.09C5ϕ ) as feedstock, biomass growth is achieved via simulta-

neous metabolization of both carbon sources without any by‐product
formation (Figure 5a). The C5 sugar D‐xylose is depleted first after

approximately 10 hr and biomass growth continues on pure D‐
glucose. Up to the time of carbon source depletion, 19.9 g −L 1 biomass

are formed. The uptake rate of D‐glucose is at the maximum possible

value according to Michaelis–Menten kinetics indicating that D‐
glucose is the preferred carbon sources (Figure 5b). D‐xylose is

synthesized simultaneously with a lower uptake rate leading to a high

overall growth rate of ≈ −0.51 hr 1μ . The oxygen uptake rate during

growth is = ( ⋅ )−v 4.78 mmol g X hrO
1

2
. The decrease of D‐glucose

concentration (after approx. 9 hr) leads to an increase of the D‐xylose
uptake rate before its depletion. In Figure 5e, the metabolic flux

distribution at =t 1 hr is shown. Under these conditions, D‐xylose is

expected to be exclusively metabolized via the Weimberg pathway to

synthesize the essential biomass precursor α‐ketoglutarate.
For the other OrganoCat medium ( = 0.86C5ϕ ), both carbon

sources are again simultaneously consumed and similar amounts of

biomass are formed (19.5 −g L 1, Figure 5c). This time, D‐glucose is

depleted first because of the small initial amounts and the fast

consumption. The small initial amount also leads to a smaller D‐
glucose uptake rate in the beginning and, in turn, to higher D‐xylose
uptake (Figure 5d). After depletion of D‐glucose, the organism

continues growth on D‐xylose as sole carbon source. The flux

distribution during initial growth phase shows that D‐xylose is

metabolized via Weimberg and isomerase pathway (while oxido‐
reductase and DAHMS pathway are not active, Figure 5f). The uptake

via Weimberg pathway leads again to synthesis of growth precursor

α‐ketoglutarate (with a rate, that is, required for optimal growth)

resulting in a high growth rate of = −0.49 hr 1μ . Compared with

growth on higher D‐glucose contents, no additional D‐glucose is

channeled into this precursor. After depletion of D‐glucose, the sole

carbon source D‐xylose is metabolized similarly via Weimberg and

isomerase pathway ( = −0.34 hr 1μ ).

The simulation results indicate that growth on both OrganoCat

media yields almost equal biomass titer. The space‐time yield is

higher for = 0.09C5ϕ because the higher content of the preferred

carbon source D‐glucose leads to a higher growth rate. Conse-

quently, growth on this medium is preferable from a process

perspective.

3.3.2 | Case study: Impact of varying sugar ratios on
C. glutamicum growth

Following this outcome, we performed a second simulation study to

investigate the influence of different sugar ratios on cell growth

under aerobic batch operation. The main objective during growth in

batch operation is high biomass titer in short batch time, that is,

maximization of space‐time yield with respect to biomass defined by

=
( )STY c t

tX
X B

B
, where tB is the final batch time defined by depletion of

F IGURE 3 Simulation results for dynamic pretreatment process
(repetitive‐batch OrganoCat). Hold‐ups of the respective unit
operations (as indicated in Figure 2) are shown. The reactor R1

reuses the same medium three times before it is directed to a
decanter (DEC). In between each cycle, the solid cellulose pulp is
removed. It is further converted to monomeric sugars via enzymatic
hydrolysis (EH) yielding a sugar stream with high D‐glucose content

(GLC, = 0.09C5ϕ ). After decantation, the aqueous fraction yields a

D‐xylose rich sugar stream (XYL, = 0.86C5ϕ ) [Color figure can be

viewed at wileyonlinelibrary.com]
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carbon sources and ( )c tX B is the biomass concentration at that

timepoint. The maximum oxygen uptake rate was again not

constrained to model aerobic growth conditions. In this scenario

we looked into different strain designs regarding the activity of the

four different D‐xylose metabolic pathways. In the first design, all of

the four different pathways are potentially available and the solution

of the optimization problem decides upon activity or inactivity of the

respective pathway. In the other designs, only one of the four

metabolic pathways is considered to be active by constraining the

corresponding other reaction fluxes to be zero.

