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Abstract: Cyanate ester resin (CER) is an excellent thermal stable polymer. However, its mechanical
properties are not appropriate for its application, with brittle weakness, and it has poor functional
properties, such as luminescence. This work innovatively combines the luminescence property and
the improved mechanical properties with the inherent thermal property of cyanate ester. A novel
nanocomposite, CER/uMWCNTs/Eu, with multi-functional properties, has been prepared. The
results show that with the addition of 0.1 wt.% of uMWCNTs to the resin, the flexural strength and
tensile strength increased 59.3% and 49.3%, respectively. As the curing process of the CER progresses,
the injected luminescence signal becomes luminescence behind the visible (FBV). The luminescence
intensity of CER/uMWCNTs/Eu was much stronger than that of CER/MWCNTs/Eu, and the
luminescence lifetime of CER/MWCNTs/Eu and CER/uMWCNTs/Eu was 8.61 µs and 186.39 µs,
respectively. FBV exhibited great potential in the embedment of photon quantum information.
Therefore, it can be predicted that CER/uMWCNTs/Eu composites will not only have a wide range
of applications in sensing, detection, and other aspects, but will also exhibit great potential in the
embedding of photon quantum information.

Keywords: cyanate ester resin; unzipped multiwalled carbon nanotubes; europium; nanocomposites;
structure–property relationships; ultraviolet aging; luminescence

1. Introduction

Cyanate ester resin (CER) is an excellent thermal stable polymer, with a unique triazine
ring network structure, which can be used at high temperatures for a long time. Therefore,
it is widely applied in various fields, such as aerospace, microelectronics packaging field,
and so on [1–4]. However, its mechanical properties are not appropriate for its application,
with brittle weakness, and it has poor functional properties, such as luminescence [5–7].
Therefore, it is important to find an additive that can not only improve its mechanical
properties such as toughness, but also increase its functional properties.

Multiwalled carbon nanotubes (MWCNTs) have excellent structural characteristics,
are easy to functionalize, and can be used as reinforcement materials to improve the
performance of polymer materials [8–11]. CER/MWCNTs nanocomposites have been
recently developed and studied by several teams [12–20]. The catalytic effect of MWCNTs
on CER polymerization was fixed, and CER/MWCNTs nanocomposites with improved
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mechanical and thermal properties and electrical and thermal conductivity have been
elaborated. However, the matrix reinforcement of MWCNTs is not significant because the
contact area between the carbon nanotubes and the matrix is limited, and the outermost
nanotubes prevent the inner tubes from contacting the polymer matrix. [21]. Kosynkin
et al. reported a representative way to form unzipped multiwalled carbon nanotubes
(uMWCNTs) [22]. Since then, many reports have begun to use uMWCNTs as fillers
to strengthen polymer composites [23,24]. Those demonstrated that uMWCNTs have
outstanding physical enhancement properties and are superior to those of MWCNTs [25,26].
As a filler, carbon nanotubes can not only improve the brittleness of polymer, but also
functionalize polymer materials.

Cyanate resins are commonly used in aerospace applications, hence UV aging resis-
tance is also an important indicator to measure their performance [27]. In addition, the
material can also be damaged by ultraviolet radiation and other environmental factors in
their actual use, which will cause aging of the material. The aging of polymer material
is an important factor affecting the safety of a sealed cabin, which requires it to have the
ability to resist solar radiation, the thermal cycle, electronic radiation, and other factors
in space [28]. Cyanate ester resin itself has excellent UV aging resistance. The effect of
uMWCNTs on the UV aging performance of cyanate resin was also studied in this paper.

Furthermore, we also injected luminescence properties into the cyanate ester resin
matrix. Just a few publications have reported the combination of the luminescent properties
of lanthanide complexes with heat-resistant polymers [29–31]. We have innovatively
combined lanthanide complexes with CER to obtain light-emitting and heat-resistant
polymer composites. After curing, the luminescence emission spectrum of resin usually
has a peak at 500 nm, which is a characteristic peak of polymer materials containing
aromatic rings. However, the new luminescence signal of the lanthanide complex we
injected is different from the original peak of the resin. With the formation of a cyanate
ester network during curing, the injected luminescence signal changed to luminescence
behind the visible (FBV). FBV has great application potential in the embedment of photon
quantum information.

