
Citation: Shih, T.-C.; Ho, L.-P.; Chou,

H.-Y.; Wu, J.-L.; Pai, T.-W.

Comprehensive Linear Epitope

Prediction System for Host Specificity

in Nodaviridae. Viruses 2022, 14, 1357.

https://doi.org/10.3390/v14071357

Academic Editor: Tae-Jin Choi

Received: 1 April 2022

Accepted: 20 June 2022

Published: 22 June 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

viruses

Article

Comprehensive Linear Epitope Prediction System for Host
Specificity in Nodaviridae
Tao-Chuan Shih 1,†, Li-Ping Ho 2,†, Hsin-Yiu Chou 3, Jen-Leih Wu 4,5 and Tun-Wen Pai 1,*

1 Department of Computer Science and Information Engineering, National Taipei University of Technology,
Taipei 10608, Taiwan; t108599001@ntut.org.tw

2 Department of Aquaculture, National Penghu University of Science and Technology, Penghu 88046, Taiwan;
lphotw@gms.npu.edu.tw

3 Department of Aquaculture, College of Life Science, National Taiwan Ocean University,
Keelung 20224, Taiwan; hychou@mail.ntou.edu.tw

4 Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 20224, Taiwan;
jlwu@gate.sinica.edu.tw

5 Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 11529, Taiwan
* Correspondence: twp@ntut.edu.tw
† These authors contributed equally to this work.

Abstract: Background: Nodaviridae infection is one of the leading causes of death in commercial
fish. Although many vaccines against this virus family have been developed, their efficacies are
relatively low. Nodaviridae are categorized into three subfamilies: alphanodavirus (infects insects),
betanodavirus (infects fish), and gammanodavirus (infects prawns). These three subfamilies possess
host-specific characteristics that could be used to identify effective linear epitopes (LEs). Methodology:
A multi-expert system using five existing LE prediction servers was established to obtain initial
LE candidates. Based on the different clustered pathogen groups, both conserved and exclusive
LEs among the Nodaviridae family could be identified. The advantages of undocumented cross
infection among the different host species for the Nodaviridae family were applied to re-evaluate the
impact of LE prediction. The surface structural characteristics of the identified conserved and unique
LEs were confirmed through 3D structural analysis, and concepts of surface patches to analyze the
spatial characteristics and physicochemical propensities of the predicted segments were proposed.
In addition, an intelligent classifier based on the Immune Epitope Database (IEDB) dataset was
utilized to review the predicted segments, and enzyme-linked immunosorbent assays (ELISAs) were
performed to identify host-specific LEs. Principal findings: We predicted 29 LEs for Nodaviridae.
The analysis of the surface patches showed common tendencies regarding shape, curvedness, and
PH features for the predicted LEs. Among them, five predicted exclusive LEs for fish species were
selected and synthesized, and the corresponding ELISAs for antigenic feature analysis were examined.
Conclusion: Five identified LEs possessed antigenicity and host specificity for grouper fish. We
demonstrate that the proposed method provides an effective approach for in silico LE prediction prior
to vaccine development and is especially powerful for analyzing antigen sequences with exclusive
features among clustered antigen groups.

Keywords: linear epitope Nodaviridae; host specificity; multi-expert prediction

1. Introduction

Nodaviridae infection is a common cause of death in marine animals and insects, and
the virus family is classified into several genera according to host specificity. To date,
various vaccines have been developed for aquaculture, including recombinant proteins,
synthetic peptides, inactivated virions, DNA vaccines, and virus-like particles. However,
the efficacy of these vaccines remains unsatisfactory. Therefore, a more effective immuniza-
tion strategy and a comprehensive vaccine development against these viruses are important
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for maintaining commercially viable fisheries. Since Nodaviridae show a wide host range
of fishes and prawns and the mechanism is controlled by major capsid protein (MCP), we
proposed a multi-expert voting mechanism, host-specific, and surface structural analytics
of Nodaviridae linear epitopes (LEs) for each subfamily.

Nodaviridae are a family of non-enveloped RNA viruses that contain two major infec-
tious segments: RNA1 and RNA2. In addition, the subgenome RNA3 is produced from
RNA1 during RNA replication. RNA1 (3.2 kb) encodes the RNA-dependent RNA poly-
merase (RdRp) and non-structural B2 like protein and functions by selecting appropriate
RNA templates and initiation sites for RNA replication. RNA2 (1.2 kb) encodes a viral cap-
sid protein (CP) and plays an important role in inducing apoptosis, followed by secondary
necrosis of infected cells through the mitochondria-mediated cell death pathway [1]. In ad-
dition, the CP of Nodaviridae assembles into viral particles with icosahedral structures. The
CP is composed of core jelly-roll topology, forming a face-to-face beta sandwich with two
pairs of anti-parallel beta sheets [2]. CPs from specific Nodaviridae genera are categorized
into three major domains. The first domain is an N-terminal arginine-rich region (N-ARM)
contributed to the formation of a CP via hydrogen bonding and interacts with the RNA
genome. The second shell domain (S-domain) consists of 60 trimeric S-domains that partici-
pate in inter-subunit contacts and forms a continuous thin shell with an empty inner cavity
as an icosahedral structure. The third protrusion domain (P-domain) forms a protrusion
structure on the surface particle and is characterized by poor electron density with high
flexibility. Previous reports have validated residues 247 and 270 as host-binding sites for
turbot during viral infection [2–7]. Sub-genomic RNA3 encodes one or two nonstructural
B1 and B2 proteins. These segments help repress antiviral responses in Nodamura-infected
cells and play a role in the inhibition of host RNA interference.

