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This article provides data on primer sequences used to amplify the
innate immune genes RIG-I and Mx and a set of normalizing
reference genes in mallards (Anas platyrhynchos), and shows which
reference genes are stable, per tissue, for our experimental set-
tings. Data on the expressional changes of these two genes over a
time-course of infection with low pathogenic avian influenza virus
(LPAI) are provided. Individual-level data are also presented,
including LPAI infection load, and per tissue gene expression of
RIG-I and Mx. Gene expression in two outlier individuals is
explored in more depth.
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ubject area
 Biology

ore specific subject area
 Immunology

ype of data
 Table, graph, figure

ow data was acquired
 Mallards were infected with low pathogenic AIV, and sacrificed over a

time-course. RNA was extracted from harvested tissues and gene
expression of immune genes and reference genes was analyzed via RT-
qPCR on a LightCycler 480 (Roche). Data analysis was performed using
qBaseþ and GraphPad Prism.
ata format
 Analyzed

xperimental factors
 Ducks were infected with an H1N1 virus. Extracted RNA was treated with

DNase.

xperimental features
 Infection of mallards was achieved via a semi-natural, contact infection

regime. qPCR results were normalized using a panel of reference genes
shown to be stable for the experimental conditions under consideration.
ata source location
 Infections were performed at the Swedish Veterinary Institute, Uppsala,
Sweden. Molecular lab work was conducted at Linnaeus University,
Kalmar, Sweden.
ata accessibility
 Data are provided with this article
Value of the data

� Avian influenza virus (AIV) infection of mallards was achieved via a semi-natural, contact infection
route to mimic natural transmission of the virus.

� Infection with low pathogenic AIV provides a contrast to most previous studies that used highly
pathogenic AIV to study immune gene expression in mallards.

� A set of reference genes that had been experimentally validated as stable under the given
experimental treatment were used to stabilize RT-qPCR.

� A table summarizing the methodology and findings of previous studies of Mx and/or RIG-I
expression in AIV infected ducks is provided.
1. Data

The dataset provided here provides additional information for Helin et al. [1]. In that paper, we
show that the innate immune genes retinoic acid-inducible gene-I (RIG-I) and myxovirus resistance
gene (Mx) are rapidly yet transiently upregulated after infection with low pathogenic avian influenza
virus (LPAI) subtype H1N1. Helin et al. aims to provide a series of methodological improvements over
previous analyses of immune gene expression in ducks infected with avian influenza virus (AIV).

Table 1 shows that most previous studies have used highly pathogenic avian influenza virus
(HPAI), which is rarely detected in wild mallards [2,3]. Additionally, infection in previous studies was
achieved via artificial inoculation comprising potentially unnatural viral doses and infection routes.
These previous studies have almost exclusively been conducted on domestic Pekin ducks, rather than
the main wildlife reservoir for avian influenza, mallard ducks (Anas platrhynchos). Lastly, most pre-
vious studies have used a single, non-validated reference gene (often GAPDH) for normalizing gene
expression data. This approach leads to potentially misleading interpretation of data [4].



Table 1
Previous studies of RIG-I and Mx gene expression in mallard and Pekin ducks infected with AIV. Only studies using quantitative real-time PCR to assess patterns of gene expression are
included. Only results significantly different from controls are listed, and all fold-changes represent upregulation compared to controls (no study found down-regulation of either gene at
any time point). EID50 is 50% egg infectious dose, MOI is multiplicity of infection, PFU is plaque forming units, RGs is reference genes, dpi is days post infection, hpi is hours post infection, N
indivs is number of individuals per time point, wk is week.

Innate
Gene

LPAI/
HPAI

Strain Viral dose Innoculation
Method

Tissues analysed RG Time points N.
indivs

Breed Resulte Refs.

RIG-I HPAI H5N1 106 of EID50 Dripped into nares,
eyes & trachea

Lung, intestine GAPDH 1, 3 dpi 3 Pekin Lung: ~200-fold at 1dpi, ~20-fold at
3 dpi

[6]

Intestine: ~5-fold at 1dpi, ~2.5-fold at
3 dpi

RIG-I LPAI H5N2 106 of EID50 Dripped into nares,
eyes & trachea

Lung, intestine GAPDH 1, 3 dpi 2-3 Pekin No significant changes [6]

RIG-I HPAI H5N1 105 of EID50 Intranasal Spleen β-
actinb

2 dpi 4 Pekin 13-fold [7]

RIG-I LPAI H7N1 2 × 105 of EID50 Dripped intranasally
& intratracheally

Lung, bursa, ileum 18Sc 0.8, 2, 4, 7,
14 dpi

6 Pekin ~7-17-fold at 0.8 dpi in all 3 tissues [8]

RIG-I HPAI H7N1 2 × 105 of EID50 Dripped intranasally
& intratracheally

Lung, brain, spleen 18S 0.3, 1, 2, 3, 4,
5, 7 dpi

6 Pekin Spleen: ~10-fold at 1&2 dpi, 2-4-fold
at 3&4 dpi

[9]