As a kind of special luminescence materials, lanthanide complexes are often combined
with various organic or inorganic materials to prepare hybrid materials for practical use.
In recent years, polymers, as a kind of material with excellent mechanical properties, are
also combined with lanthanide complexes. However, pure lanthanide complexes and
polymer matrix have unstable luminescence properties. Therefore, we first attached the
lanthanide compound on the side wall of carbon nanotubes to prepare luminescence carbon
nanotubes [32,33]. For example, Wu et al. coated the multiwalled carbon nanotubes by
lanthanide (Eu3+, Tb3+) complexes and obtained luminescence materials with excellent
luminescence stability through a simple in situ synthesis method [34]. In addition, func-
tional groups on a surface of carbon nanotubes can also enhance the interface interaction
with polymer [35]. Thus, excellent mechanical and processing properties of the matrix and
luminescence of lanthanide complex are combined to obtain a new type of luminescent
materials with excellent mechanical and luminescence properties.

Herein, a novel kind of cyanate ester resin/unzipped multiwalled carbon nanotubes
(uMWCNTs) luminescent nanocomposite was developed, which combined the excellent
mechanical properties of heat resistance, UV aging resistance of the polymer nanocomposite
and the luminescence properties of the lanthanide complex. First, the enhancement effect
of uMWCNTs on the toughness and thermal properties of CER was determined. On this
basis, we added luminescence signal to the composite material, resulting in the composite
with unique combination of toughness, thermal, and luminescence properties. It could be
predicted that thermally resistant polymer hybrid luminescent materials would be widely
used in sensing, detection, and hazard prediction.
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2. Materials and Methods
2.1. Materials

The cyanate ester resin monomer (Bisphenol A dicyanate ester, DCBA) was supplied
from Kaixin New Material Technology Co., Ltd. (Liyang, China). Multiwalled carbon
nanotubes (MWCNTs, length: 0.5–2 µm, diameter: 50 nm) were bought from Xianfeng
Nano Material Technology Co., Ltd. (Nanjing, China). EuCl3 (99.99%), TTA (99%), and
phen (99.99%) were procured from Maclean Biochemical Technology Co., Ltd. (Shanghai,
China). Acetone, H2SO4 (98%), H2O2 (30%), HCl (36%) and KMnO4 were also received
from Maclean Biochemical Technology Co., Ltd (Shanghai, China).

2.2. Methods
2.2.1. Preparation of Unzipped Multiwalled Carbon Nanotubes (uMWCNTs) and
MWCNTs/Eu and uMWCNTs/Eu Composites

First, 0.2 g of MWCNTs were dispersed in 35 mL of H2SO4 and sonicated for at least
10 h. Then, 1 g KMnO4 was added in several times under magnetic stirring, and then raised
the temperature to 50 ◦C, and held for 1 h. After that, quickly poured the mixture into a
beaker filled with H2O2 ice. If bubbles were generated, added 0.2 mL of H2O2 solution and
repeated the step of adding H2O2 solution multiple times until no bubbles were generated.
Then, the mixed solution was centrifuged and washed once with dilute HCl (10%) and
deionized water several times until the pH of the mixed solution was neutral, and then
dried in oven at 60 ◦C. The resulting black powder was unzipped multiwalled carbon
nanotubes, coded as uMWCNTs.

Next, the MWCNTs/Eu and uMWCNTs/Eu composites were prepared. Appropriate
amounts of MWCNTs or uMWCNTs were uniformly dispersed in ethanol at 60 ◦C. Then,
the phen, TTA and EuCl3 were successively added and stirred for 2 h [36]. The pH value
was adjusted to 11, and the luminescence intensity was the highest when the pH value
was 11 [37]. The mixture was washed to remove excess Eu(TTA)3phen complexes and
dried. The uMWCNTs/Eu composites, which had a europium complex on the surface of
uMWCNTs, have been obtained.