The family Nodaviridae belongs to the Riboviria realm, phylum incertae sedia. Accord-
ing to the ICTV’s virus taxonomy 2018b [8], the family Nodaviridae is categorized into three
genera. The first is alphanodaviridae, which exhibit the broadest range of host specificity for
invertebrate species. A cleave mechanism to yield infectivity particles exists in all known
insect nodaviruses and the cleavage site is conserved within all insect-infect viruses [9]. The
other genera of the betanodavirus subfamily only infect fish species. Betanodaviruses are
known to affect over 120 fish species, particularly groupers and seabass [4]. The mortality
of infected hosts at the larval stage has reaches of 100% [2,10]. Apart from horizontal
transmission, betanodaviruses can be transmitted vertically through gonad infections, with
parents passing the virus to their progenies [4]. Compared with alphanodaviruses, betano-
daviruses exhibit a less conserved cleavage site for autocatalytic proteolysis and low host
specificity. Betanodaviruses can be classified into four genera with highly variable RNA2
sequences: Tiger puffer nervous necrosis virus (TPNNV), Redspotted grouper nervous necrosis
virus (RGNNV), Barfin flounder nervous necrosis virus (BFNNV), and Striped jack nervous necro-
sis virus (SJNNV). The different genotypes are correlated in their host range. For example,
RGNNV exhibits the widest host range for warm-water fish species. In contrast, BFNNV is
known to infect cold-water fish species. TPNNV infects only tiger pufferfish. SJNNV was
initially restricted to Japanese waters, however it was also found in southern European
waters. Although betanodaviridae viruses show high sequence similarity (>80%) with the
coat protein sequence, reassortant viruses carrying Sevenband grouper nervous necrosis virus
(SGNNV) are unable to infect striped jacks. Conversely, reassortant viruses with SJNNV
cannot cause an infection in sevenband groupers [11]. These infectious events and geno-
types tend to be associated with specific water temperatures (15–20 ◦C for BFNNV, 20 ◦C
for TPNNV, and 20–25 ◦C for SJNNV), which reflects the geographic distribution of distinct
fish species. The attachment of nervous necrosis to stress and heat shock–induced heat
shock cognate protein (Hsc70) plays an important role in infection. The antigenicity of NNV
particles is known to change due to the disruption of their conformational structures [5,11].
Recent reports have suggested that prawn-infecting species, including MrNV and PvNV
nodaviruses, should be categorized into a new gammanodavirus genus due to their distinct
genomic sequences compared with alphanodaviruses and betanodaviruses. Although
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MrNV does not cause death in adult prawns, they might serve as virus carriers to transmit
viruses and are known to cause 100% mortality in larval and post-larval prawns [4].

Structural similarity analysis of NNV revealed that there was no significant homol-
ogy in CP sequences and structures among the three Nodaviridae genera. However, these
Nodaviridae did share a similar composition. Three neighboring monomeric S-domains
with P-domain comprise 8 anti-parallel beta strands, which construct a twisted sheet or a
jelly-roll fold, from subunits A, B, and C assembled into trimeric asymmetric units [5,12,13]
can be described as a “TBSV-like” (Tombusvirus cucumber necrosis virus) virus. This kind
of particle could be seen in several plant viral capsid proteins: tobacco necrosis virus,
noroviruses, and caliciviridae [14], and concluded with “Icosahedral viral capsid protein,
S domain” (IPR000937) in InterPro. Therefore, the hypervariable P-domain affects the
host specificity of each Nodaviridae genus. Alphanodvirus lacks P-domain. Betanodavirus
and gammanodavirus share similar secondary structure similarity of the subunit cap-
sid, each particle consists of a jelly-roll β-strand and protrusion domain. The P-domain
contains hypervariable surface regions and specific DxD motifs, which contribute to the
host specificity of these viruses [1,15]. The P-domain consists of a relatively highly disor-
dered protruding area that possesses two anti-parallel β-sheets (67.9%) connected with
two loop regions (32.1%) [16,17]. In addition, deletion of the last 26 amino acid residues
of the MrNV346~371 capsid protein, which removes two protruding β-strands, reduces
infectivity [18]. Several studies] have attempted to predict epitopes or hypervariable
sites for betanodavirus vaccine development. Unfortunately, these epitopes are either too
long (91–162, 195–214) [19,20] or too short (254–256; 223–227, 233–237, 253–259, 285–291),
allowing selective identification of pathogenic segments. Moreover, P-domains of gamman-
odavirus represent a blade like structure which show a different form and mechanism to
alphanodvirus and betanodavirus [21].

