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Abstract: Landing an unmanned aerial vehicle (UAV) autonomously and safely is a challenging task.
Although the existing approaches have resolved the problem of precise landing by identifying a
specific landing marker using the UAV’s onboard vision system, the vast majority of these works
are conducted in either daytime or well-illuminated laboratory environments. In contrast, very few
researchers have investigated the possibility of landing in low-illumination conditions by employing
various active light sources to lighten the markers. In this paper, a novel vision system design is
proposed to tackle UAV landing in outdoor extreme low-illumination environments without the need
to apply an active light source to the marker. We use a model-based enhancement scheme to improve
the quality and brightness of the onboard captured images, then present a hierarchical-based method
consisting of a decision tree with an associated light-weight convolutional neural network (CNN) for
coarse-to-fine landing marker localization, where the key information of the marker is extracted and
reserved for post-processing, such as pose estimation and landing control. Extensive evaluations
have been conducted to demonstrate the robustness, accuracy, and real-time performance of the
proposed vision system. Field experiments across a variety of outdoor nighttime scenarios with an
average luminance of 5 lx at the marker locations have proven the feasibility and practicability of
the system.

Keywords: unmanned aerial vehicle; autonomous landing; low-illumination; marker detection;
real-time

1. Introduction

Unmanned aerial vehicles are cost-efficient, highly maneuverable, and casualties free
aerial units that have been broadly adopted in civil applications and military operations,
such as surveillance, traffic and weather monitoring, cargo delivery, agricultural produc-
tion, damage inspection, radiation mapping, and search and rescue (SAR), to name a
few [1–4]. For those missions requiring repeated flight operations where human interven-
tion is impossible, autonomous takeoff and landing are essential and crucial capabilities for
a UAV, which has been extensively studied by researchers from all over the world during
the last few decades. Although launching a UAV is relatively easy, landing it is the most
challenging part in many circumstances due to high risks and environmental uncertainties.
According to statistics, crashes and accidents are most likely to occur in the landing phase,
jeopardizing the safety of the UAVs involved. For a successful autonomous landing, a
prerequisite is to know the precise location of the landing site. With this information,
a UAV could gradually minimize its distance to the landing site, descend to a proper
altitude, and perform touch-down in the final descent phase. To resolve this pressing
issue, a widely accepted approach is to use machine vision to detect artificial landing
markers for assisting UAV autonomous landing. One of the most significant advantages of
machine vision is that it provides rich information about the surrounding environments
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without emitting radiation. It is also lightweight, low-cost, energy consumption efficient,
and friendly to stealth operations. Moreover, machine vision is robust to signal jamming
and telemetry interference due to its passive nature. At a distance, a UAV may carry out
preliminary detections on landing markers using machine vision, while relying on other
navigational means such as the global navigation satellite system (GNSS) or an inertial
measurement unit (IMU) [5]. At close range, vision sensors can determine both the relative
positions and attitudes between the UAV and the landing marker within sub-millimeter
accuracy [6], information of which is essential for precise landing control. During the
entire landing maneuver, vision sensors can couple with GNSS or IMU to obtain more
reliable measurements.

To date, there exist many studies describing vision-based methods for UAV au-
tonomous landing in either simulations or indoor well-contained laboratory environments.
They are the demonstration or proof-of-concept that could light a path toward more prac-
tical and realistic solutions [7,8]. Some of the recent studies have carried out flight tests
in real-world environments where well-illuminated scenes favor the vision systems [9,10].
With the proliferation of UAV applications, there emerges an increasing need to operate
UAVs at nighttime, benefiting from less airspace traffic and less human-activity-based in-
terferences. Some countries and regions have also issued specific legal frameworks to allow
for operation of a UAV at night. According to the Global Drone Regulations Database [11],
for instance, the Federal Aviation Administration (FAA) in the United States brought the
2021 New FAA Drone Regulations into effect on 21 April 2021. The regulations state that a
certificated operator must comply with the FAA’s training and testing requirements and
apply anti-collision lighting before flying the drone at night. From 31 December 2020, the
European Union Aviation Safety Agency (EASA) allowed night operations of UAVs unless
the state or region defines a specific zone where night ops are not possible for security
reasons. In 2016, China’s civil flight authority, the Civil Aviation Administration of China
(CAAC) issued new rules to allow UAVs operating beyond visual line of sight (BVLOS)
to fly outside the no-fly-zone (NFZ) in the nighttime. Recently, Australia’s Civil Aviation
Safety Authority (CASA) has approved flying a drone or remotely piloted aircraft (RPA) at
night for licensed operators. With the continuous improvement of laws and regulations,
UAV nighttime operations will be increasingly common in the foreseeable future. Some
related studies have also investigated the potential of nighttime-based autonomous naviga-
tion. However, autonomous nighttime landing is still a challenging task. Researchers have
introduced supplementary means, such as applying active light sources to markers [12], or
using a shipdeck-deployed infrared light array [13], so that the vision systems may see the
highlighted landing spots through the darkness. Nonetheless, an obvious drawback of the
active-marker-based methods is that it requires additional ground-based infrastructures
to be deployed. The active nature has a strong possibility to defeat stealth operations. To
our best knowledge, none of the existing approaches have reported a reliable performance
of UAV autonomous nighttime landing using conventional vision sensors and non-active
marker designs only. In the darkness, the onboard vision system may significantly en-
counter more difficulties than daytime for the following reasons: 1. Low contrast and
visibility: Since very limited light is reflected on the object surfaces due to poor illumination
conditions, the landing marker may have little appearance from a dark background. Target
detection methods relying on contour detection, geometric analysis, and inline-texture-
based feature matching may no longer be applicable owing to low contrast and visibility.
2. Partial occlusion: Shadows caused by light sources occasionally overlay on the landing
marker, thus leading to partial occlusion. In addition, the marker itself may be partially
or entirely out of field-of-view (FOV) due to UAV ego-motion, which is another primary
reason for occlusion. 3. Motion blur and noise: Under low-illumination conditions, the
exposure time should be set longer to capture a relatively brighter image. However, longer
exposure time combined with camera and UAV motion results in strong motion blur, and
inevitably brings noises to image acquisition. These disadvantages hinder a UAV from
accomplishing autonomous landing at night.
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Considering the aforementioned issues, this paper aims to close the gaps in the relative
works and offer a solution towards UAV autonomous landing at nighttime without the
need of an active-sourced marker, where the illumination conditions become unfavorable
for a conventional vision sensor. In our previous research on UAV autonomous shipboard
landing, we set a solid foundation and gained rich experience in vision-based target detec-
tion and closed-loop flight control in indoor laboratory environments [14]. In this paper,
we intend to extend the vision-based approach further to accommodate the challenges of
nighttime landing in outdoor environments. The significant contributions of this paper are
summarized as follows:

• A novel monocular vision system is presented for landing marker localization at
nighttime. It consists of a model-based scheme for low-illumination image enhance-
ment, a hierarchical-based method consisting of a decision tree with an associated
light-weight CNN for coarse-to-fine landing marker detection and validation, and
a post-processing technique for keypoint extraction. Such an approach is able to
perform robust and accurate landing marker detection in low-illumination nighttime
scenarios from different altitude levels without lightening up the marker.

• For low-illumination image enhancement, we analyze a model-based scheme and
refine the process by relaxing some of the restrictions and avoiding redundant calcu-
lation to speed up the algorithm. For landing marker detection and validation, the
first three nodes of the decision tree are designed based on loose criteria, and the
last lightweight CNN node maintains a strict standard of classification. Our vision
system can quickly adapt to other landing marker designs by simply retraining the
CNN node.