2.2.2. Preparation of CER/uMWCNTs and CER/uMWCNTs/Eu Nanocomposites

uMWCNTs were dispersed (1 mg/mL) by ultrasonication in acetone at room tem-
perature for 30 min. Then CE monomer added to the above acetone solution and stirred
vigorously for 2 h at 100 ◦C [38]. The mixed solution was dried in an oven for 24 h at
80 ◦C to remove acetone and cast into a preheated mold coated for curing. The CER/
uMWCNTs nanocomposite was synthesized using step by step curing schedule consisted
of the following stages: 1 h at 120 ◦C, 1 h at 140 ◦C, 2 h at 160 ◦C, 2 h at 180 ◦C, 2 h at 200 ◦C,
4 h at 230 ◦C and post curing via 1 h at 250 ◦C [39]. The concentration of uMWCNTs was
0.1 wt.%. The preparation method used for CER/uMWCNTs nanocomposite synthesis is
schematically shown in Figure 1.

The CER/uMWCNTs/Eu nanocomposite containing 0.1 wt.% of uMWCNTs/Eu was
prepared similarly.

2.2.3. UV Irradiation Exposure

In the process of actual use, the material will be affected by ultraviolet radiation and
other environmental factors, which will cause the aging of the material. Samples of the
nanocomposites were exposed to UV radiation at 50 ◦C in an accelerated climate chamber
which was self-made in the laboratory, equipped by four rows of UV lamps with a UV
radiation wavelength of 340 nm each and the intensity was 0.71 W/m2 [40]. The total dose
of UV irradiation applied was 9.6 × 107 J/m2 (40 days of exposure). The sample was 5 cm
away from the UV lamp and placed in parallel.
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Figure 1. Schematic illustration of the preparation process used for CER/uMWCNTs nanocomposites.

2.3. Characterization

Fourier transformed infrared spectroscopy (FTIR, MAGNA-IR 5700) (Thermo Nicolet
Corporation, Waltham, MA, USA), X-ray diffraction (XRD, D8 Advance) (Bruker, Karlsruhe,
Germany), Raman (Almega Thermo Nicolet) (Thermo Nicolet Corporation, Waltham, MA,
USA) and X-ray photoelectron spectroscopy (XPS, ESCALAB-210) (Thermo Fisher Scientific,
Waltham, MA, USA) were applied to characterize the structure of carbon nanotubes.

The cross section of the nanocomposites was characterized by scanning electron
microscope (SEM, JEOL 6460) (JEOJ, Kyoto, Japan). The MWCNTs and unzipped MWCNTs
were characterized using Transmission Electron Microscopy (TEM, JEM-F2100) (JEOJ,
Kyoto, Japan). The outer diameter of MWCNTs and uMWCNTs were measured using
Nano Measurer software (Nano Measurer 1.2, Shanghai, China). The number of nanotubes
of each type was equal, and at least 50 nanotubes were measured. The flexural and
tensile properties of the composites were measured with a universal testing machine
(CMT4304GD) (MTS, Jinan, China); Sample size was 75 mm × 5 mm × 4 mm, and five
samples were measured for each nanocomposite. The thermal behavior was characterized
using Differential Scanning Calorimeter (DSC, DSC214 Polyma) (NETZSCH, Cologne,
Germany) and Thermogravimetric analysis (TGA, SDT Q600) (TA Instruments, New Castle,
PA, USA). The initial degradation temperature (Tdi) was determined as the 5% weight loss
temperature. Luminescence intensity and lifetime were recorded on the were recorded
on Edinburgh luminescence spectrofluorometer (FLS980-STM) (Edinburgh Instruments,
Edinburgh, United Kingdom).