Immunologists have developed an integrated method for vaccine development based
on the analysis of the protein sequences and the structures of target viruses [22]. For
example, major capsid protein (MCP) can be assembled into virus-like particles (VLPs).
B-cells play an important role in the immune system. Immunoglobulin, with the same
antigen specificity, is secreted as an antibody by terminally differentiated B cells. Membrane-
bound immunoglobulin on the surface of B cells serves as a receptor for antigens and is
known as the B-cell receptor (BCR). Each of them is associated with unique receptor
specificity. When a BCR binds to a cognate antigen, the B-cell receptor is stimulated
to undergo proliferation. This involves the generation of plasma B cells and memory
T cells [23]. Antigens are typically too large to bind to any receptor. Hence, partial antigen
segments located on surface areas, called epitopes, are recognized by specific antibodies.
Epitopes are generally divided into two categories: linear epitopes (LE), where a stretch
of continuous amino acids is sufficient for binding, and conformational epitopes (CE),
consisting of key amino acid residues that are brought together by protein folding [24].
CE prediction requires antigenic structures, mostly those of major capsid proteins (MCPs).
MCP protein structure is also needed to further host-specific structural analysis to be
resolved prior to conformational analysis. However, only a few protein structures have
been resolved for the Nodaviridae. We applied both the empirical approaches (Phyre2 [25]
and I-TASSER [26]) and state-of-the-art computational (RoseTTAFold) [27] methods. We
focused on LE prediction, because information on the corresponding antigenic structures
is scarce. The ideal predicted peptides should effectively elicit antibodies from specific
hosts that recognize antigens and provide protection against infections [28]. Therefore, the
peptides selected for vaccine design should ideally be conserved across different stages of
the pathogen and possess binding affinity for the major populations of specific hosts. In
this report, we present an integrated computational system incorporating a multi-expert
voting mechanism and host-specific and surface structural analytics for LE prediction.
Five existing epitope prediction tools including LBTOPE [29], BepiPred [30], BCPreds [23],
ABCPred [31], and LEPS [32] were applied, and three important features were considered,
including length constraint, physicochemical characteristics, and host-specific features.
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Candidates were screened based on these features from the five selected prediction systems,
using different approaches and databases. The predicted epitopes were analyzed through
surface structural characteristics and experimentally verified.

2. Materials and Methods

Host species and their corresponding major capsid protein sequences were retrieved
from NCBI [33] and UniProt [34]. Due to the characteristics of Nodaviridae, the P-domain
section was extracted from the full sequences of specific trials. In addition, we applied
Phyre2, I-TASSER, and RoseTTAfold to predict the three-dimensional models, because the
MCP structures of certain species in Nodaviridae have not yet been resolved. We retrieved
the resolved structures of Nodaviridae.pdb files from RCSB. Species names were acquired
from the ICTV taxonomy. In total, 3 genera and 18 species of Nodaviridae were collected.
The genera, tentative species, and specific infected hosts are listed in Table 1.

Table 1. Selected genera of the Nodaviridae family and infected host species.

Genus Selected Species Hosts RCSB ID NCBI GenBank

Alphanodviruses

Flock House virus (FHV) Barley/Saccharomyces
Cerevisiae/Moth/Beetle

4FSJ
6ITB
6ITF
4RFT

EF690538.1

Black Beetle virus (BBV) Beetle 2BBV X00956.1

Drosophila melanogaster American
nodavirus (DmANV) Bee GQ342966.1

Nodamura virus (Nov) Moth/Mosquito/Bee
Wild swine 1NOV NC_002691.1

Boolarra virus (Bov) Moth NC_004145.1

Pariacoto virus (Pav) Moth 1F8V NC_003692.1

Betanodaviruses

Striped jack nervous necrosis virus
(SJNNV) Bass NC_003449.1

Tiger puffer nervous necrosis virus
(TPNNV) Puffer NC_013461.1

Atlantic halibut nodavirus (AHNV) Halibut AY962682.1

Golden pompano nervous necrosis virus
(GPNNV) Pompano HQ859934.1

Atlantic cod nodavirus (ACNV) Cod ABU95413.1

Japanese flounder nervous necrosis virus
(JFNNV) Flounder BAB00609.2

Dragon grouper nervous necrosis virus
(DGNNV) Grouper 3JBM AAG22496.1

Barfin flounder nervous necrosis virus
(BFNNV) Flounder NC_013459.1

Redspotted grouper nervous necrosis
virus (RGNNV) Grouper 3JBM NC_008041.1

Epinephelus coioides nervous necrosis
virus (GNNV/EFNNV) Grouper

4RFU (P-domain only)
4RFT (S-domain only)

4WIZ
MG874758.1

Gammanodaviruses

Macrobrachium rosenbergii nodavirus
(MrNV)

Macrobrachium
rosenbergii

6H2B
6JJC
5ykv

NC_005095.1

Penaeus vannamei nodavirus (PvNV) Whiteleg Shrimp 5YKZ (P-domain only)
5YL0 NC_014977.1

2.1. Multi-Expert Voting Mechanism-Based LE Prediction

Our system is a metamodel that ensembles results from several existing prediction
servers. In this case, we integrated five LE prediction tools into our voting mechanism
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to predict LEs for each representative antigenic sequence, including LBTOPE, BepiPred,
BCPREDS, ABCPred, and LEPS. Each virus group was analyzed using five LE prediction
tools designed to identify each antigenic residue as an epitope or a non-epitope residue.
Each residue in a query antigen sequence possesses a corresponding score from the five
different prediction tools. A higher score represented a higher possibility of the residue
being an epitope. For comparison of the two subfamilies, if a continuous segment is
predicted as an epitope segment within a subfamily, the system will check whether aligned
segments from the other subfamily are also predicted as epitopes; if so, the system classifies
this segment as a conserved epitope in both subfamilies, otherwise it is identified as a
unique epitope. The observed variations in sequence or structural alignments could be
associated with host specificity. The exclusive epitope segments within the same clustered
antigen subfamily may play important roles in binding with antibodies present within
the same group of host species. Multiple sequence alignments were performed using
T-Coffee [35]. We also applied the protein structure prediction method, RoseTTAFold, to
predict the P-domain of betanodaviridae. To make a difference between homogeneous and
computational methods, we chose a P-domain section of resolved structure “4RFU” and a
structure which lacked P-domain“3JBM” to predict protein structures.