• The solution described in this paper has been verified outdoors in various field
environments with an average luminance of 5 lx at the landing marker locations, feasi-
bility, accuracy, and real-time performance of which are investigated comprehensively.
To our best knowledge, none of the existing approaches have reported UAV-based
landing marker detection using conventional visual sensors and non-active landing
markers in such low-illumination conditions.

The remainder of this paper is organized as follows: in Section 2, the literature on
relative topics is reviewed in detail; the hardware and software involved in this work are
presented in Section 3; in Section 4, the algorithm for low-illumination image enhancement
is elaborated; the hierarchical-based approach for landing marker detection and validation
is described in Section 5; experiments and the corresponding discussion are depicted in
detail in Section 6, and the paper is concluded in Section 7.

2. Literature Review

Previously, vision-based autonomous landing for UAVs in outdoor environments has
been comprehensively studied. Most of these approaches use the onboard vision sensors
to recognize a pre-defined reference object, a landing marker in general, for calculating
the relative pose (position and attitude) between the UAV and the marker. The flight
system then utilizes such information to perform landing maneuvers. Dated back in 2003,
Saripalli, Montgomery, and Sukhatme [15] conducted the groundbreaking research for
landing an autonomous unmanned helicopter outdoor on a helipad by computer vision
based on calculating the image invariant moments of the landing pattern, the result of
which has been broadly accepted and well-commented on by many other researchers.
Since then, various marker-based proposals have been reported, in which distinctive fea-
tures, such as geometrical shapes, characters, color blocks, and a combination of them
have been commonly applied to design landing markers. For instance, Lee et al. [16],
Serra et al. [17] and Wu et al. [18] combined black and white square-shaped tags as the land-
ing marker to extract the relative camera position and orientation followed by image-based
visual servoing (IBVS) for target tracking. In this case, the square corners are distinctive
and robust enough for the visual algorithms to detect. A color-based marker design was
reported in [19], where specific color-based segmentation techniques in conjunction with
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filtering methods and shape detection can distinguish the target from the background
effortlessly. These early works have demonstrated the integration and adaptation of vision-
based approaches into UAV platforms, making vision sensors the primary sensing scheme
in related applications.

In real-world applications, UAVs often operate in outdoor environments and land
on moving platforms such as vehicles or ground robots in multiple scenarios of interest.
In contrast to static-target-based landing, pursuing a moving target and landing on it is
not always a trivial task due to complex constraints, including large displacements, target
out of FOV, strong motion blur, and environmental interferences. In [20], Richardson et al.
incorporated an onboard visual tracker RAPiD with a Rotomotion SR20 electric-powered
UAV to demonstrate integrated landing control on a flatbed truck and an unmanned
ground vehicle (UGV) with slow translational motions, respectively. It used a predefined
description of the object being tracked, in this case, a customized polygon, to determine the
position and orientation of the object with respect to the UAV. However, the tracker cannot
cope with rapid changes in illumination. Thus, the UAV can only operate in constant
illumination conditions. In 2017, the Mohamed Bin Zayed International Robotics Challenge
(MBZIRC) competition organized by the Khalifa University of Science in Abu Dhabi was
considered a milestone in robotic society. The competition was about landing a UAV
on a ground vehicle carrying a landing marker (a cross sign within a circle) moving at
a maximum speed of 15 km/h. Results indicated that there still exists a large reality
gap between laboratory experiments and real-world field tests. Among the very few
participants who accomplished the tasks, Li et al. [21] proposed a vision-based method
comprising three stages to detect the moving marker at different altitudes. Based on the
geometrical features of the marker, a combination of ellipse extraction, line slope clustering,
and corner detection techniques is elaborated in detail to achieve an F-measure beyond 80%
with real-time performance. This study mainly focused on vision system design, but did
not elucidate the integration of the entire UAV framework. Baca et al. [9] introduced their
UAV system architecture design for contesting the MBZIRC competition, where a model
predictive controller (MPC) along with a nonlinear feedback controller was adopted to
facilitate trajectory planning and following. The vision algorithm is comprised of adaptive
thresholding, fast undistortion, ellipsecross pattern detection, and relative pose estimation,
details of which were comprehensively analyzed in [22]. Besides, the vision systems of
other participants are revealed in [10,23,24]. Though the MBZIRC competition offered a
valuable opportunity to examine the UAVs’ performance when facing challenging real-
world conditions, nighttime landing was still a task beyond its consideration. With the
rapid development of deep learning, convolutional neural networks have been introduced
to substitute hand-crafted features for landing marker detection in [25,26], to name a few.
However, in extreme low-illumination conditions, it is still debatable whether CNN can
extract features effectively or not.

Runway-based landing is another scenario in which UAV autonomous landing occurs.
In [27–29], the visual-based approaches utilize the unique perspective angle of the forward-
looking cameras to detect the runway patterns, so as to determine the relative position
between the aircraft and the runway for approaching and landing control, which are
the most critical phases of a flight. Although the adaptation of thermal infrared (TIR)
cameras is a potential solution to all-weather operation, most of these proposals still desire
good visibility conditions to accomplish landing. Alternatively, some infrastructure-based
systems set up on the ground provide a functional level of accuracy and availability to
guide a UAV in autonomous landing. The research group of Kong et al. proposed a stereo
ground-based system consisting of visible light cameras, infrared cameras, and pan-tilt-
units (PTUs) to capture and track the UAV. The system feeds the relative pose information
to the UAV’s onboard autopilot to generate proper landing trajectories [30,31]. A similar
approach was employed by Yang et al. in [32], in which more than two near-infrared
cameras are deployed to form a camera array to track and provide real-time position and
velocity of the UAV. Thus, a complicated calibration procedure is essential once the system
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is re-deployed. Moreover, an additional infrared lamp was mounted on the nose of the
UAV to facilitate target detection and tracking. Other ground-based systems use a local
wireless positioning network to assure UAV localization [33–35]. Such an approach has the
advantage of being immune to harsh weather conditions while being relatively accurate.
However, the system is vulnerable to signal jamming.

Landing on maritime vessels is another real-world application for UAVs that has
gained popularity. Compared with landing on a moving ground carrier, landing on a
moving shipdeck faces instability and complex motions resulting from ocean environmental
disturbances, such as wind, gusts, turbulence from the ship’s airwake, and the ship–wave
interaction due to a high sea-state. Additionally, sea-based landing makes conventional
vision systems suffer from various illumination differences caused by sun reflections, rain,
fog, and overcast skies, where some of the situations are considered the closest to nighttime
conditions. An early study of [36] followed the strategy of placing a visual marker on an
autonomous surface vehicle (ASV) for the UAV’s visual sensor to determine the proper
landing area using a learning saliency-based approach, while the relative pose is measured
with the help of an ASV-mounted upward-looking camera to capture a UAV-carried ArUco
marker at close range before the final touch-down. Nonetheless, the field experiments were
only conducted in the daytime under favorable weather conditions. A paper written by
Sanchez-Lopez et al. [37] introduced a vision-based decision-tree method for classifying
the international landing marker on a mimicked moving shipboard. The decision tree
involves a combination of an artificial neural network and other geometrical properties
of the landing marker, but it was only tested in laboratory environments as the heavy
computational burden prevents the vision system from being implemented in real-time
flight tests. Wang and Bai [38] proposed a visually guided two-stage process to land a
quadrotor UAV on a moving deck simulator. The authors scaled and modified the landing
pad with active LEDs to suit the onboard vision system in long-range and above-the-deck
hovering for landing marker detection. For long-range detection, the onboard camera
utilizes color segmentation to detect the red LEDs, whereas at close range, the conventional
visual approach is adopted to detect the marker. Notice that the precision of the vision
system was validated via VICON ground truth by an emulated deck motion under sea-state
6, but the average distance error of landing was relatively large compared with the size
of the landing pad. The work of Xu et al. [39] customized a nested AprilTag on a moving
vessel as the landing marker to assist UAV autonomous landing, in which the hierarchical
marker design along with a three-stage marker detection scheme may suit the vision
system at different altitude levels. Although a successful landing attempt was reported
during the field tests, more details, such as the accuracy of the estimated relative pose and
the speed of the moving vessel, were yet to be revealed. In our previous paper [14], we
proposed a real-time vision system to successfully detect the international landing marker
in a cluttered shipboard environment even in the presence of marker occlusion, of which
closed-loop flight tests demonstrated the results.