3. Results and Discussion
3.1. Structure of uMWCNTs, MWCNTs/Eu and uMWCNTs/Eu

Unzipped multiwalled carbon nanotubes (uMWCNTs) is a portrayal description in ref-
erences/publications [22], which indicates the geometric change of CNTs. In this unzipping
process, the oxidation of pristine CNTs is the chemical cause to initiate this morphological
structural change of MWCNTs. It should be noted that in this process, the one-dimensional
MWCNTs are destroyed and changed into open morphological structures with different ge-
ometric shapes, as shown in Figure 2. The TEM images of pristine MWCNTs and unzipped
MWCNTs show that the morphology of the carbon nanotubes changed significantly after
their unzipping. As shown in Figure 2, the pristine MWCNTs can be seen with smooth
outer contours and the tubular structure is obvious. Compared with pristine MWCNTs,
the length of uMWCNTs became shorter after strong oxidation method processing, and
the outer walls were partially loosened or unwrapped, or even fell off from the surface of
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the nanotubes to form graphene nanosheets, thus increasing the surface area of MWCNTs.
Instead of forming flat graphene sheets, however, they show a tubelike structure. The size
distribution of the outer width for the MWCNTs and uMWCNTs in the diagrams inside
the corresponding TEM images also illustrated this phenomenon. Figure 2 shows that the
pristine MWCNTs have inherent hollow tubular structure with the average outer width of
D = 42.68 ± 5.06 nm, while the average outer width of uMWCNTs is D = 83.0 ± 1.53 nm.
One can see that the width of uMWCNTs is almost twice compared to that of MWCNTs,
indicating effective unzipping [22]. The increase of the width of carbon nanostructures not
only provided a larger surface area for the binding of polymer resin to carbon nanotubes,
but also increased the number of groups available on the edge and surface of MWCNTs for
further improvement of effective matrix/filler interaction and the dispersion stability.
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Figure 2. TEM images of (a) pristine MWCNTs, and (b) uMWCNTs.

Figure 3a illustrates the surface structure of MWCNTs characterized by FTIR. The
FTIR spectra of uMWCNTs show two strong absorption peaks at 3400 cm−1 and 1224 cm−1,
which correspond to the stretching and bending vibration of –OH, respectively. The C=O
and C–OH in –COOH exhibited the stretching vibrations at 1725 cm−1 and 1397 cm−1 [41–
43]. The FTIR spectra illustrated that the unzipped MWCNTs had oxygen-containing
functional groups formed at the oxidation by strong oxidants such as potassium perman-
ganate, thus contributing to the interaction between the resin and the filler and to effective
dispersing of the latter in the matrix.
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Raman spectra (Figure 3b) demonstrates that the pristine MWCNTs shows a D band
at 1346 cm−1, which is attributed to the defects on the surface or edge of uMWCNTs and
the disordered structure of graphite in the MWCNTs, as well as a G band at 1574 cm−1

attributed to the C atom sp2 hybridized in-plane stretching vibration [44]. Compared with
the MWCNTs, the shape and intensity of the 2D peak at 2700 cm−1 of uMWCNTs obviously
changed. The value of ID/IG (R) is often used to exhibit the degree of functionalization of
MWCNTs [45]. The R value represented the degree of graphitization of carbon nanotubes.
It can be seen from Figure 3b that the R value increases from 0.58 to 1.08 after unzipping,
which reveals that a large number of defects [46] and functional groups are formed in the
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MWCNTs at unzipping, and the size of the in-plane C sp2 domains decreases, destroying
the original ordered structure.

The XRD pattern of the MWCNTs shows the presence of a peak at 2θ = 25.9◦, which
is the corresponding graphite surface with spacing of (002) plane and corresponding d-
spacing of 0.34 nm. After unzipping, the position of the main peak moved slightly to the
position of 2θ = 24.7◦, and the d-spacing became 0.36 nm. The peak of XRD spectrum at
2θ = 42.3◦ represented the characteristic diffraction peak of plane (100). This indicated
that MWCNTs were unzipped to uMWCNTs and the most of the MWCNTs structure were
changed. Due to the introduction of more oxygen-containing groups between adjacent
layers, the d-spacing increases and the dense graphene layer falls off loosely.