2.2. Validation Method

In addition to the multi-expert voting mechanism prediction model, we proposed an
additional complete sequence search (CSS) and a validation model consisting of a variety
of propensity scales for enhanced evaluation. CSS applies BLAST tools (BLASTp-short)
to search for all existing known and experimentally proven antigen peptides from the
largest IEDB database. If experimentally proven epitopes in the IEDB could be matched
by the predicted segments, there would be a higher possibility that the predicted LEs are
genuine epitopes. Furthermore, we statistically analyzed the predicted LEs according to
their residue contents and physicochemical properties for a reinforced classifier design.
These features are introduced as follows.

Amino acid pairs (AAP) were generated by scanning the peptides using a window
of two residue lengths and calculating the frequency of occurrence for each AAP. In total,
400 AAPs were generated. If a query peptide contains AAPs that belong to AAPs within
true epitopes, there is a greater chance that the peptide could be considered an epitope.
The SVMtrip_16AA [36] dataset contains two subsets: positive (LE) and negative (non-LE).
We calculated the occurrence frequencies of AAPs between these two subsets to indicate
the tendencies of epitopes and non-epitopes. Here, we refer to a previous study [37] to
determine the frequency of occurrence of each pair. f+AAP_i and f−AAP_i are the occurrence
frequencies of given AAP_i in the epitope and non-epitope set. N+

AAP_i and N−AAP_i are the
number of the specific ith AAP from 400 possible AAPs in the epitopes and non-epitopes.
Finally, Total+AAP and Total−AAP are the total number of 400 AAPs in the epitope set and the
non-epitope set. The differences between the two subsets can be interpreted as a likelihood
ratio and normalized as an AAP antigenicity scale, Norm(RAAP), by the Equation (1).

f+AAP_i =
N+

AAP_i
Total+AAP

, f−AAP =
N−AAP_i

Total−AAP
, 1 ≤ i ≤ 400

RAAP_i = log
(

f+AAP_i
f−AAP_i

)
Norm(RAAP_i) =

(
RAAP_i−Min(RAAP)

Max(RAAP)−Min(RAAP)

) (1)

The position-specific scoring matrix (PSSM) is a commonly used representation of
sequence motifs. PSSM is a position weight matrix (PWM) that can distinguish evolved
sequences and genuine binding sites among similar sequences [38]. First, a position
frequency matrix (PFM) creates a column for each amino acid, corresponding to a total of
20 rows for amino acids in the protein sequences. An alignment result X is given. Each
column is created by calculating the occurrence of each position in a sequence. Second, a
position probability matrix (PPM) can be created by dividing the occurrence counts by the
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number of sequences. If we give a set of N-aligned sequences for the sequence length of
L residues: alignment result X (size L*N), the value in a corresponding PPM (matrix M)
can be calculated using Equation (2). I (Xi,j = k) is an indicator function, where I (a = k) is
1 if a = k and 0 otherwise. Additionally, we applied a variable b = 1/k as a background
model (expected probability), where k is the total number of amino acids (i.e., k = 20). PPM
can be converted to PWM using Equation (3). We can convert a sequence to parameter
information content (IC) using amino acids with corresponding positions in the PWM.

Mk,j =
1
N

N

∑
i=1

I
(
Xi,j = k

)
; i ∈ (1, . . . , N), j ∈ (1, . . . , L), 1 ≤ k ≤ 20 (2)

MPWM = log2

(
M
b

)
(3)

For the propensity scale, sequences were scanned using a sliding window constituting
the central residues i and neighborhood residues (i ± 1

2 * window size). We assigned a
value of 7 to the window size parameter [39]. We also applied four physicochemical scales
extracted from the ProtParam tool for reinforced evaluation [40], including hydrophobic-
ity [41], flexibility [42], surface accessibility [43], and polarizability [44]. In addition, we
adopted the “surface patch” strategy to describe the local spatial context of each residue in
the predicted epitopes. Commonly, the surface patch consists of some spatially adjacent
surface residues and the central residue itself and is classified as epitope patch and non-
epitope patch according to the state assigned to the central residues [45]. In this study, the
surface patch consisted of the residues of predicted epitopes, and the middle residue of
the peptide sequence was taken as the central residue. To gain insight into the common
structural contents or physicochemical characteristics of the predicted LE, the surface patch
was evaluated based on the presence of several known features. To measure the spatial
features of the adjacent residues, we considered whether the distance between adjacent
residues and the central residue could impact antigenicity and calculated the average
distance of the surface patches. Furthermore, the contributions of interior and surface
residues were also taken into consideration. If the relative accessible surface area (RASA)
calculated by the DSSP [46] program was greater than 5%, the residue was considered to
be a “surface residue” [47]. Subsequently, the ratio of the number of surface residues to
the number of residues in the interior of the peptide was calculated. Non-polar molecules
exposed to water are unfavorable and hydrophobic molecules are usually located in the
center, therefore hydrophilic and surface-exposed amino acids are preferable. The values
of half-sphere exposure (HSE), which is widely used in protein structural analysis and
provides relatively more geometric information than other measurements, were also cal-
culated in this study. A larger HSE value indicates that the Cα of the central residue is
more adjacent to other Cα atoms [48]. Finally, the residue depth from a Cα atom to the
protein surface for query residues was also considered. Both the HSE and the residue
depth were obtained using MSMS [49] and Biopython’s Bio.PDB package. In this phase,
a support vector machine (SVM) classifier with “RBF” kernel was applied to train the
prediction model. B cell epitope datasets were taken from SVMTrip_20AA [36], Chen’s
database, Epitopia [50], and Bepipred-2.0 [30]. Among them, a total of 6969 epitopes and
6962 random peptides were collected. Datasets for evaluation were obtained from IEDB
and Uniport, which contain 20,335 experimentally validated epitopes and 20,161 randomly
selected peptides. We also calculated two properties of surface shape—shape index and
curvedness—to evaluate the predicted epitopes from resolved protein structures. The shape
index (Si) is a number ranging from –1 to 1, the larger number the number of curvedness
the more it shows how curved the object is, which describes the shape of the local surface
at any given point and is independent of the scale of the surface. Points with positive
values represent convex doom and negative values represent concave cup. We converted
epitope patches from .pdb file to point cloud format with MSMS and applied pymesh [51]
to calculate mean and Gaussian curvature to each vertex of the model. Shape index and
curvedness were calculated by Equation (4) and Equation (5), respectively. For any vertex
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on a surface, there will be two points at which the curvature reaches a maximum Kmax and
minimum Kmin [52,53].