Apart from the passive landing marker methods listed above, the active sourced markers
presented in some early studies are potential solutions to nighttime landing. Activated
landing markers, a large number of which are based on TIR technology that has been
widely used for rescue, surveillance, inspection, and automatic target recognition [40,41],
are more favorable to operating in bad weather conditions or dark environments. Sev-
eral studies have suggested deploying infrared-based ground structures and sensors to
accommodate the task of landing in poor-illuminated scenarios. For instance, Xu et al. [42]
imported a “T”-shaped cooperative target emitting infrared light to couple with a long-
wavelength infrared imaging sensor as the vision-based approach. Owing to the distinct
advantage of infrared imaging, only affine moment invariants are processed for landing
marker detection. Such a system has been validated under low visibility conditions, such
as heavy fog, haze, and at night, showing a certain degree of accuracy and robustness.
In [43], the authors constructed two concentric active IR markers to achieve robust UAV
landing on a moving ground robot. The authors then simplified the vision algorithm to
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trivial brightness thresholding by mounting an IR-passing filter to the infrared camera to
obscure all the visible light except the IR markers. Chen, Phang, and Chen [12] adopted a
modified AprilTag illuminated with IR LEDs as the landing platform to allow tracking of
a moving target in low-illumination conditions using the standard AprilTag recognition
algorithm. Although the accuracy of the presented method has been validated, it lacks
integration of the system to perform a fully autonomous landing. Similar infrared-based
methods may also be found in [13,38,44]. These active-sourced markers have shown prefer-
able performance against environmental limitations, including low illumination and bad
weather conditions. However, we would not encourage their use due to the potential risks
of exposing both the UAV and the landing site where stealthy operations are desired. Alter-
natively, it is of great necessity to achieve autonomous nighttime landing on a conventional
landing marker due to the inevitable and increasing needs of UAV nighttime operations. To
date, none of the existing approaches has demonstrated the ability to utilize autonomous
landings at nighttime, counting on conventional vision sensors only.

3. System Configuration

The experimental system involved in this work has two major components: the
unmanned aerial vehicle and ground-based facilities. The UAV carries essential avionics
and computational equipment with the corresponding software to fulfill the requirements
of onboard processing. At the same time, the ground-based facilities are comprised of
a landing marker, a ground control station (GCS) laptop which enables accessing and
monitoring the UAV remotely, and a router for establishing a wireless communication link
between the UAV and the GSC.

3.1. The UAV Platform

We select a DJI Matrice 100 (M100) quadrotor equipped with a DJI E800 propulsion
system as the UAV platform. It is a commercially off-the-shelf, fully integrated, highly flex-
ible, and programmable aerial platform offering ready-to-fly capability and expandability.
The quadrotor is able to perform GPS-guided waypoint navigation, GPS/attitude-based
hover, and external-program-driven maneuvering. Such a setup minimizes the effort of
customizing the airborne platform while enabling a more convenient and minor risky
route toward actual flight tests. The M100 quadrotor has a maximum take-off weight and
payload endurance of 3.6 kg and 1.0 kg, respectively. When equipped with a DJI TB48D
5700 mAh Li-Po battery, it guarantees a 20 min flight-time to cover most of the experimental
tasks. Onboard avionics are involved, including an N1 flight control unit (FCU), an IMU
consisting of onboard sensors such as gyroscopes, accelerometers, a magnetometer, and a
pressure sensor, as well as a global navigation satellite system (GPS/BeiDou/GLONASS).
A bi-directional serial interface running at a baud-rate of 921,600 bps enables the FCU
to output IMU and flight states not limited to orientations, accelerations, velocities, and
altitudes up to 100 Hz. External control commands can also be transmitted back to the
FCU at a maximum rate of 100 Hz via the interface. A rechargeable RC transmitter has
an operating range of up to 2 km, where the vehicle status, battery health, and homing
position can be monitored when an external mobile device is attached.

To fulfill the requirements of onboard processing, we customize some payloads and
install them on M100. The payloads include an NVIDIA Jetson TX2 high-performance
processing unit, a DC-DC power module, a CamNurse SY003HD 1080P color camera, a
mobile beacon of the positioning system, and other custom-built mechanical structures
for mounting purposes. The TX2 unit is equipped with a 256-core NVIDIA Pascal GPU,
a dual-core NVIDIA Denver 2 64-Bit CPU, a quad-core ARM Cortex-A57 MPCore, 8 GB
LPDDR4 memory, 32 GB internal storage, and multiple interfaces. It delivers 1.3TOPs
performance under 15 W power consumption, which has become one of the most popular
processing units for robotic applications. The DC-DC power module sources power from
the TB48D LiPo battery and converts the voltage to suit the TX2 unit. The camera contains
a 1/2.7 inch CMOS sensor offering a maximum resolution of 1920 × 1080, and a lens with
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focal length: 3.6 mm, FOV: 140◦ horizontal, f-number: 2.0, and maximum frame-rate: 30 Hz.
The camera is tightened to a lightweight custom-built mechanism underneath the M100
battery cartridge facing straight downward and connected to the TX2 unit via a USB cable
for target detection purposes. In the field tests, the camera operates at free-run mode with
a resolution of 1280 × 1024 and a frame rate of 20 Hz. Figure 1 illustrates the M100 UAV
platform and the customized payloads. Specifically, component No. 8 is a mobile beacon
of a ground-based positioning system installed on the UAV’s airframe. We omit the detail
here as it does not contribute to this work, whereas it is reserved for outdoor position
referencing purposes in the ongoing studies.

2
3
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6

1
11

10

9

8

12

13

5

7

14
number description

1 air frame

2 TX2 unit

3 GNSS module

4 serial cable

5 DC-DC power module

6 LiPo battery

7 RC transmitter

8 mobile beacon

9 beacon mount

10 camera

11 USB hub

12 USB-TTL module

13 WiFi antenna

14 XT30 power cable

Figure 1. The DJI M100 quadrotor UAV platform and the customized payloads.

3.2. Ground Facilities and Software Architecture

Apart from the UAV platform, ground-based landing facilities play an essential role
in this research. A scaled landing marker is adopted to provide visual clues for landing
guidance, details of which are depicted in Section 5. A wireless router powered by a LiPo
battery has also been set up to bridge the M100 UAV and the GCS laptop so that the UAV
onboard commands can be executed remotely by the GCS laptop via the Secure Shell
Protocol (SSH).

The TX2 unit has an Ubuntu 16.04 Linux operating system and the robot operating
system (ROS) kinetic version installed. ROS is an open-source embedded robot library
designed to provide a standard for robotics software development, which abstracts robotic
hardware from the software that any robot can use the codes. It is a distributed framework
of processes that enables executables to be individually designed and loosely coupled
at runtime. These processes are written in C++ or Python programming languages and
often grouped in the form of packages, which can be shared, distributed, and reused
conveniently. There is a variety of driver packages and third-party libraries that can be
easily deployed and integrated. The major ROS packages involved in this work are the
OpenCV library for visual algorithm implementation and the DJI Onboard-SDK for M100
sensor telemetry and aircraft condition monitoring. Additionally, ROS’ data recording,
playback, and offline visualization functionalities are extensively used in experiments.