The results of this simulation study indicate that the STY is higher for

growth on pure D‐glucose ( = 0C5ϕ ) than on pure D‐xylose ( = 1C5ϕ ),

F IGURE 4 Omix representation of the central carbon metabolism of Corynebacterium glutamicum and additional catabolic routes for the
pentose D‐xylose [Color figure can be viewed at wileyonlinelibrary.com]
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independent on the activity or inactivity of the different D‐xylose
assimilation pathways (Figure 6). However, the highest STY is found for

mixtures of both carbon sources because higher overall substrate uptake

rates are obtained resulting in higher overall growth rates. For the strain

design where all pathways may potentially be active (solid line, Figure 6),

the highest STY is found at = 0.2C5ϕ . Noteworthy, for a small content of

C5 sugars ( ⩽ 0.05C5ϕ ), D‐xylose is exclusively metabolized via the

Weimberg pathway to synthesize biomass growth precursor

α‐ketoglutarate (dash‐dotted line, Figure 6). This also holds true for

increasing D‐xylose content, that is, the oxidative part of the TCA cycle is

still inactive and surplus of D‐xylose is metabolized via the isomerase

pathway. For the single pathway designs and higher D‐xylose content

( > 0.15C5ϕ ) the operation of the isomerase pathway leads to

significantly higher space‐time yields compared to all other pathways.

This can be explained by the favorable energetics because reducing

equivalents such as NAD(H) and NADP(H) are better balanced.
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F IGURE 5 Model prediction for aerobic growth of Corynebacterium glutamicum on two different sugar streams from OrganoCat

pretreatment. Extracellular concentration profiles and rates for biomass growth (X), as well as D‐glucose (GLC), D‐xylose (XYL), and oxygen (O2)
uptake are shown in the upper graphs. μ is the biomass growth rate. Further details on model parametrization are given in the Appendix (a).

Concentration profiles for = 0.09C5ϕ ; (b) extracellular rates for = 0.09C5ϕ ; (c) concentration profiles for = 0.86C5ϕ ; (d) extracellular rates for

= 0.86C5ϕ ; flux distributions for (e) = 0.09C5ϕ t = 1 and (f) = 0.86C5ϕ , both at =t 1 hr [Color figure can be viewed at wileyonlinelibrary.com]
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3.3.3 | Case study: Production of succinate with C.
glutamicum under microaerobic conditions

In our third simulation study, we were interested in an optimal

production scenario for succinate under microaerobic fed‐batch
conditions. Therefore we coupled the optimal media design for

biomass growth in a first batch phase (i.e., = 0.2C5ϕ , cf. Figure 6) with

a subsequent fed‐batch phase under conditions of varying oxygen

availability. The degrees of freedom in this study are the sugar ratio

C5,inϕ in the feed and the maximum oxygen uptake rate vO ,max2 during

the feeding phase. Noteworthy, during feeding phase, substrates may

accumulate in the reactor. To facilitate the comparison of different

conditions, the process simulation was terminated when carbon

sources were depleted (i.e., simulation is continued without feeding

until threshold is reached). We define the space‐time yield with

respect to the fed‐batch phase according to =
( )

Δ
STY c t

tSUCC
SUCC F

FB
,

where tF is the final process time, ( )c tSUCC F the concentration of

succinate at that timepoint and ΔtFB the period of the feeding phase

(i.e., 45 hr) plus the duration until all carbon sources were depleted.

As a result, the highest product concentration of −100 g L 1 is

reached for production on a feed of pure D‐xylose and lowest oxygen

availability ( =v 0.1O ,max2 , Figure 7, left side). The trade‐off between

space‐time yield and final product titer shows linear behavior,

because only small amounts of sugars accumulate (due to low feed

concentration and high biomass titer) leading to similar overall

production period ΔtFB in all cases.

The highest product titer, however, comes at low selectivity

(amount of succinate per total amount of carbonic acids formed) due

to simultaneous formation of acetate. Consequently, based on the

assumed strain design (i.e., C. glutamicum wild type harboring four

potentially active D‐xylose assimilation pathways, but no further

strain modification, Figure 4) microaerobic production of succinate

always leads to a trade‐off between high product titer and high

selectivity.

The combination of optimal batch and fed‐batch operation with

highest product titer is shown on the right‐hand side of Figure 7.

During the batch phase ( ⩽ ⩽t0 11 hr), a high growth rate is

obtained by metabolization of D‐glucose at the highest possible rate.