Si =
−2
π

arctan
(

Kmax + Kmin
Kmax − Kmin

)
(4)

Curverdness =

√
Kmax2 + Kmin

2

2
(5)

2.3. Biological Assays

According to the constructed prediction systems and in silico validation principles,
the predicted exclusive LEs and reference segments for betanodaviruses were chemically
synthesized by PepPower™ Peptide Synthesis Technology (GenScript, Piscataway, NJ,
USA). After synthesis, the synthesized epitopes were used as antigens for antigenicity
tests. All peptide samples were proceeded in triplicate by immunoassays. The assays
were performed using an enzyme-linked immunosorbent assay (ELISA) to validate the
antigenicity of the predicted LEs. This immunological analysis is very sensitive and highly
specific for the detection and quantification of substances such as antibodies, antigens,
and other proteins. The antigen-containing samples were coated on 96-well microplates
containing polystyrene and incubated until they were adsorbed onto the surface of the
microplate with coating buffer (0.2 M sodium carbonate/bicarbonate, pH 9.4). The coating
buffer immobilizes antigens, which leads to maximal adsorption on the microplate surface
and optimization of interactions with the detection antibody. The hydrophobic sites were
exposed after the antigens were adsorbed onto the microplates. The blocking processes
were used to fill the interspaces with bovine serum albumin (BSA), non-fat milk powder, or
casein to block nonspecific binding. Washing steps were required to eliminate unbound
and excessive components that might interfere with the assay. First, 10 µg of antigens
(synthesized peptides) were applied to a 96-well microplate, incubated for 1 hat RT, and
blocked with wash buffer (PBST buffer, 1× phosphate-buffered saline with 0.1% Tween 20)
to remove non-specific antigens. Next, the cells were treated with the rabbit pre-immune
antibody and rabbit post-immune antibody (rabbit anti-NNV capsid protein antibody) and
were incubated for an hour and washed 3–5 times. Finally, hybridization with a secondary
antibody (goat anti-rabbit IgG (H+L) antibody) conjugated with alkaline phosphatase (AP,
Jackson ImmunoResearch, West Grove, PA, USA) was used as the detection antibody. After
hybridization, the microplate was also washed 3–5 times to remove non-specific antibodies
with wash buffer, and substrate pNPP (para-nitrophenylphosphate, ThermoFisher) was
added for AP detection and read at 405 nm using an ELISA reader. The ELISA results were
further compared and analyzed before and after immunization using GraphPad Prism
(version 5.0; GraphPad Software, Inc.). The ELISA results were further statistically analyzed
by t-test for each synthesized peptide (n = 3, p < 0.05).

3. Results
3.1. Prediction Results between Alphanodavirus and Betanodavirus

There was no conserved LE between alphanodavirus and betanodavirus clusters, but
eight exclusive LEs were found for the alphanodavirus subfamily and two exclusive LEs
for betanodavirus. The sequence similarity between alphanodavirus (subunit particles,
PDB:1NOV) and betanodavirus (S-domain; PDB 4RFT) is 22.67%. None of the predicted
LEs for alphanodavirus could be found in the experimentally verified database IEDB,
while the two predicted LEs for betanodavirus could be matched with existing reports
from IEDB. In addition, a previous study reported and validated the true epitope seg-
ment of “BFNNV261~272:RPLSIDYSLGTGD” using biological experiments [19]. Through
in silico scanning of IEDB, our prediction system increases the opportunity to predict
genuine epitopes.
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3.2. Prediction Results between Betanodavirus and Gammanodavirus

In the second trial, the predicted LEs located within the P-domain of betanodavirus
and gammanodavirus were compared. In addition, P-domain segments from the grouper-
infecting betanodavirus subfamily were exclusively predicted for detail comparison. The
sequence similarity of the P-domain of betanodavirus (PDB:4RFU) and gammanodavirus
(PDB:5YKV) was 27.18%, and the root-mean-square error (RMSD) between the two struc-
tures was 3.418 Å. No conserved epitopes were found in these two clusters. In con-
trast, four unique LEs in the betanodavirus group and two unique LEs in the gammano-
davirus group were detected. The results of the four predicted LEs for grouper-infecting
betanodavirus are shown in Table 2. Most of the predicted LEs were exactly or par-
tially identical to the predicted LEs of the whole betanodavirus subfamily. For example,
BFNNV283~295:KKVAGNVGTPAGW was also predicted in the grouper-infecting betano-
davirus subfamily trial (DGNNV283~295:KKFAGNAGTPAGW); BFNNV302~322:DNFNKTFT
QGVAYYSDAQPRQ in the betanodavirus trial was split into BFNNV302~309:DNFNKTFT
and BFNNV314~322:AYYSDAQPRQ in grouper-infecting virus trials (DGNNV302~309:DNF
NKTFT; DGNNV314~322:AYYSDEQPRQ).