4. Low-Illumination Image Enhancement

Images acquired at nighttime by the onboard camera have extremely low illumination
and visibility. Thus, the images need to be enhanced first before any follow-up processing
can be applied. The solution to low-illumination image enhancement is twofold: increasing
the exposure time to raise global brightness, and implementing specific image enhancement
techniques. Unfortunately, the exposure time has an upper limit of 50 ms based on field
experiments to guarantee a frame rate of 20 Hz to meet the requirements of real-time
processing and hardware-in-the-loop control. Such an exposure time setup results in a very
dark image in which details are hard to distinguish with the naked eyes despite partial
artificial scene illumination existing. Therefore, a real-time image enhancement technique
has been adopted to improve the quality of the images.
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Conventional methods, such as gamma correction and histogram equalization, have
shown adequate yet limited performance in low-illumination image enhancement. These
methods are hindered by non-uniform brightness cases and suffer from over-enhancement
of contrast, loss of details, and amplified background noise. In this section, a physical-
model-based method for enhancing onboard capture image sequences in extremely low
light conditions is presented. It treats image enhancement as haze removal, where the
“haze” is determined by scene illumination. The proposed method is inspired by the work
of Dong et al. [45]. Here, we adopt a similar but more efficient approach to facilitate
low-illumination image enhancement. A channel-wise inverted low-illumination image
has a very similar appearance to a hazy image:

Ic
inv(x) = 255− Ic(x) (1)

where Ic(x) is the input low-illumination image, Ic
inv(x) is the inverted pseudo-hazy

image, and c stands for the RGB color channels. Figure 2a,b show the low-illumination
and inverted images of the test field, respectively. The McCarney atmospheric model is
commonly adopted to describe the scattering process in hazy images:

Ic
inv(x) = Jc(x)t(x) + Ac(1− t(x)) (2)

in which Jc
inv is the haze-free image yet to be estimated, Ac is the global atmospheric light

obtained by statistics, and t(x) is the transmission map describing the portion of the light
reflected by the object and which reaches the camera. According to Dark Channel Prior
(DCP) proposed in [46], a haze-free image has at least one color channel with very low
intensity at some pixels:

Jdark(x) = min
y∈Ω(x)

(
min

c∈r,g,b
Jc(y)

)
(3)

where Jdark(x) denotes the dark channel of image J, Ω(x) is a local patch centered at x. By
taking the minimum operation in the local patch and performing dark channel calculation
of the hazy image, Equation (2) can be re-written in the form of:

min
y∈Ω(x)

(
min

c∈r,g,b

(
Ic
inv(y)

Ac

))
= min

y∈Ω(x)

(
min

c∈r,g,b

(
Jc(y)

Ac

))
t̃(x) + (1− t̃(x)) (4)

The transmission in a local patch Ω(x) is assumed to be a constant, and the patch’s
transmission is denoted by t̃(x). According to DCP, Jdark(x) in Equation (3) is assumed to
be zero, as Ac is always positive. Combining Equations (3) and (4), a coarse transmission
map t̃(x) is derived with a constant parameter ω to retain a small amount of haze for
depth perception:

t̃(x) = 1−ω min
c

(
min

y∈Ω(x)

(
Ic
inv(y)

Ac

))
(5)

Then, the haze-free image J(x) can be recovered according to Equation (6), where t0 is
a lower bound to preserve a small amount of haze in dense hazy regions. By inverting J(x)
again, the enhanced image is obtained.

Jc(x) =
Ic
inv − Ac

max(t(x), t0)
(6)

Jc
enh(x) = 255− Jc(x) (7)
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(a) (b) (c)

(d) (e) (f)

Figure 2. Low-illumination image enhancement: (a) Onboard captured low-illumination image. (b) Inverted low light
image. (c) Result of dark channel calculation. (d) Result of luminance channel calculation. (e) Grayscale image after
enhancement. (f) Color image after enhancement.

Although the original DCP method can enhance low-illumination images, it is subject
to several drawbacks. One of the disadvantages is that the patch-based calculation in the
estimation of t̃(x) consumes a significant amount of computational power while introduc-
ing block artifacts in the transmission map, as the transmission is not always constant in a
patch. Another problem is that the density of haze is caused by the intensity of light rather
than scene depth, yet such a fact is ignored in the DCP model. Therefore, we relax the
restrictions of patch-based calculation and use the luminance channel to substitute the dark
channel. Figure 2c,d are the corresponding dark channel and luminance channel images
derived from Figure 2b, respectively. We may observe that the luminance channel image is
superior to the dark channel one due to the suppressed speckle noise. A simple grayscale
conversion obtains the luminance channel image:

Il
inv(x) = 0.299× Ir

inv(x) + 0.587× Ig
inv(x) + 0.114× Ib

inv(x) (8)

We also discover that the pixels of the transmission map t̃(x) calculated by DCP
and the pixels of Il

inv(x) are roughly symmetrical about the line y = k. As presented
in Equation (9), k is a tunable constant that dominates the effect of enhancement. The
improper value selection of k leads to over-enhancement or insufficient enhancement.
Therefore, k should be chosen carefully.

t̃(x)− k = −(
Il
inv(x)

Al − k) (9)
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Hence, combining Equations (6) and (9), we may utilize a simplified method to obtain
a haze-free image using Equation (10). The value of k has been empirically set to 0.52.
Such a value achieves the best result while preventing over-enhancement. For estimating
the global atmospheric light Al , the original DCP method has an extra statistical step
because the brightest pixel in the image does not always represent the atmospheric light.
Conversely, we relax this assumption and pick the brightest pixel in the luminance channel
image Il

inv(x) for Al . The reason behind this is that the intensity of the pixels in image
Il
inv(x) is only related to the level of darkness in the original low-illumination image. As

Il
inv(x) is an inverted image, the brightest pixel of Il

inv(x) always represents the darkest spot
of the scene that needs most enhancement. To speed up the calculation, we only process
the luminance channel image to reduce the computational burden and prevent further yet
redundant color-to-grayscale conversion. This is because the landing marker adopted in
this work is of bright color on a dark background that can be easily distinguished in a
grayscale image, whose details are elaborated in the next section. After haze removal, the
inverted image after enhancement Il(x) is shown in Figure 2e. We also present the color
version of the enhanced image in Figure 2f for visualization and an intuitive comparison.

Ĵl(x) =
Il
inv − Al

max
(
2k− Il

inv(x), t0
) (10)

5. Landing Marker Localization

The main objective of landing marker localization is to robustly detect the landing
marker and extract its relative pose with respect to the UAV. In this section, a novel hierar-
chical approach is presented to deal with landing marker localization after low illumination
image enhancement. It includes a hierarchical scheme consisting of a pre-processing stage
to reduce noise and separate the candidate foreground, a decision tree in connection with
a lightweight CNN for detection and validate the landing marker, and an information
extraction method to obtain the critical relative pose information for target tracking and
closed-loop landing control. The approach minimizes the complexity of the system to
achieve real-time processing while maintaining detection accuracy and robustness.

5.1. Landing Marker Analysis

Marker-based approaches have been commonly involved in UAV landing. Since
increasing the versatility becomes more of a necessity, we aim to use a general marker,
the international landing pattern consisting of a block letter “H” and a surrounding circle,
to extend the adaptability of landing. Whereas some other marker-based methods have
specific requirements on the combination and size of the visual patterns, our visual ap-
proach does not rely on a special configuration of marker size or proportion. Instead, the
width, height, and thickness of the block letter and the circle can be freely customized and
adjusted in practice.