To further investigate the changes of functional groups before and after the oxidation
of MWCNTs, we characterized MWCNTs and uMWCNTs via XPS. The ratio of the content
of carbon to the content of oxygen in XPS spectrum (O/C ratio) could characterize the
degree of oxidation of carbon materials. The O/C ratio of MWCNTs and uMWCNTs
is 0.0041 and 0.1593 respectively. The results show that the O/C ratios of uMWCNTs
were higher than that of MWCNTs, indicating that the oxidation degree of uMWNTs
increased. In the XPS spectra (Figure 4), the O content of MWCNTs is near zero, which
can be considered to be caused by the moisture in the air. The peak intensity of O1s of
uMWCNTs is much higher than that of MWCNTs, and can be divided into 532.3 eV C–O,
533.2 eV C=O. It proved that the surface of CNTs is modified with O.
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In the uMWCNTs /Eu spectra, Eu3+ shows two peaks, namely Eu3d5/2 at about
1135 eV and Eu3d3/2 at about 1165 eV, which proved the existence of the Eu trivalent
state. In addition, characteristic peaks of N1s and O1s were also observed in Figure 4e,f.
According to the peak differentiation of O1s, there is an Eu–O peak near 533 eV, which
indicated the existence of Eu in uMWCNTs/Eu and the formation of bonding with CNTs.
The F and N elements in the sample also confirmed the existence of Eu(TTA)3phen in
uMWCNTs/Eu. It can also be seen from the contents of each element in Table 1 that the
contents of Eu, F and N elements in Eu(TTA)3phen in uMWCNTs/Eu are higher than those
in MWCNTs/Eu, indicating that the content of europium complex in uMWCNTs/Eu is
higher than that in MWCNTs/Eu. This is in connection with the increased surface area of
uMWCNTs and the increase of groups on the surface and edge, which could adsorb more
lanthanide metal complexes.

Table 1. XPS analysis results of MWCNTs/Eu, uMWCNTs/Eu, MWCNTs/Eu and uMWCNTs/Eu.

Sample C (%) O (%) O/C Eu (%) F (%) N (%)

MWCNTs 99.59 0.41 0.0041 – – –
uMWCNTs 86.32 13.75 0.1593 – – –

MWCNTs/Eu 82.67 7.44 0.0899 0.84 6.30 2.29
uMWCNTs/Eu 70.02 15.57 0.2223 1.30 9.33 4.24

The luminescence properties of MWCNTs/Eu and uMWCNTs/Eu nanomaterials
were characterized by ethanol dispersion. Figure 5a,b show the excitation spectra and
emission spectra of MWCNTs/Eu and uMWCNTs/Eu. Figure 5a shows that the excitation
wavelength of MWCNTs/Eu is 372 nm and that of uMWCNTs/Eu is 386 nm. Compared
with MWCNTs/Eu, the excitation wavelength peak of uMWCNTs/Eu shifted to the right by
14 nm. It can be seen from the excitation spectra of MWCNTs/Eu and uMWCNTs/Eu that
although the excitation characteristic peak positions of MWCNTs/Eu and uMWCNTs/Eu
nanomaterials were similar. However, the peak position of uMWCNTs/Eu luminescent
materials showed a red shift, indicating that the energy transfer occurred between the
Eu(TTA)3phen and the uMWCNTs. This also indicated that Eu(TTA)3phen and uMWCNTs
bond. In addition, it can be seen from Table 2 that although the luminescence lifetime of
MWCNTs/Eu (424.1 µs) is lower than that of Eu(TTA)3phen (515.2 µs), the luminescence
lifetime of uMWCNTs /Eu (606.1 µs) is higher than that of Eu(TTA)3phen. This indicates
that the luminescence lifetime of the complex is improved after the Eu(TTA)3phen is
combined with uMWCNTs.
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3.2. The Strong Enhancement of CER Mechanical Properties by MWCNTs and uMWCNTs