Table 2. Predicted LEs of grouper-infecting betanodavirus.

Nodaviridae Predictive LEs of
Representative Peptide Residue Location IEDB(CSS) SVM_Classifier

Grouper-infecting
betanodavirus

PILTLGPLYNDSL AANDF
PIMTQGSLYNDSL STNDF

BFNNV: 221~238
DGNNV: 221~238 136550 Y

KKVAGNVGTPAGW
KKFAGNAGTPAGW

BFNNV: 283~295
DGNNV: 283~295 N/A Y

DNFNKTFT
DNFNKTFT

BFNNV: 302~309
DGNNV: 302~309 N/A Y

AYYSDAQPRQ
AYYSDEQPRQ

BFNNV: 313~322
DGNNV: 313~322 N/A Y

N/A represents the vacuity of similar experiment-proved epitopes in IEDB and segments with grey background
represent matched peptide between IEDB’s assay and the proposed system.

In Figure 1a, we selected one subunit (PDB:4RFU) and one chain of this subunit
to visualize the predicted epitopes with cartoon style. Each epitope was represented
by distinct color codes. Identical or partially duplicated epitopes in betanodavirus and
grouper-infecting betanodavirus trials were colored the same. In Figure 1b, we also marked
the residues with the following color codes: yellow (highly variable regions), pink (positive-
charged residues), blue (negative-charged residues). In summary, the predicted epitopes for
betanodavirus were charged residues and well conserved within highly variable regions.

There were four predicted LE epitopes for betanodavirus; among them, three seg-
ments were considered epitope candidates and were synthetized for biological experi-
ments. BFNNV244–251:GSTQLDIA is the only unique epitope in the betanodavirus. We
synthesized the predicted LEs of betanodavirus that overlapped among the different
trials (Table 2). Through comparison, we selected exclusive epitopes for betanodavirus
(BFNNV244–251:GSTQLDIA, BFNNV261~272:RPLSIDYSLGTGDV, BFNNV283~295:KKVAGNV
GTPAGW, and BFNNV300~321:LWDNFNKTFTQGVAYYSDAQP) and grouper-infecting be-
tanodavirus (DGNNV221–238:PIMTQGSLYNDSLSTNDF and BFNNV221–238:PILTLGPLYN
DSLAANDF). To compare with previous research results, we synthesized EFNNV/
GNNV249–258:DIAPDGAVFQ as a reference for antigenicity comparison with our predicted
LEs [54]. An ELISA was performed to identify the host specificity of NNV for grouper
species. The results revealed that a significant change occurred before and after immuniza-
tion. These predicted LEs reflect a strong antigenic response in grouper species. In Figure 2,
enzyme-linked immunosorbent assays (ELISAs) were performed to identify host-specific
LEs. Synthetic peptides (10 µg) or coating buffer were coated on a 96-well microplate.
All peptides were labeled with primary antibody (rabbit anti-NNV coat protein antibody)
and secondary antibody (goat anti-rabbit IgG (H+L) conjugated alkaline phosphatase.
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Detection was performed at 405 nm after adding the alkaline phosphate substrate. The
x-axis represents the comparison of antibodies against NNV before and after immunization.
The y-axis indicates the absorbance value at 450 nm. The responses of the synthetic pep-
tides for betanodavirus (BFNNV_CP244–251, 261–272, 283–295, and 302–322) are shown
from (a–d). The response of the synthetic peptide for grouper-infecting betanodavirus
(DGNNV_CP221–238) is shown in (e). The reference control EFNNV_CP249–258 was
based on a previous report and is shown in (f). The comparison of pre-immunization and
after immunization, the ELISA results revealed each candidate peptide with antigenicity
after immunization in rabbit anti-NNV CP antibody showing significant differences (n = 3,
p < 0.05) (Supplementary Tables).
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Figure 2. Enzyme-linked immunosorbent assays (ELISAs) were performed to identify host-specific
LEs. From (a–d), 4 betanodavirus exclusive epitopes; (e) grouper-infecting virus exclusive epitope;
(f) a reference peptide. The symbol “-” represents the case of pre-immunization (without immu-
nization), and “+” represents after immunization (rabbit antibody was immunized by NNV capsid
protein). All ELISA values were further analyzed by GraphPad Prism 8.0 software with t-test (n = 3,
* p < 0.05). Detailed experimental data can be found in Supplementary Tables S1 and S2.

