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M.; Ruśkowski, P.; Gadomska-

Gajadhur, A. Optimisation of

Glycerol and Itaconic Anhydride

Polycondensation. Molecules 2022, 27,

4627. https://doi.org/10.3390/

molecules27144627

Academic Editor: Giuseppe Cirillo

Received: 28 June 2022

Accepted: 18 July 2022

Published: 20 July 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

molecules

Article

Optimisation of Glycerol and Itaconic Anhydride
Polycondensation
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Abstract: Glycerol polyesters have recently become objects of interest in tissue engineering. Barely
known so far is poly(glycerol itaconate) (PGItc), a biocompatible, biodegradable polyester. Due to
the presence of a C=C electron-acceptor moiety, it is possible to post-modify the product by Michael
additions to change the properties of PGItc. Thus, using PGItc as one of the elements of cellular
scaffold crosslinked in situ for bone tissue regeneration seems to be a very attractive yet unexplored
solution. This work aims to optimize the synthesis of PGItc to obtain derivatives with a double bond
in the side chain with the highest conversion rates. The experiments were performed with itaconic
anhydride and glycerol using mathematical planning of experiments according to the Box-Behnken
plan without solvent and catalyst. The input variables of the process were the ratio of the OH/COOH,
temperature, and reaction time. The optimised output variables were: the degree of esterification
(EDtitr), the degree of esterification calculated from the analysis of 1H NMR spectra (EDNMR), and
the degree of itaconic anhydride conversion—calculation based on 13C NMR spectra (%X13C

NMR).
In each of statistical models, the significance of the changed synthesis parameters was determined.
Optimal conditions are when OH/COOH ratio is equal to 1.5, temperature is 140 ◦C and time of
reaction is 5 h. The higher OH/COOH ratio, temperature and longer the experiment time, the higher
the value of the degree of esterification and the degree of anhydride conversion.

Keywords: unsaturated glycerol polyesters; poly(glycerol itaconate); design of experiments

1. Introduction

Glycerol polyesters are a new group of polymers with great potential in medicine. They
are biocompatible and biodegradable [1]. Depending on the chain length in dicarboxylic
acid, they are characterised by various degradation time in the human body [2]. These
polymers can be used short-term (days) or long-term (years) [1,3,4]. Among the polyesters
with high biomedical potential can be distinguished, for example poly(glycerol sebacate),
poly(glycerol succinate), poly(glycerol fumarate), poly(glycerol maleate), and poly(glycerol
itaconate) [5–10].

The substrate for producing these polymers is glycerol, a non-toxic and non-irritating
trihydroxy alcohol [11]. Due to the presence of three hydroxyl groups in the structure of
glycerol, this compound is hygroscopic and highly soluble in water [12]. Glycerol is the
molecular skeleton of fats in the human body. It has antibacterial activity, at which the
maximum is observed at 36 ◦C (ca human body temperature) [11,12]. It is used in many
industries such as food (as a sugar substitute for sweetening beverages), pharmaceutical
(drug delivery systems) and cosmetics (as a body care substance) [11,13,14].

The best known and most widely reported in literature is a glycerol-based polyester,
poly(glycerol sebacate)—PGS. PGS is a synthetic and biodegradable polymer obtained by
the polycondensation of sebacic acid with glycerol (Figure 1) [5,15–22]. PGS exhibits not
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only biocompatibility but as well resorbability [23]. Due to its unique properties, PGS is be-
ing studied by many researchers for future use in tissue regeneration, both soft (e.g., heart)
and hard (e.g., bone) or in the encapsulation of anti-cancer drugs [15,16,19,22,24,25].

Figure 1. Polycondensation of sebacic acid with glycerol.

The PGS structure consists of hydrophobic (eight methylene groups) and hydrophilic
(hydroxyl groups from glycerol) groups [24]. It allows the creation of structures that bind
drugs of both hydrophobic and hydrophilic characters [19,24].

A more hydrophilic material is poly(glycerol succinate) (PGSu) [26]. This polymer
can be synthesised not only in the reaction between succinic acid and glycerol but also
succinic anhydride and glycerol (Figure 2) [26–30]. Like PGS, the synthesis reaction of
PGSu occurs without the use of solvent or catalyst [26,31–33]. The functional properties
of PGSu are similar to those of PGS. Succinic acid is a natural metabolite in the Krebs
cycle; therefore, it is non-toxic to mammalian organisms [34]. The FDA (Food and Drug
Administration)-approved succinic acid as a component of medical and pharmaceutical
devices [35].

Figure 2. Synthesis of PGSu from succinic anhydride and glycerol.

An attractive alternative to using saturated dicarboxylic acids in synthesising polyesters
is the use of dicarboxylic acids containing unsaturated bonds (Figure 3) [36–38]. The use
of maleic acid, fumaric acid or itaconic acid may be an example of a substrate for the
preparation of innovative polymers [8].