As shown in Figure 6, the mechanical properties of CER network are enhanced strongly
with the addition of MWCNTs or uMWCNTs. The flexural strength and tensile strength
of the CER/MWCNTs nanocomposite were 120.75 MPa and 31.17 MPa, respectively, and
increased by 33.0% and 24.4%, respectively, compared to the pure CER network. The
effect of uMWCNTs is similar to the trend of CER/MWCNTs but the enhancement is more
pronounced. It was found that the values of flexural strength and tensile strength of the
CER/uMWCNTs nanocomposite were 160.07 MPa and 37.79 MPa, respectively, which
are 32.6% and 21.3% higher than that of CER/MWCNTs nanocomposites, respectively.
Compared with pure CER network, the flexural strength and tensile strength are increased
by 76.3% and 50.9%, respectively.
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The stress–strain curves for the pure CER network, CER/MWCNTs and CER/uMWCNTs
nanocomposites are illustrated in Figure 7. The difference in mechanical properties ob-
served was closely related to efficiency of chemical interaction of the MWCNTs and uMWC-
NTs with the CER matrix and dispersing nanofillers in the polymer. Compared with MWC-
NTs, the uMWCNTs had higher available interface area due to oxidative unzipping of
MWCNTs. As shown in Figure 3a, the uMWCNTs possess many groups, such as –OH and
–COOH groups, which react with the –O–C≡N group of CE monomer and growing CER
network. Thus, this strong interfacial covalent bonding between uMWCNTs and the CER
matrix (see Figure 1) results in more difficulty in sliding uMWCNTs in the CER matrix.
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nism. Figure 8 shows the scanning electron microscope (SEM) cross-sectional image of the
nanocomposite. On the one hand, as shown in Figure 8b some agglomerations of MWCNTs
in in the CER/MWCNTs nanocomposites are observed. The agglomerated regions of
MWCNTs were easy to cause crack propagation. However, the dispersion of uMWCNTs in
CER/uMWCNTs nanocomposites is more uniform (Figure 8c), which is conducive to the
improvement of toughness. On the other hand, it can be seen that the MWCNTs have been
pulled out of the matrix. Thus, we supposed the reinforcement effect is mostly pulling-out
mechanism because the interaction force between MWCNTs and CER resin matrix was
weak. However, the different situation can be found from the CER/uMWCNTs as shown
in Figure 8c, in which the broken image of uMWCNTs is shown by the very short bright
dots (Figure 8c). Obviously, the binding force between the uMWCNTs and the CER matrix
was enhanced due to the increased surface area from unzipping procedure as well as the
increased polar oxygen-contained groups at surface of uMWCNTs.
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In addition, it was clear that the interfacial adhesion between uMWCNTs and CER
matrix was provided not only by Van der Waals forces, but also by the chemical bonding
that can bear higher loads. As shown in Figure S1., the characteristic peak of –OH group
(3400 cm−1) in CER/uMWCNTs composites disappears. In addition, a new –C–N–C peak
appears at 1566 cm−1. Therefore, this paper tends to react the –OH group and –COOH
group on the surface of uMWCNTs with cyanate ester resin. Furthermore, as shown in
Figure 1, the growing CER network grafted covalently to the surface of uMWCNTs via
reaction of cyanate groups with –OH groups, forming the CER network coating on a surface
of carbon nanotubes, and improving the binding force between carbon nanotubes and
matrix polymer. Such a wrapping of CNTs by the CER was observed before [47], which
was only possible in systems with high contact between the polymer and MWCNTs.