In addition, D‐xylose is metabolized via the Weimberg pathway to

synthesize biomass precursor α‐ketoglutarate. Both carbon sources

are depleted almost at the same time. During production phase, pure

D‐xylose is fed at a low concentration such that only small amounts

accumulate in the reactor. D‐xylose is metabolized via the isomerase

pathway while all other pathways are inactive. Finally, oxygen

limitation enforces the downregulation of the oxidative part of the

TCA cycle and reverse operation of its reductive part leading to

combined formation of succinate and acetate.

4 | CONCLUSION AND OUTLOOK

We presented a multiscale and multidisciplinary modeling framework

that allows dynamic modeling and simulation of complex biorefinery

processes. The developed Modelica library of (bio)chemical unit opera-

tions permits easy adaptation to describe different subprocesses for the

conversion of renewable feedstock into value‐added products or to

replace (sub)models when new insights and more detailed models

become available. The DFBA approach enables realistic modeling and

simulation of microbial transformation steps and accounts for changing

environmental conditions during dynamic operation. Our solution

strategy for the embedded optimization problem is easy to use and

allows problem formulation and modification in Modelica language.

Finally, our case study showed that sugar mixtures from OrganoCat

pretreatment are well‐suited carbon sources for bio‐based production

with the platform organism C. glutamicum.

The direct approach is suitable for solving the embedded

optimization problem during dynamic simulation of DFBA models.

However, it is important to note that numerical difficulties may arise

because active set changes of the embedded optimization problem

are hidden from the integrator. In addition, the direct solution

approach requires the simulation software to use a numerical

approximation technique (e.g., finite differences) to obtain derivative

information for the embedded optimization problem inducing an

truncation error. For the case studies in this contribution, none of

these difficulties were observed. Nevertheless, a more advanced

solution method to handle these drawbacks is desirable. The method

of Höffner et al. (2013) determines the active set of the embedded

optimization problem and uses first‐order optimality conditions for

reformulation into an algebraic equation system. Active set changes

F IGURE 6 Prediction of space‐time yields for biomass of
Corynebacterium glutamicum when grown in batch mode and varying
mixtures of D‐glucose and D‐xylose. The set‐up for the simulation
study is as follows: A batch reactor ( =V 1 L) with aerobic growth

conditions, a constant inoculum concentration ( ( ) = −c t 0.1 g LX 0
1),

and a constant overall amount of carbon atoms was simulated for
different values of ( )tC5 0ϕ defining the initial ratio of C5 and C6

sugars (cf. Equation (2)). Vertical dashed lines indicate the two

potential mixtures derived from OrganoCat pretreatment process
(cf. Figure 2) [Color figure can be viewed at wileyonlinelibrary.com]
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are indicated by zero‐crossings that can be detected by the

integrator if coupled with a suitable event detection algorithm. Exact

derivatives are obtained by using algorithmic differentiation techni-

ques on the algebraic equation system (Naumann, 2012). Algorithmic

differentiation is also beneficial for sensitivity analysis if an upper‐
level optimization problem is considered, that is, in context of

parameter estimation, optimal experimental design or optimal

control.

The promising simulation results presented in this study need to be

confirmed experimentally and the biorefinery model may be extended

with respect to downstream processing to allow plant‐wide evaluation of

the different production scenarios discussed in this study. In addition, the

(a)

(b)

(c)

(d)

(e)

(f)

(g)

F IGURE 7 Prediction of the impact of sugar ratios C5,inϕ and oxygen availability vO ,max2 on succinate production with Corynebacterium
glutamicum under microaerobic fed‐batch conditions in terms of final titer, space‐time yield and selectivity (left‐hand side) and model prediction
for combination of optimal batch and fed‐batch operation for highest product titer (right‐hand side). The set‐up for the simulation study was as

follows: Constant volumetric feeding rate of = −F 0.02 L hrin
1, fixed inlet concentration of carbon atoms of 10mol −L 1, variation of sugar ratio