As illustrated in Figure 3, a scaled landing marker of size 1 × 1 m2 is adopted in our
work, in which the circular pattern has a radius of 45.8 cm, and the block letter “H” has a
width of 43.6 cm and a height of 50.8 cm. The landing marker is of bright color and painted
in a gray background to be sufficiently distinguishable. According to the lens setup, the
marker is also adequately large for the onboard vision sensor to see it at an altitude up to
15 m. It is worth mentioning that no further modification has been applied to the landing
marker, as we would like the visual approach developed in this work to be adaptable to
other scenarios where a similar landing marker is presented.
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Figure 3. Details of the scaled international landing marker.

5.2. Hierarchical-Based Marker Detection and Validation
5.2.1. Hierarchical Mission Definition

As the UAV moves towards the landing marker from long distances to finally land
on it, one of the significant challenges is the scale change of the marker in the image.
At high altitudes, the marker becomes relatively small so that certain features are too
difficult to be detected, but at the same time, the vehicle is less likely to encounter obstacles.
At low altitudes, the situation is just the opposite. Therefore, we employ a hierarchical-
based scheme to divide the marker detection problem into four different phases, named
“Approaching”, “Hovering”, “Descending”, and “Touch Down”, according to a variable
∆ for altitude. In this study, ∆ was empirically set to 1 m based on the marker size and
experiments. We utilize the UAV’s onboard GNSS module to receive altitude information,
so that the vision system is able to determine the mission phase. The details of the
hierarchical-based scheme are depicted as follows:

• At the “Approaching” phase with an altitude level above 8∆, the landing marker is
acquired at a distance and forms a small area in the camera image. A piece of coarse
position information is sufficient to guide the vehicle towards the marker. Hence, a
rough estimation of the marker center with an acceptable position error is all we need
at this stage. We also affirm that 15∆ is the maximum altitude to detect the marker
with considerable accuracy, whereas the accuracy of the visual algorithm rapidly
degrades when the altitude exceeds the limit.

• The second phase is defined as the “Hovering” phase. When the UAV enters an
altitude interval between 3∆ to 8∆, it hovers and continuously tracks the marker to
minimize the position error. Therefore, a more precise position estimation is required.
The landing marker offers more visual detail for hover and altitude descending control
than the “Approaching” stage.

• During the third phase, “Descending”, the vehicle lowers its altitude to an interval
between 1∆ to 3∆ and prepares for the final landing stage. During this process, the
relative pose between the UAV and the marker is derived using all the critical visual
clues of the marker for landing control.

• Finally, the UAV enters the “Touch Down” phase when the altitude is below 1∆. At
this time, the onboard camera is too close to the ground, so that the landing marker
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is very likely to fade out and no longer present itself. The vehicle relies on the rest
of the onboard avionics, as well as the state machine, to predict the relative pose to
accomplish touch-down control.

5.2.2. Pre-Processing

We observe that a nighttime image is corrupted by shot noise with a mixture of
Poisson-Gaussian distribution due to the inherent drawback of the image sensor. Such
noise is significantly amplified after low-illumination enhancement, which affects image
binarization and landing marker separation. The first step of marker detection is to reduce
noise and isolate the foreground objects. Noise reduction is performed by employing a
5× 5 mean filter along with a 7× 7 Gaussian filter, resulting in a slightly blurred image.
Due to the uneven distribution of scene luminance, adaptive thresholding is applied to
binarize the image to capture the border of the landing marker. Different box sizes are
selected according to altitude levels, that is: box size 29 for altitude above 8∆, 41 for altitude
between 3∆ to 8∆, and 51 for 1∆ to 3∆. We suggest that such a box size configuration
maintains a balance between processing speed and quality. The input images and the
corresponding results after adaptive thresholding can be seen in Figure 4a–f.

(a) (b) (c)

(d) (e) (f)

Figure 4. Adaptive thresholding results at different scenes and altitudes: (a–c) The enhanced and filtered field experiment
images captured at the “Approaching” phase (GNSS altitude 8.32 m), the “Hovering” phase (GNSS altitude 6.58 m), and the
“Descending” phase (GNSS altitude 2.91 m), respectively. (d–f) The corresponding images after adaptive thresholding using
box sizes 29, 41, and 51, respectively.

After thresholding, connected component analysis is performed to select the candidate
region of interest (ROI) for further validation. Since there are many small irregular blocks
in the binarized image, we apply different minimum area thresholds to the generated
connected components based on the hierarchical proposal to bypass the irrelevant blocks.
We set thresholds to 150 pixels for the “Approaching” phase, 500 pixels for the “Hovering”
phase, and 1200 pixels for the “Descending” phase, respectively, based on an image
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resolution of 1280× 1024. Such a scheme effectively reduces the number of connected
component candidates from thousands to less than a dozen per frame on average. Then,
the minimum bounding box is computed for each remaining connected component to form
an ROI in both the previous enhanced image and the binarized image. Then, the results are
forwarded to a decision tree for marker detection and validation.

5.2.3. Decision Tree Validation

The decision tree presented in this work contains four nodes in total. The first node
is to check if the shape of the ROI is similar to a square due to the landing marker being
asymmetric. Since perspective and lens distortions may change the ratio, a tolerance δ1 is
applied to such a criterion to improve the robustness. The second decision node is based on
the ratio between the number of pixels from the outer circular pattern, and that of the “H”
pattern is close to a constant value c1, while the ratio between the number of pixels from the
entire pattern and the dark background is close to a constant value c2. Taking the factors
of occlusion and perspective distortion into account, tolerances δ2 and δ3 are applied to
c1 and c2 to improve the robustness. Such a feature is scale-, translation-, and rotation-
invariant. The confirmed ROIs are sent to the next node. The third node is to check whether
a binarized ROI image contains candidate graphical components or not. It examines if the
connected components from the candidate ROI have nested holes to determine whether a
complete landing marker is presented or not. We also take the situation of occlusion into
account. If partial occlusion contaminates the marker, the circular pattern is likely to be
incomplete, which violates the nested-holes assumption. Instead, if at least two connected
components are within one single ROI, and the geometrical centers are within a certain
pixel range, the ROI is confirmed as a potential candidate and passed on to the next tree
node. The criteria mentioned above are also scale-, translation-, rotation-invariant, and
anti-occlusion features. ROIs that do not meet the criteria are discarded.

The fourth node is the most critical yet resource-consuming node, in which a CNN is
developed to perform marker validation. Unlike the region-proposal-based or bounding-
box-regression-based CNN frameworks, we treat the landing marker detection problem as
a simple binary classification problem using the ROIs extracted from the previous node. As
a result, our method only validates the extracted ROI images using a lightweight network
architecture rather than searching for the desired target in the entire image. Such an
approach significantly accelerates the processing speed 20 times faster than the state-of-
the-art (SOTA) CNN object detectors. To generate the training samples, we first utilize
the previous ROI images containing landing markers and segmented natural scenes of
different scales, perspective angles, and illumination conditions captured under various
scenarios to construct the dataset. In total, 100 landing marker images and 200 natural
scene images are manually chosen as the training dataset, whilst another 20 landing marker
images and 40 natural scene images are randomly chosen as the testing dataset. In Figure 5,
the selected images of the dataset are illustrated, where the first two rows are the captured
landing markers, and the last two rows are the segmented natural scenes. Notice that some
markers are partially occluded, heavily distorted, blurred, and affected by discontinuity
to improve the network’s generalization ability. Before training, each image is resized to
a resolution of 56× 56 and normalized to a range of [0, 1]. In order to further extend the
adaptability of the network, data augmentation, including affine transformation, random
cropping, and random rotation, is applied to the training samples.