3.3. Thermal Property of CER/MWCNTs and CER/uMWCNTs Nanocomposites

The DSC measurements of CER/MWCNTs and CER/uMWCNTs nanocomposites
were performed and the thermograms are given in Figure 9a. It can be seen that the
MWCNTs or uMWCNTs were added to the CER monomer, the temperature positions of the
peaks were 346.14 ◦C or 328.98 ◦C, respectively. This phenomenon proves that MWCNTs
had a strong catalytic effect on CE polymerization and formation of CER network inside the
nanocomposites [48]. At the same time, the melting enthalpy (∆Hm) of CER/MWCNTs was
84.87 J/g, while this value decreased to 78.02 J/g with the addition of uMWCNTs and the
enthalpy of formation (∆Hs) of CER/MWCNTs and CER/uMWCNTs nanocomposites were
718.09 J/g or 692.82 J/g, respectively. The difference between uMWCNTs and MWCNTs
was that the surface area of uMWCNT was larger, and there were many polar groups such
as –OH group and –COOH group on the surface.

The thermal degradation behaviors of the CER/MWCNTs and CER/uMWCNTs
nanocomposites are evaluated via TGA (Figure 9b). It can be seen that the degradation
mechanism of CER/MWCNTs and CER/uMWCNTs is similar, but the thermal stability
is obviously different. The initial decomposition temperature (Tdi) of the CER/MWCNTs
nanocomposite was 338 ◦C, while the Tdi of CER/uMWCNTs nanocomposite was 391 ◦C,
which was 53 ◦C higher than that of CER/MWCNTs. The chemical grafting of uMWCNTs
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to the cyanate ester resin matrix improved the adhesion between uMWCNTs and CER
matrix and effectively delayed the thermal decomposition of CER network, and thus en-
hanced the thermal stability of the nanocomposite. In addition, the char residue at 750 ◦C of
CER/uMWCNTs nanocomposite was slightly higher than that of CER/MWCNTs nanocom-
posites, but the values were very close. One can concluded that a control of structure of the
carbon nanofiller played a very important role of developing new nanocomposites with
outstanding thermal property.
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3.4. Aging Property of CER/MWCNTs and CER/uMWCNTs Nanocomposites under
UV Irradiation

Some changes in polymer properties, such as mechanical properties, were associated
with UV irradiation [49]. IR spectroscopy (Figure 10a) shows the effect of UV irradiation on
structure of the composites. Figure 10a displays the FTIR of pure CER, CER/MWCNTs and
CER/uMWCNTs nanocomposites before and after UV irradiation. CER network contained
many triazine rings formed at polycyclotrimerization of cyanate monomer. The FTIR
spectra of the pure cured CER and nanocomposites before and after UV irradiation shows
that the peaks of triazine rings at 1570 cm−1 (–C–N=C–) and at 1370 cm−1 (–O–C=N–)
remained unchanged. This obviously indicated that neither MWCNTs nor uMWCNTs
could change the UV stability of CER, and thus the composites had also obtained excellent
UV aging performance.
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Figure 10b compares the mechanical properties of the pure CER network, CER/MWCNTs
and CER/uMWCNTs nanocomposites before and after UV irradiation. After UV irradi-
ation, the flexural strength of the material equaled 116, 133, 182 MPa, respectively that
differed just about 2% from the values measured before UV irradiation. Similarly, the values
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of tensile strength for the pure CER network, CER/MWCNTs resin and CER/uMWCNTs
nanocomposites remained unchangeable after UV irradiation (25, 32, 38 MPa, respectively).
This result demonstrate that UV irradiation has little influence on the overall mechanical
properties of CER. Since MWCNTs did not change the ultraviolet aging properties of
the CER, the CER/uMWCNTs composites with both excellent mechanical properties and
ultraviolet aging properties were obtained.