Brain: ~1.8-fold at 2 dpi
Lung: ~6-8-fold at 1,2&3 dpi, ~2-fold
at 4 dpi

RIG-I HPAI H5N1a 105 of EID50 Intranasal Spleen, lung β-actin 2 dpi 4 Pekin Spleen: ~65-fold in 5wk old ducks,
~4-fold in 2wk old ducks

[10]

Lung: ~7-fold in 5wk old ducks, ~2.5-
fold in 2wk old ducks

Mx LPAI recombinant 0.1 MOI Cells & virus mixed
together

Embryo fibroblast
cells

GAPDH 2, 4, 8, 12, 24
hpi

NA Pekin ~500-1000-fold at 8-24 hpi [11]

Mx HPAI H5N1 1.0 MOI Cells & virus mixed
together

Peripheral blood
mononuclear cells

GAPDH 4, 8, 12, 24,
36, 48 hpi

NA Mallard 25-40-fold at 8-24 hpi [12]

Mx LPAI H1N1 0.1 MOI Cells & virus mixed
together

Primary lung cells GAPDH 12, 24, 48
hpi

NA Pekin No significant changes [13]

Mx LPAI H5N9 0.1 MOI Cells & virus mixed
together

Primary lung cells GAPDH 12, 24, 48
hpi

NA Pekin ~5-fold at 12 hpi, 12-fold at 24 hpi,
~8-fold at 48 hpi

[13]

Mx LPAI H7N1 107 PFU Intrachoanal cleft &
oral

Illeum GAPDH 1, 6 dpi 6-7 Pekin Upregulation at 1 & 6 dpif [14]

Mx LPAI H7N1 107 PFU Intrachoanal cleft &
oral

Illeum GAPDH 1, 6 dpi 3d Pekin Upregulation at 1 & 6 dpi f [15]

a Three strains, derived from chicken, egret and duck.
b Authors state β-actin was stable between uninfected and infected, but no details given and no other RGs investigated.
c Authors state that 18S had the most stable expression over time and between tissues in ducks, but data is not shown and no indication of which RGs were compared.
d Five control individuals.
e Many results were inferred from graphs because exact results were not listed. In such cases, ~ is used to indicate fold changes are approximate.
f Results not expressed as fold-change. Significant upregulation with one of the two tested viruses only.
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Table 3
Primers used in [1]. F denotes the forward primer and R the reverse primer. Annealing temperature (Ta) expressed in °C and
length in base pairs (bp).

Gene Symbol Gene Name Primers Ta Length

RIG-I Retinoic acid-inducible gene-I F GTGTATGGAGGAAAACCCTATTCTTAACT 59 95
R GGAGGGGTGATACCTGTTGTTTGAT

Mx Myxovirus resistance F TTCATGACTTCGGCGACAAC 59 128
R AACTCGGCCACTGAGGTAAT

GAPDH Glyceraldehyde-3-phosphate dehydrogenase F GGTTGTCTCCTGCGACTTCA 60 164
R TCCTTGGATGCCATGTGGAC

RPL4 Ribosomal protein L4 F CCTGGGCCTTAGCTGTAACC 60 115
R AAGCTGAACCCATACGCCAA

RPL30 Ribosomal protein L30 F CTCAATGTTGTTGCCGCTGT 60 119
R GCAAAGCCAAGCTGGTCATC

RPS13 Ribosomal protein S13 F AAGAAAGGCCTGACTCCCTC 59 82
R TGCCAGTAACAAAGCGAACC

SDHA Succinate dehydrogenase complex, subunit A F GACACAGTGAAAGGCTCCGA 60 90
R CTCCAGCTCTATCACGGCAG

UBE20 Ubiquitin-conjugating enzyme E2O F AGCATCCCCCTTTCCATCAA 59 91
R CAACCCTGTCTCCTGGCTTA

Table 2
Reference genes used for each tissue type, and the number of samples available per time point per tissue.

Tissue RGs Number of samples/time point

0 dpi 0.5 dpi 1 dpi 2 dpi 4 dpi 7dpi

Blood RPS13, UBE20, RPL4 5 5 5 5 5 5
Spleen RPS13, SDHA, GAPDH 5 5 5 5 5 5
GI1 RPS13, RPL4 4 4 4 4 5 4
GI2 RPL4, RPL30 4 3 4 5 5 4
Colon RPL4, SDHA 5 4 3 4 5 3
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2. Experimental design, materials and methods

To address these methodological issues, in Helin et al. [1] we use a semi-natural infection regime
to infect mallards with low pathogenic H1N1 AIV. We then use a set of reference genes (Tables 2 and
3), that we have previously demonstrated to be stable under these experimental settings [5], to
normalize RT-qPCR data. A full description of the experimental design, materials and methods is
provided in Helin et al. [1].

Datasets describing the fold-change in expression between experimental time-points, and per
individual, for each tissue type and gene are provided as Supplementary tables S1–4 and Figs. S1–S4
to this article. Fig. S5 provides a more in-depth analysis of two individuals with extremely high
expression, showing that this over-expression was restricted to a specific tissue and a single gene at
single time-point.
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