In Figure 3a, we applied traditional empirical approaches (Phyre2 and I-TASSER) and
state-of-the-art computational (RoseTTAFold) methods to predict the P-domain Betano-
davirus “4RFU”and “3JBM”. The RMSD of each predicted model between are: Phyre2 0.3;
I-TASSER 0.5; RoseTTAFold 1.07. It is surprising that the traditional homology method
achieved a lower RMSD for a better prediction. In Figure 3b, the predicted epitopes are
shown by structurally aligning with the resolved structure “4RFU” and RoseTTAFold
predicted “3JBM”. Only 3JBM49~65:LSIDYSLGTGDV/4RFU49~65:LSIDYSLGTGDV and
3JBM117~201:VCTRVO/4RFU117~201:VCTRDSX show a difference in substructure, and the
mapped epitopes do not show obvious differences.

For gammanodavirus subfamily analysis, two conserved epitopes including MrNV257~276:
YNADTIGNWVPPTELKQTYT and MrNV353~360:AVDPKPYQ were colored with both
cartoon-style and space-filled 3D structured models and shown in Figure 4a. Figure 4b
shows the aligned results by the self-developed multiple structure alignment system(AIR
system). The charged residues and hypervariable regions of gammanodavirus and the
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sequence or structurally aligned results of PvNV (PDB:5YKZ) and MrNV (PDB:5YKV) were
shown. The RMSD of these two structures was 1.607 Å, despite their relatively low sequence
similarity. It is worth noting that PvNV353~360:ASKKQTTG and MrNV353~360: AVDP-
KPYQ were located in regions of high variability and exhibited symmetrical structures in
three dimensions. The β-strand peptide located at the C-terminus of the P-domain contain-
ing the last 26 amino acids (MrNV346~371:LVTDYQGAVDPKPYQYRIIRAIVGNN) were re-
lated to infectivity. MrNV353~360:AVDPKPYQ and DGNNV261~272:RPLSIDYSLGTGDV
from betanodavirus showed similar properties (β-strand, charged, mostly protrusion shaped).
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In Figure 5, two types of NNV P-domain sequences performed by structural and
sequence alignments (PDB:4RFU and 5YKV) with secondary structure annotations are
shown. It can be observed that despite the P-domain of two structures they share low
similarity (RMSD:3.418) but show close homology with similar compositions of secondary
structures (β-strands).
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Figure 4. Predicted LEs for gammanodavirus and alignment between MrNV(PDB:5YKV) and
PvNV(PDB:5YKZ). (a) Visualizing the predicted epitopes with space fill and cartoon style, each
chain in a subunit and each epitope in a chain was represented by distinct color codes; (b) the
P-domain of MrNV (PDB:5YKV) and PvNV (PDB:5YKZ) are structurally aligned by our own devel-
oped structural alignment system (AIR), represented by the following color codes: yellow (highly
variable region), pink (positive-charged residue), blue (negative-charged residue).
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aligned. The alignment is annotated by secondary structures (helix, turn, and strand) acquired
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3.3. Prediction Results between Alphanodavirus and Gammanodavirus

In the third trial, one conserved LE, five unique LEs for the alphanodavirus, and two
unique LEs for gammanodavirus were identified. The sequence similarity between al-
phanodavirus (subunit particles; PDB:1NOV) and gammanodavirus (S-domain; PDB:6AB6)
was 21.28%. Five unique LEs for alphanodaviruses were Nov67–81:DFSTDPGKGIPDKFQ,
Nov137–147:PGFDQLFGTSAT, Nov176–186:AGSIQVYKIPL, Nov258~268:PPANVTNAQAS, and
Nov325~338:ARESPANDEYALAA, and two unique LEs for gammanodavirus were MrNV41~49:
VAKPTVAP and MrNV110~135:SQFWERYRWHKAAVRYVPAVPNTLAC. Alphanodavirus
lacks the P-domain, therefore the whole subunit structure and predicted epitopes are
visualized and colored in Figure 6. As shown in Figure 6a, the NNV S-domains of three sub-
families containing alphanodavirus (1NOV), betanodavirus (4RFT), and gammanodavirus
(6AB6) were determined by sequence alignment with secondary structure annotations
from DSSP. It can be observed that the core structure of the S-domain is mainly com-
posed of beta-turn elements and possesses a composition similar to the secondary and
tertiary structures. Therefore, the S-domain of NNV was relatively stable compared with
the P-domain during evolution. The subunit (PDB:1NOV), trimer particle model, and
total predicted epitopes are shown in Figure 6b. In Figure 6c, three types of NNV (sub-
unit particles PDB:1NOV 6AB6; S-domain: 4RFT) were structurally aligned. The RMSD
between the three structures was 2.761 and four types of alphanodaviruses (Pav:1F8V,
BBV:2BBV, FHV:4RFT, and Nov:1NOV) were structurally aligned. The RMSD between
the four alphanodavirus S-domain structures is 1.195. Compared with both gammano-
daviruses and betanodaviruses, alphanodaviruses possess two unique protrusion structural
segments (NOV187~225:KQVLNSYSQTVATVPPTNLAQNTIAIDGLEALDALPNNN and
Nov258~281:PPANVTNAQASMFTNLTFSGARYT), which are well conserved in the alphano-
davirus genus. It was also observed that the predicted epitopes NOV200~226:VPPTNLAQNTI
AIDGLEALDALPNNNY and NOV258~281:PPANVTNAQAS were located at the unique
protrusion structure shown in Figure 6c.