As the developed CNN is eventually running on a resource-constrained UAV onboard
platform, we are not encouraged to use deep network architectures such as ResNet [47]
and VGG [48] to trade processing speed for precision. Instead, we present a simple yet
efficient network structure primarily inspired by SqueezeNet [49] to facilitate landing
marker validation. The key idea is to substitute the conventional convolution layers with
the “Fire” modules to reduce computation and parameters. A fire module is comprised of a
squeeze convolution layer with 1× 1 filters only, followed by an expand layer consisting of
two separate convolution layers: one with 1× 1 filters, the other with 3× 3 filters, outputs
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of which are concatenated together in the channel dimension. As depicted in Figure 6,
the network begins with a standalone convolution layer C1 using an input image of size
56× 56, followed by four fire modules Fire1 to Fire4, and ends with another standalone
convolution layer C2. Max-pooling with stride 2 (P1 to P3) are employed after C1, Fire2,
and Fire3, respectively. As the input of the proposed network is only a quarter of the
original SqueezeNet, we proportionally reduce the number of filters per fire module,
resulting in (6, 24, 24) for Fire1, (8, 32, 32) for Fire2, (12, 48, 48) for Fire3, and (16, 48, 48) for
Fire4, respectively. A dropout layer with a ratio of 40% is applied after the Fire4 module.
The final average pooling layer P4 divides the output into landing marker and background
categories, where a softmax layer is used to classify the output. For training purposes, the
network is trained by minimizing the cross-entropy loss function using back-propagation
on a desktop PC equipped with an Intel i7 4790K CPU, 16GB DDR3-1333MHz RAM,
and an Nvidia Geforce 1070 GPU running Ubuntu 16.04 OS. We used a batch size of 4, a
learning rate of 0.001, and an Adam optimizer to train the network for 100 epochs under
PyTorch framework.

Figure 5. Selected images from the training dataset.
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Figure 6. The proposed lightweight CNN architecture for marker validation.
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5.2.4. Keypoint Extraction

Finally, if an ROI is affirmed as a landing marker by the CNN node, we extract the
keypoints from the corresponding binarized ROI image and preserve them for further
processing, such as pose estimation. Specifically, we treat the four outermost vertices and
the center of the “H” pattern as identical points. As illustrated in Figure 7a, the vision
system first rejects the small outliers of the marker ROI image, then removes the circular
pattern to obtain a clear image of the “H” pattern (see Figure 7b). The four vertices of the
bounding parallelogram of the “H” pattern are extracted, and the marker center is derived
by simply averaging the pixel coordinates of the vertices, as shown in Figure 7c.

(a) (b) (c)

Figure 7. Landing marker keypoint extraction: (a) Small outliers are first rejected from the binarized ROI image. (b) The
circular pattern is removed, and the “H” pattern is reserved. (c) The vertices and center are obtained by fitting a bound-
ing parallelogram.

6. Experiment and Discussion
6.1. Field Experiment Scenes

Since this is the first attempt, we try to perform vision-based landing marker detection
in low-illumination nighttime environments, and we conduct a comprehensive investiga-
tion to select the proper locations at the South China University of Technology—Zhuhai
Institute of Modern Industrial Innovation campus before carrying out the field tests. The
majority of the campus has intensive artificial light sources around buildings and paths. We
have chosen four different scenes with minimum light sources but cluttered backgrounds as
the experiment locations, as illustrated in Figure 8a–d. Additionally, the red arrow in each
scene indicates the actual position where the landing marker is placed in the experiments.
We also employ a light meter with a precision of 0.1 lx and a range of 200,000 lx to measure
the luminance at each marker location.

To be more specific, Figure 8a is the basketball field of the campus near the main
building with the nearest light source approximately 15 m away, shown in the top-left
corner of the figure. The landing marker is placed in the middle of the field (denoted as
L1), where the measured luminance is 4.0 lx. In Figure 8b, the landing marker is placed
on a stone-paved path near a small warehouse (denoted as L2) and surrounded by some
vegetation with a measured luminance of 4.3 lx. In Figure 8c, the landing marker is placed
on the dark side of a fire escape (denoted as L3) with a luminance of 4.8 lx, while the
luminance at the white arrow marking is approximately 32 lx due to closer to light source.
In Figure 8d, the landing marker is placed in a small garden (denoted as L4) on a stone-
paved path surrounding by some vegetation, where the measured luminance is 7.6 lx. The
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averaged luminance at the marker locations is approximately 5 lx. We conduct various
field experiments at the above-mentioned scenes and record the onboard videos in the late
evening at around 10:00–12:00 p.m. with moderate weather conditions.

(a) (b)

(c) (d)

Figure 8. Selected scenes at the South China University of Technology—Zhuhai Institute of Modern
Industrial Innovation campus for field experiments: (a) The basketball field. (b) The warehouse.
(c) The fire escape. (d) The small garden. The red arrow in each figure indicates the landing marker’s
actual position during the field tests with a measured average luminance of 5 lx.

6.2. Vision System Evaluation

To evaluate the vision system proposed in this paper, we follow the complete proce-
dure of autonomous landing and manually fly the DJI M100 quadrotor to simulate the
phases of “Take-off”, “Approaching”, “Hovering”, “Descending”, and “Touch Down”.
In Figure 9a, the three-dimensional trajectory of one manual flight test recorded by the
onboard GNSS module is presented. As we can see, the quadrotor takes off from the
vicinity of the landing marker at the beginning. After ascending to an altitude above
10 m, it approaches the marker and stays in the air to confirm target detection. Then, the
vehicle gradually lowers its altitude during the “Hovering” and “Descending” phases and
eventually lands on the marker. Figure 9b shows the vehicle’s local velocities of the x, y,
and z axes. The onboard camera records images at a resolution of 1280 × 1024, a frame
rate of 20 Hz, and an exposure time of 50 ms. As mentioned earlier in Sections 3 and 4,
such a frame configuration meets the minimum requirement of real-time processing while
allowing as much light as possible to enter the camera in the exposure phase to lighten
the image. Each video is then stored in the “bag” file format under the ROS framework.
The actual frame rate is around 19.8 Hz due to processing latency between adjacency
frames, but we neglect the error in this study. In the experiments, the M100 quadrotor has
a maximum horizontal speed of 2 m/s and a vertical speed of 1 m/s, which is sufficient to
simulate motion blur and perspective distortion caused by varying the camera angle when
acceleration and deceleration occur horizontally. Finally, at each field experiment scene,
we collect a video with a length of approximately 2–3 min, resulting in a total number of
four videos for evaluating the proposed vision system. In Table 1, the statistics of each
video are summarized, where key elements like “total images”, “marker images”, and
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“max altitude” are presented. These elements are the fundamental metrics for evaluating
the vision system.
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Figure 9. One of the recorded manual flight tests. (a) The three-dimensional plot of the quadrotor’s
trajectory for mission phase determination. (b) The quadrotor’s local velocities of the x, y, and z axes.

Table 1. Statistics of the collected videos in field tests.