3.5. Luminescence Property of CER/MWCNTs/Eu, CER/uMWCNTs/Eu Nanocomposites

Photoluminescence spectra of CER/MWCNTs/Eu, CER/uMWCNTs/Eu nanocom-
posites were recorded. To improve the photostability of the complex, the complex was first
doped with carbon nanotubes and then compounded into the resin matrix (see Section 2.2.1).
Luminescence excitation and emission spectra of each component (CER, MWCNTs, uMWC-
NTs and Eu) of the composites are shown in Figure S2 and Figure 11 shows the excitation
and emission spectra of the cured CER doped with MWCNTs/Eu and uMWCNTs/Eu.
After curing, the photoluminescence spectra of CER/MWCNTs/Eu, CER/uMWCNTs/Eu
in Figure 11b distinguished luminescence peaks at 614 nm, indicating the emission charac-
teristics of europium complexes according to the following transition 5D0 → 7F2 (614 nm);
however, other transitions were concealed. On the other hand, with the formation of
CER network in polymerization process, the luminescence emission spectrum of resin
gradually appeared as a wide emission band around 500 nm, which indicated the emission
of conjugate aromatic network. As shown in Figure 11b, the intensity of resin emission
band even overwhelmed that at 614 nm from the europium complex. At this situation, the
emission of europium complex became luminescence behind the visible (FBV), which could
impart the embedment of photon quantum information into potential application target.
Figure 11a,b indicates that the luminescence intensity of CER/uMWCNTs/Eu is higher
than that of CER/MWCNTs/Eu with the same luminescence hybrid material content.
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Figure 11c gives the luminescence decay curves of CER/ MWCNTs/Eu, CER/
uMWCNTs/Eu measured at the 5D0 → 7F2 transition of Eu3+ ion. The luminescence life-
time of CER/MWCNTs/Eu and CER/uMWCNTs/Eu is 8.61 µs and 186.39 µs, respectively
(shown in Table 3). It can be seen that the addition of uMWCNTs improved luminescence
stability of the CER. On the one hand, the surface area of uMWCNTs increased, and at the
same time, a lot of functional groups were introduced, which could adsorb more lanthanide
complexes. On the other hand, the stabilization effect of oxygen-containing groups such
as –OH and –COOH groups with lanthanide rare earth complexes improved the energy
transfer efficiency from ligand to Ln3+. Although carbon nanotubes could cause partial
luminescence quenching, the luminescence quenching efficiency of original MWCNTs
was higher than that of unzipped carbon nanotubes [50]. In conclusion, the luminescence
intensity of CER/uMWCNTs/Eu is higher than that of CER/MWCNTs/Eu.

It can be seen from Table 3 that the measurement results of quantum yield are corre-
sponding to the luminescence intensity and lifetime results, and one can see that the higher
the quantum yield, the higher the luminescence intensity. This is also connected with the
specific surface area and surface groups of uMWCNTs.
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Table 3. The lifetime and quantum yield (QY) of CER/MWCNTs/Eu and CER/uMWCNTs/Eu
nanocomposites.

Sample Lifetime (µs) QY (%)

CER/MWCNTs/Eu 8.61 1.02
CER/uMWCNTs/Eu 186.39 2.12

4. Conclusions

In this paper, the luminescence property was innovatively imparted to cyanate es-
ter resin, which also combined with the original thermal properties and the improved
mechanical property. With the addition of 0.1 wt.% of uMWCNTs, the flexural strength
and tensile strength of composites increased 59.3% and 49.3%, respectively. With the
same addition, the luminescence property injected into the cyanate resin matrix plays the
role of emitting photon signals. The existing broad band of emission in blue makes the
luminescence from MWCNTs/Eu an invisible photon signal, and provides the potential
photon signal embedment. Another excellent property of the composites is its excellent
UV aging performance; neither MWCNTs nor uMWCNTs could change the UV stability of
CER. With these multiple functional and mechanical properties, it could be predicted that
the thermal-resistant polymer with hybrid luminescent properties will be widely used in
sensing in a high-temperature environment.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/ma14154244/s1, Figure S1: FTIR spectra of uMWCNTs, CER/uMWCNTs and pure CER., Fig-
ure S2: Luminescence excitation and emission spectra of MWCNTs and uMWCNTs (a,b), Eu(TTA)3phen
(c,d) and CER (e,f).
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