C5,inϕ in feed, and oxygen availability via the flux vO ,max2 [Color figure can be viewed at wileyonlinelibrary.com]
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substitution of some (sub)models of the pretreatment process by more

detailed models is necessary for in‐depth analysis of the influence

between the various process steps and identification of reasonable

feedback loops. For instance, a more detailed model of the enzymatic

hydrolysis step would enable a feedback loop regarding the required

sugar ratios for microbial transformation and appears to be a promising

handle to improve the overall process performance. In addition, the

presented tool may be used to support scale‐up of biorefinery processes,

for instance, in terms of plant‐wide model‐predictive control, sizing of

equipment, and identification of potential bottlenecks (e.g., availability of

reactants, important recycle streams, accumulation of potential inhibitors

for enzymatic hydrolysis, or microbial transformation).
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APPENDIX: DFBA MODEL

The DFBA model to describe growth of Corynebacterium glutamicum

comprises the following equations

˙ = ( ) =V F V t V, ,in 0 0 (A1a)

= ⋅ ( − ) − ⋅ ( ) =c
F
V

c c v c c t c, ,GLC
in

GLC,in GLC GLC X GLC 0 GLC,0̇

(A1b)

= ⋅ ( − ) − ⋅ ( ) =c
F
V

c c v c c t c, ,XYL
in

XYL,in XYL XYL X XYL 0 XYL,0̇ (A1c)

= ⋅ − ⋅ ( ) =c v c
F
V

c c t c, ,X X X
in

X X 0 X,0̇ (A1d)

= ⋅ − ⋅ ( ) =c v c
F
V

c c t c, ,SUCC SUCC X
in

SUCC SUCC 0 SUCC,0̇ (A1e)

= ⋅ − ⋅ ( ) =c v c
F
V

c c t c, ,LAC LAC X
in

LAC LAC 0 LAC,0̇ (A1f)

= ⋅ − ⋅ ( ) =c v c
F
V

c c t c, ,ACE ACE X
in

ACE ACE 0 ACE,0̇ (A1g)

( ) ∈ − ˆ
ˆ

tv c varg min T

v
(A1h)

ˆ =Nv 0s.t. , (A1i)

ˆ ⩽ ⋅
+

v v
c

c K
,GLC GLC,max

GLC

GLC M,GLC
(A1j)

ˆ ⩽ ⋅
+

v v
c

c K
,XYL XYL,max

XYL

XYL M,XYL
(A1k)

ˆ + ˆ ⩽v v v ,GLC XYL upt,max (A1l)

ˆ ⩽v v ,O O ,max2 2
(A1m)

ˆ ⩽ ˆ ⩽ ˆv v v .lb ub (A1n)

Here, the differential variables are the reaction volume V and

extracellular concentrations cGLC, cXYL, cX, cSUCC, cLAC and cACE of

D‐glucose (GLC), D‐xylose (XYL), biomass (X), succinate (SUCC), lactate

(LAC), and acetate (ACE) with differential equations (A1a) to (A1g). The

extracellular balance equations are coupled to the embedded optimiza-

tion problem (A1h)–(A1m) via growth rate, uptake and excretion kinetics.

The uptake kinetics are described by equations (A1j) and (A1k) where the

upper bound is given by Michaelis–Menten kinetics with parameters

vGLC,max, KM,GLC, vXYL,max, and KM,XYL. Equation (A1l) imposes an upper

limit for the overall uptake rate of carbon sources with parameter vupt,max.

Values for the kinetic parameters were derived from single batch

experiments with C. glutamicum WMB2evo (optimized for D‐xylose
utilization via the Weimberg pathway, see Radek et al., 2017 for

more details) which was grown on either D‐glucose or D‐xylose,
respectively (data not shown). For the sake of simplicity and

considering confidence bounds, the following parameters were used:

= = ( ⋅ )−v v 4.5 mmol g X hupt,max GLC,max
1; = ( ⋅ )−v 4.0 mmol g X hXYL,max

1;

= =K K 15M,GLC M,XYL mM. The upper bound on oxygen uptake rate

(Equation (A1m) with parameter vO ,max2 ) can be interpreted as an

operational degree of freedom that depends on stirring rate, aeration

rate and medium (air or pure oxygen). The initial carbon concentration is

related to a batch experiment with C. glutamicum WMB2evo on a mixture

of 20 g −L 1 D‐xylose and 10 g −L 1 D‐glucose (data not shown). By taking the
molar masses of =M 150.13XYL

−g mol 1 and =M 180.16GLC
−g mol 1

and the number of C‐atoms (5 and 6, respectively) into consideration, the

initial carbon concentration of 1mol −L 1 is obtained. The objective

function of the embedded optimization problem is maximization of

biomass growth (Equation (A1h)).
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