Scene Luminance Duration Total Images Marker Images Max Altitude

Basketball field (L1) 4.0 lx 156.874 s 3116 2380 12.11 m
Warehouse (L2) 4.3 lx 171.416 s 3396 2437 13.51 m
Fire escape (L3) 4.8 lx 185.874 s 3667 2936 9.86 m

Garden (L4) 7.6 lx 125.657 s 2486 1888 11.08 m
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Since our dataset is built on the automatically-extracted ROI images without precisely
labeled ground-truth bounding boxes, it would be inappropriate to use the conventional
intersection of union (IoU) metric to evaluate the vision system. Instead, we employ some
other criteria to evaluate the vision system based on the following equations:

TP = ∃Cm, i f |Cm − Cg| <= rth rth = Hd/8 (11)

P =
TP

TP + FP
, R =

TP
TP + FN

(12)

F1 =
2PR

P + R
(13)

where points Cm and Cg are the predicted landing marker center and its ground truth,
respectively. Equation (11) indicates that if the marker center is successfully detected when
a marker is presented, whose coordinate falls into a small circle C centered at Cg with
radius rth, we consider the detected landing marker as a true-positive TP. According to our
previous experience in [14], a marker center derived from the four outermost vertices of
the “H” pattern is accurate enough with limited bias. Hence, we set rth to one-eighth of
the bounding polygon’s diagonal length. Such a value raises the threshold and makes the
evaluation more reasonable. On the contrary, if a landing marker is presented in the image,
but no marker center is obtained, or the predicted marker center is outside the circle C, it is
considered a false-negative FN. For the extracted background ROI images, if an image is
categorized as a landing marker by the CNN node, it is considered a false-positive FP. In
Equations (12) and (13), the standard metrics, precision P, recall R, and F-measure F1, are
adopted to evaluate the accuracy of the vision system. Compared with the conventional
IoU metric, the proposed criteria give credit to both the quality of landing marker detection
outcomes and the detection rate. The overall performance of the vision system affects the
accuracy of pose estimation and precision of hardware-in-the-loop control in future works.

Based on the criteria mentioned above, we collect the output images of each stage
using the recorded different scene videos, and manually categorize them into marker
(denoted as “MK”) and background (denoted as “BG”) categories to calculate the exact
numbers of TP, FP, and FN, results of which are listed in Table 2. Specifically, the term
“ccomp” stands for the number of detected connected components, and “dt1-dt3” means
the remaining ROIs filtered by nodes 1 to 3 of the decision tree. Owing to the CNN node
playing a critical role in confirming actual landing markers and rejecting the irrelevant
background ROIs, the output of the CNN node is counted separately and presented as
“dt4_cnn”. Finally, we examine the number of cases where the marker keypoints can be
successfully extracted, denoted by the term “ext_kpt”. At scene L1, there are 2380 marker-
presented frames, whereas the “ccomp” stage outputs 2339 connected components of the
marker and 5186 that of background fragments. Then, the decision tree rejects a small
amount of the marker ROIs and outputs 2241 marker images with accurately extracted
keypoints confirmed as TP while effectively eliminating more than 98% of the background
segments. We carefully examine the remaining FP samples reported by the network,
discovering that they all come from partially cropped landing marker images generated
during the final “Touch Down” phase of landing. Although the keypoints are drawn from
most of these “H” patterns, we still consider them FP due to inconsistency and unreliability.
Compared with L1, scene L2 has a more complicated and cluttered background than the
basketball field. Therefore, nearly three times the number of the connected components
more than L1 are picked up in L2. The vision system has similar performance to the
previous scene, except that the CNN node only verifies 23 FP samples. We study this
case and find the cause lies in the way of the landing maneuvering. Since the marker is
placed on a narrow stone-paved path surrounded by cluttered vegetation, the quadrotor is
piloted toward the west of the marker at a relatively high altitude (3.28 m) to land on flat
ground. The marker quickly vanishes by the edge of the image, leaving limited partially
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occluded marker samples only. However, we find it difficult to extract the keypoints from
these negative samples due to heavy motion blur. Moving on to the fire escape scene L3,
an interesting phenomenon is observed that the number of extracted markers is slightly
greater than its actual value (3008 vs. 2936, marked by the ∗ sign in Table 2, column 6). This
is because the fire escape has a lighter color background than the marker. The edges of the
marker square are thresholded to the foreground at a low altitude, leading to approximately
80 repetitive identifications of the marker. Therefore, we have subtracted this number at
each stage to make a fair comparison. Scene L4 has a similar cluttered environment as scene
L2, where a large number of background segments have been successfully rejected by the
vision system while achieving a comparable performance in marker detection. A majority
of the FP samples also come from incomplete marker patterns that are yet to be eliminated.

Table 2. Number of vision system outputs at different processing stages. The terms “MK” and “BG” denote marker and
background categories, respectively.

Stage MK@L1 BG@L1 MK@L2 BG@L2 MK∗@L3 BG@L3 MK@L4 MK@L4

ccomp 2339 5186 2396 20,149 3008 7048 1862 13,854
dt1-dt3 2291 3116 2350 3716 2964 5324 1853 4263
dt4_cnn 2252 62 2305 23 2955 92 1852 79
ext_kpt 2241 48 2218 2 2932 75 1836 65

In Table 3, precision P, recall R, and F-measure F1 are listed correspondingly. Com-
bining with the altitude information listed in Table 1, we may also see that the altitude
level has an impact on the system. The vision system occasionally misses the marker when
the UAV flies above 13 m due to insufficient pixels in the connected component analysis.
This situation is exacerbated if motion blur generated by horizontal movements occurs,
which explains a slight degeneration in system performance found in scene L2. In contrast,
the vision system achieves the best performance at scene L3 with an altitude constantly
below 10 m. Note that we subtract the repetitive identifications mentioned above from final
system outputs to get the actual number of TP samples (2852, denoted by ∗ sign in Table 3)
at scene L3. In real landing scenarios, it is recommended to maintain a lower altitude for
landing marker detection and tracking.

Table 3. Evaluation of the proposed system using videos captured at different scenes.

Scene TP FP FN P R F1

L1 2241 62 139 0.973 0.942 0.957
L2 2218 23 219 0.990 0.910 0.948
L3 2852* 92 85 0.969 0.971 0.970
L4 1836 79 52 0.959 0.972 0.965

In Figure 10, we present some of the landing marker detection results. The first,
third, and fifth rows are some of the original color images captured onboard, in which the
markers detected by our vision system are highlighted in color lines and dots. The second,
fourth, and sixth rows are the corresponding color images after enhancement to observe
the details. The proposed vision system is able to detect the landing marker in the presence
of noise, scaling, image distortions, motion blur (see figures in row 4, column 3 and row 6,
column 1), and image acquisition error (see the last two figures of Figure 10) in complex
low-illumination environments.



Sensors 2021, 21, 6226 20 of 25

Figure 10. The landing marker detection results of the proposed vision system. The first, third, and fifth rows: Selected
color images from the original test dataset. Detected markers are highlighted in color lines and dots. The second, fourth,
and sixth rows: The corresponding color images after enhancement for scene detail observation.
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As we suggest, the low-illumination image enhancement stage plays a crucial role
in landing marker detection, and the vision system is further evaluated using the same
metrics, but the original test videos are without enhancement. To make a fair comparison,
we also retrain the CNN node with the original unenhanced training samples. The results
are shown in Table 4, from which we may intuitively observe massive degradations in
system performance. The reason is that the pre-processing stage of the system experiences
difficulty properly binarizing the image, thus reducing the number of generated connected
components and detection rates in the subsequent stages. Notice that only two marker
samples can be identified at scene L1, leading to a complete failure of the system. Such a
bad performance is because the marker is placed at the basketball field’s center, a location
far away from the light source with the lowest luminance among all the test scenes. The
landing marker merges into the dark background so that it can no longer be detected.
According to the analysis, we may conclude that the low-illumination image enhancement
scheme increases the quality of nighttime images and is also the foundation of landing
marker detection.

Table 4. Evaluation of the proposed system without low-illumination image enhancement.