Figure 3. Schematic representation of the synthesis of polyesters with unsaturated bonds.

The double bond is an important element in the poly(glycerol maleate) (PGMal) struc-
ture, whose presence enables post-polymerisation reactions [39]. Poly(glycerol fumarate)
(PGF) is an isomer of poly(glycerol maleate) (Figure 4) [40]. As in PGMal, a C=C double
bond moiety is present in its structure. Poly(glycerol fumarate) can be obtained by reacting
glycerol with fumaric acid or fumaric anhydride. Another method to obtain PGF is the
reaction of glycerol with maleic anhydride. The Z-mers isomerise to E-mers with increasing
temperature and time of the process [41].

Figure 4. Isomerisation of PGMal and PGF.
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Poly(glycerol itaconate) (PGItc) is a curious material because the double bond occurs
not in the main chain but in the side chain. It can significantly affect the properties and
reactivity of the product compared to PGMal [42,43]. Over the past 30 years, there has been
a significant interest in itaconic acid (Figure 5).

Figure 5. Number of publications with the keyword ”itaconic acid” in the years 1990–2020—own
elaboration based on data from PubMed.

Itaconic acid can be produced by fermentation by filamentous fungi (most commonly
Aspergillus terreus) [42,43]. The production volume of acid itself is not significant (due to
competitive reactions producing other acids such as maleic or fumaric acid). Still, due to
emerging new applications of its derivatives, an increase in demand for itaconic acid is
assumed. In 2025, itaconic acid production could be as high as 170 kton/year [42,43].

Itaconic acid is used in medical applications as a hardening agent for contact lenses
and as dental cement [44]. Due to its anti-inflammatory and antimicrobial properties, it
is believed that itaconic acid can be used to produce various types of drugs [45,46]. In
2020, Wang and his researchers conducted an experiment designed to test the effects of
itaconic acid on proteins present in living cells and performing important functions. Ita-
conic acid caused the modification of a large number of proteins. There were changes in
regulatory pathways responsible for the body’s immune response and changes in protein
structures responsible for cell death. The polymers based on itaconic acid have a poten-
tial for biomedicine applications, e.g., cellular scaffolds. The reaction of itaconic acid or
anhydride with glycerol may result in the formation of poly(glycerol itaconate) (PGItc)
(Figure 6) [47,48].

Figure 6. Synthesis of PGItc from glycerol and itaconic acid.

There is a lack of publications directly focused on poly(glycerol itaconate). In contrast,
there are many articles describing research on polyitaconates, e.g., based on alkyl groups.
Such a compound is, e.g., poly(dodecyl itaconate), which was the subject of a 2015 study
led by S. Ramakrishnan [49]. The polymer was obtained by a two-step process. The first
step of reaction is conducted with a catalyst (dibutyltin dilaurate, DBTDL) at 150 ◦C under
a nitrogen atmosphere. The oligomerisation reaction involving dibutyl itaconate and 1,12-
dodecanediol has taken place. The reaction was then conducted under reduced pressure at
160 ◦C in the presence of quinol, which was used to prevent the formation of an insoluble
polymer. After isolating the product, pure poly(dodecyl itaconate) was obtained.

Itaconate polyesters form rubber-like polymers upon crosslinking. They do not exhibit
very high strength, but they can be used in tissue engineering as drug delivery hydro-
gels [50]. The structure of the growing polymer can be controlled relatively simply by
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selecting the molar ratio of glycerol to acid or anhydride. The temperature and time of
polycondensation influence the degree of esterification and branching, molecular weight,
viscosity, and mechanical properties of PGItc.

2. Results and Discussion
2.1. FTIR and NMR Analysis

The structure of the obtained polyester was confirmed by the FTIR spectrum (Figure 7).

Figure 7. FTIR spectra of poly(glycerol itaconate) (green), itaconic anhydride (red), and
glycerol (blue).

The PGItc spectrum shows a broad band of 3500–3100 cm−1 characteristic for hydroxyl
group vibrations. The bands 2953 and 2892 cm−1 correspond to vibrations of C-H bonds in
the main aliphatic chain. The band evidences the presence of an unsaturated C=C bond at
1638 cm−1. The bands at 1709, 1176, and 1036 cm−1 are, respectively, the vibration bands of
the carbonyl group, acyl, and alkoxy groups.

The interpretation of the 1H NMR spectra (Figure 8) enabled the confirmation of the
product structure and relevant calculations.