3.4. Physicochemical Characteristics of Predicted Residues

The amino acid index was obtained by calculating the occurrence frequency, which
is defined as the number of predicted epitope residues divided by the overall residues
and surface residues. Glycine (G) and alanine (A) accounted for the two highest ratios
of predicted epitopes. In contrast, histidine (H) and glutamine (Q) are less likely to be
considered epitope residues. The charge states of the predicted residues were further
examined, as shown in Figures 1, 3 and 5. Most of the peptides were located in a highly
variable state and contained positively or negatively charged residues. Furthermore, the
peptides were transformed into a point-cloud data structure and their corresponding mean
curvature, Gaussian curvature, and shape index were analyzed, as shown in Figure 7. Most
shape indices of the predicted epitopes were −1–−0.75 (spherical cup ~ rut) as a receptor.
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Figure 6. Summary of the icosahedral structure of alphanodavirus containing 180 subunits of the
capsid protein. We chose a tangled subunit (PDB:1NOV) and a chain of this subunit to visualize
the predicted epitopes using the spacefill and cartoon representation. (a) Sequence alignment of
NNV S-domain in (subunit particles PDB:1NOV 6AB6; S-domain: 4RFT). (b) A subunit particle of
alphanodavirus (PDB:1NOV) and a trimer P-domain model with ribbon and spacefill representation.
Four predicted epitopes are represented using distinct color code from Figure 5a. (c) Two structure
alignment trials of S-domain among: (left) alphanodavirus (PDB:1NOV), betanodavirus (PDB:4RFT),
and gammanodavirus (PDB:6AB6); (right) alphanodavirus subfamily (PDB:1F8V, 4TFE, 2BBV, and
1NOV). Unique protrusion structure and part of predicted epitopes are labeled.
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Figure 7. Shape index of predicted epitope from betanodavirus and gammanodavirus. The surfaces
of the predicted epitopes were extracted from betanodavirus (4RFT) and gammanodavirus (5YKV
and 5YKZ) with MSMS. PyMesh is then applied to calculate the Gaussian and mean curvatures for
each vertex and to further calculate the shape index (SI). Each histogram is represented using the
corresponding color of the peptide from the sequence alignment. (a) Epitopes of betanodaviruses;
(b) epitopes of gammanodavirus.

4. Discussion

A comprehensive LE prediction system for host-specific antigens has been proposed.
For group feature detection, the antigen sequences were clustered prior to importing the
sequences into the proposed system. For example, the Nodaviridae family can be categorized
into three different subfamilies: alphanodvirus, betanodavirus, and gammanodavirus. In
this study, we applied different combinations of existing resources to predict the conserved
and unique LEs. Antigen sequences of each subfamily were analyzed using a multi-expert
voting mechanism, and multiple structural alignments were performed to confirm the
conserved and unique characteristics. Using multiple sequence aligned locations, the con-
sensus voting module selected epitope candidate residues by accumulating votes provided
by five different renowned LE epitope prediction tools. In addition to individually voted
epitope residues, the minimum lengths of concatenated epitope residues were required
for further experimental design. All LE candidates for different host-specific groups were
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cross identified. In addition, to increase the success rates of the eventual vaccine design, we
emphasized the surface structural characteristics of the predicted epitopes. Therefore, anti-
gens without resolved structures can be analyzed by applying structure prediction systems
to their corresponding virtual structure predictions. The predicted epitope residues were
reconfirmed for their surface conditions and aligned using structural alignment tools for
revalidation. Based on the alignment results, the predicted conserved and/or unique LEs
for different subfamilies were sequentially and structurally distinguished. The proposed
system was compared with existing resources by selecting a well-known prediction system
for comparison. We selected the ABCPreds prediction system and applied the betano-
davirus antigen sequence as a test case. In this case, ABCPreds predicted 10 epitopes, one
of the betanodavirus sequences, including 86% of the query antigen sequences. Conversely,
our system predicted only four significant epitopes, and the total length of the predicted
epitopes was 38.7% of the query antigen sequence. A unique aspect of the proposed system
is that in addition to achieving accurate prediction, it provides host-specific LE prediction
as long as the antigen sequences can be clustered in advance. Through biological experi-
ments, three of the predicted epitopes were initially validated as accurate epitopes with
strong antigenicity responses. Our system utilizes host-specific features to predict effec-
tive epitopes for biologists, and the developed multi-expert voting mechanism-based LE
prediction system can successfully predict LEs with significant antigenic specificity. In the
antigenicity assay, we found that there were many overlapping LEs in the betanodavirus
subfamily. To further compare the differences among these predicted LEs, five predicted
LEs were selected, synthesized, and analyzed by ELISA. In a recent report, an epitope
of EFNNV/GNNV249–258:DIAPDGAVFQ was shown to be effective in the giant grouper
(Epinephelus lanceolatus); therefore, this epitope was selected as a reference for antigenicity
analysis. As revealed by the ELISA tests, all predicted LEs displayed high antigenicity
for the orange spot grouper. Interestingly, the last three amino acids in the predicted LE
BFNNV244~251:GSTQLDIA were the first three residues in EF/GNNV249~258:DIAPDGAVFQ.
This suggests that they might play an important role in grouper immunity. The predicted
LEs were approximately 8–22 residues in length; the majority of the residues were located
at the N-terminus of the capsid protein and characterized by adequate antigenic properties
and host specificity. Therefore, we hypothesized that the predicted epitopes were involved
in the adaptive immunity of groupers. However, further investigation via in vivo analysis
is required to confirm this hypothesis. In conclusion, this prediction system based on host-
specific characteristics provides important and exclusive information to fish immunologists
for developing fish vaccines in an effective and efficient manner.
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