Scene MK@ccomp BG@ccomp MK@dt4_cnn TP FP FN P R F1

L1 2 1589 2 2 0 2378 1.00 0.0008 0.0017
L2 957 1002 924 753 52 1684 0.935 0.309 0.464
L3 2182 2912 2095 1632 141 1305 0.920 0.556 0.693
L4 1372 1836 1289 886 74 1002 0.923 0.470 0.623

Since there is a certain number of CNN-based object detection frameworks in the
related research, we also compare the performance of the proposed vision system against
that of the state-of-the-art methods that can be implemented in real-time. We have chosen
YOLOv3 and its simplified version YOlOv3-Tiny [50], and MobileNetV2-SSD [51] to carry
out the evaluation. As our vision system does not rely on image-wise bounding box label-
ing, we randomly select an equal proportion of the original images without enhancement
from the videos to establish a dataset for a fair comparison. From Table 1, one may see
there is a total number of 9642 marker images. As a result, 500 images were selected and
manually labeled as the training dataset, whilst the remaining 9142 images were collected
for testing. All the images were resized to 640× 512 for a faster evaluation process.

Each network was trained individually using the default parameters under official
guidance, and the detection results are listed in Table 5. It is worth mentioning that the
M100 quadrotor spends a longer time at higher altitudes during the “Approaching” and
“Hovering” stages, resulting in approximately 60% to 70% of the images appearing to have
a relatively small landing marker, which brings difficulties to marker detection. As a result,
it significantly increases the number of FN samples for YOLOv3 and its derivative. On the
contrary, MobileNetv2-SSD performs better than YOLOv3 and YOLOv3-Tiny in detecting
small markers, but also introduces a certain amount of FP samples, which are other ground
objects, into the results. Finally, the performance of our vision system is derived by using
the data from Table 3, from which one may see that our approach achieves the best recall
and F-measure based on a minimal network design.

Table 5. Comparison of the CNN-based object detection frameworks.

Method TP FP FN P R F1

YOLOv3 [50] 7658 72 1484 0.991 0.838 0.91
YOLOv3-Tiny [50] 7288 34 1854 0.995 0.798 0.886

MobileNetv2-SSD [51] 8612 978 530 0.898 0.942 0.919

Ours 9147 256 495 0.973 0.949 0.961
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We also evaluate whether the enhanced low-illumination images benefit the above-
mentioned CNN-based object detection frameworks or not. Again, each network is trained
and tested by the same procedure, but using the enhanced image dataset. We present the
detection results in Table 6. We may see some overall improvements for both YOLOv3 and
YOLOv3-Tiny, whereas MobileNetv2-SSD significantly reduces the FN samples to achieve
the best recall and F-measure. Note that such a result slightly outperforms our vision
system, as the enhanced images offer much stronger and more discriminative features for
the networks to extract. However, our vision system still has the advantage of processing
speed, which are elaborated in the next subsection.

Table 6. Evaluation of the CNN-based object detection frameworks using the enhanced im-
age datasets.

Method TP FP FN P R F1

YOLOv3 8717 53 425 0.994 0.954 0.974
YOLOv3-Tiny 8504 26 638 0.997 0.930 0.962

MobileNetv2-SSD 8993 178 149 0.981 0.984 0.982

6.3. Processing Time Evaluation

Processing speed is of crucial importance to real-time UAV applications. Therefore,
the timing performance of each stage of the proposed system is quantitatively evaluated.
In this section, we utilize the collected videos to test the average time consumption of each
processing stage. Each video has an initial resolution of 1280 × 1024, that is then resized to
1024 × 768 and 800 × 600, respectively. We use the annotations “HR”, “MR”, and “LR” to
denote these resolutions. The tests are conducted on both the CNN training desktop PC
(denoted by “PC”) and the NVidia TX2 unit (denoted by “TX2”). Timing performances of
different processing stages, including image enhancement, pre-processing, the decision
tree method, and keypoint extraction are comprehensively evaluated, results of which
are listed in Table 7 accordingly. It is worth mentioning that the CNN node calculation is
performed on GPUs on both the platforms, where the time consumption of data transfer
between CPU and GPU is neglected.

Table 7. Processing time evaluation on the desktop PC and TX2 unit.

Stage HR@PC MR@PC LR@PC HR@TX2 MR@TX2 LR@TX2

Image Enhancement 39.3 ms 25.3 ms 15.4 ms 94.0 ms 59.6 ms 38.2 ms
Adaptive Thresholding 14.4 ms 10.1 ms 5.6 ms 98.6 ms 76.3 ms 34.1 ms
Connected Component 2.9 ms 2.1 ms 1.3 ms 6.4 ms 4.2 ms 2.9 ms

Decision Tree Nodes 1–3 1.3 ms 1.26 ms 1.15 ms 1.81 ms 1.53 ms 1.42 ms
Decision Tree Node 4 CNN 1.4 ms 1.4 ms 1.4 ms 2.6 ms 2.6 ms 2.6 ms

Keypoint Extraction 0.02 ms 0.018 ms 0.013 ms 0.035 ms 0.033 ms 0.029 ms

Total 59.32 ms 40.18 ms 24.86 ms 203.45 ms 144.26 ms 79.25 ms

Detection Rate 16.86 Hz 24.89 Hz 40.23 Hz 4.92 Hz 6.93 Hz 12.62 Hz

We may see that the most time-consuming parts lie in the image enhancement and
the adaptive thresholding stages. By reducing the resolution to the “MR” level, the de-
tection rate on the desktop PC has surpassed the maximum frame rate that the onboard
camera offers. On the contrary, the TX2 unit has relatively poor performances on both
the “HR” and “MR” resolutions. Nonetheless, it has already achieved a detection rate of
more than 10Hz on the “LR” resolution, satisfying this study’s minimum requirement of
real-time processing. Compared with the works of [9,25], we utilize the landing marker
detection at a higher resolution, whereas their algorithms only operate at image resolutions
of 752 × 480 and 640 × 480, respectively. We also test the timing performance of the
aforementioned CNN-based frameworks on the desktop PC’s NVidia Geforce 1070 GPU.
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For an image size of 1280 × 1024, the averaged processing time for YOLOv3, YOLOv3-Tiny,
and MobileNetV2-SSD are 102.65 ms, 14.12 ms, and 64.39 ms. For image size 640 × 512,
YOLOv3, YOLOv3-Tiny, and MobileNetV2-SSD take approximately 33.49 ms, 5.21 ms, and
26.65 ms to process one frame. Although these networks may achieve real-time processing
using a high-performance desktop GPU at the cost of reducing the image resolution, we
still find it challenging to implement these networks on a resource-limited UAV onboard
platform. Moreover, these networks still require the low-illumination image enhancement
scheme to achieve a better performance, which further reduces the processing speed.

Note that the timing performance of the proposed vision system is accomplished
without optimization, in which redundant operations are executed at each frame. Using
the information of adjacent frames in the image sequences, we may narrow down the
ROIs to a specific area based on the previous detection results to dramatically reduce the
computational burden caused by image enhancement and adaptive thresholding.

7. Conclusions and Future Works

In this paper, we presented a novel, robust, and efficient vision system for assisting
UAV autonomous landing in nighttime outdoor environments with visibility constraints.
The system is able to enhance the quality of the onboard-captured images effectively while
performing reliable landing marker detection and validation through a hierarchical-based
decision tree method and extracting the key information. Field experiments show that
the vision system is accurate and robust to low illumination, motion blur, distortions, and
marker occlusion. Moreover, the vision system has satisfactory timing performance and
has been implemented in real-time on the onboard processing unit. Its processing speed
can be further improved by utilizing the information of adjacent video frames.

At this stage, we have only shown the open-loop test results of the vision system for
landing marker detection and validation, as space is limited in this paper. In the meantime,
however, we are coupling the marker detection results with relative pose estimation, sensor
fusion, and control system design to finalize hardware-in-the-loop field experiments. Soon,
we would like to present the results of UAV fully autonomous nighttime landing and
extend the existing system to land on a moving target. As the study goes on, a landing
marker nighttime dataset will be released for other researchers to compare and evaluate
their detection algorithms.
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