Figure 8. The 1H NMR spectra of poly(glycerol itaconate).
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Glycerol protons are present in the 5.50–4.40 ppm and 4.30–3.20 ppm ranges, and
their chemical shift depends on how glycerol is substituted (possible linear, terminal, and
dendritic esters). Signals in the range 4.40–4.20 ppm are protons of unreacted glycerol.
From 2.3 ppm to 1.9 ppm are CH2 group protons. The effect of Ordelt saturation occurring
(which means the attack of glycerol OH groups on the double bonds) is observed in the
range of 3.10–2.53 ppm. The conversion rate of this reaction was calculated and is in
the range of 14.2–34.5% (Supplementary Information—Figure S1). We also observe the
isomerisation of itaconic fragments to mesaconic fragments. This process occurs with
an efficiency of about 1.2–9.8% (Supplementary Information—Figure S1). The higher the
process temperature is, the more considerable side reactions become.

Our particular attention was drawn to the signals in the unsaturated bond area. We
assigned a defined origin to each of them (Figure 8). The spectra registered for pure
reactants were especially useful.

The following formula was used to calculate the esterification degree using NMR spectra.

EDNMR = ((
∫

Pitc +
∫

Mitc)/(
∫

Anitc +
∫

Mitc +
∫

Pitc)) × 100% (1)

where∫
Pitc—The value of the integral of the signal is from the itaconic polyesters, oligoesters, monoesters;∫
Mitc—The value of the integral of the signal is from the itaconic monoesters;∫
Anitc—The value of the integral of the signal is from the itaconic anhydride.

On the 13C spectrum (Figure 9), the signals of carbonyl carbons (173–164 ppm), the sig-
nals of double bond carbons (136–127 ppm), and the signals of glycerol moiety carbons
(76–60 ppm) are observed in sequence.

Figure 9. 13C NMR spectrum of poly(glycerol itaconate).

The following formula was used to calculate the itaconic anhydride conversion degree,

%X13C
NMR = ((

∫
A +

∫
B +

∫
C +

∫
D)/(

∫
A +

∫
B +

∫
C +

∫
D +

∫
Anitc)) × 100% (2)

where∫
A +

∫
B +

∫
C +

∫
D—The value of the integrals of the signals is from the itaconic polyesters,

oligoesters, and monoesters;
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∫
Anitc—The value of the integral of the signals is from the itaconic anhydride.

2.2. Statistical Analysis

The Box–Behnken plan was used to create mathematical models, as it is the most
popular and convenient method of describing the process. The matrix plan consists of
15 experiments, 3 of which are performed under identical conditions to check the repeata-
bility of conditions and the experimenter’s skill.

Such mathematical modelling provides a great deal of valuable information about
the object under study and reduces the number of experiments from 27 to 15 (for 3 input
variables), which is incredibly precious when scaling up. This saves time and money, which
are crucial from the viewpoint of factory economics. The ratio of functional groups, tem-
perature, and time were chosen as input variables because, in our opinion, these variables
are easy to control and have the greatest impact on the price of the synthesised product.

The experimentally calculated and model-calculated values of the output variables
are summarised in Table 1.

Table 1. Experimental matrix and results (Exp.—experimental, Calc.—calculated).

No.
Coded Variables EDtitr [%] EDNMR [%] %X13C

NMR [%]

x1 x2 x3 Exp. Calc. Rest Exp. Calc. Rest Exp. Calc. Rest

1 −1 −1 0 46.7 49.4 −2.7 68.1 66.7 1.4 57.4 55.6 1.8
2 1 −1 0 51.1 49.4 1.7 70.7 71.2 −0.5 58.5 66.3 −7.8
3 −1 1 0 48.4 49.4 −1.0 65.0 65.3 −0.3 44.2 48.1 −3.9
4 1 1 0 60.9 49.4 11.5 70.4 69.7 0.7 62.2 58.8 3.4
5 −1 0 −1 67.8 63.8 4.0 65.8 66.0 −0.2 52.7 51.8 0.9
6 1 0 −1 19.9 35.0 −15.1 69.7 70.4 −0.7 57.0 62.6 −5.6
7 −1 0 1 44.3 35.0 9.3 64.4 66.0 −1.6 45.4 51.9 −6.5
8 1 0 1 54.0 63.8 −9.8 70.2 70.4 −0.2 64.7 62.6 2.1
9 0 −1 −1 50.1 49.4 0.7 68.0 69.0 −1.0 60.3 61.0 −0.7

10 0 1 −1 48.9 49.4 −0.5 66.5 67.5 −1.0 51.0 53.5 −2.5
11 0 −1 1 43.5 49.4 −5.9 69.7 69.0 0.7 74.0 61.0 13.0
12 0 1 1 60.0 49.4 10.6 68.7 67.5 1.2 62.6 53.5 9.1
13 0 0 0 48.7 49.4 −0.7 68.5 68.2 0.3 57.3 57.2 0.1
14 0 0 0 47.9 49.4 −1.5 68.9 68.2 0.7 54.7 57.2 −2.5
15 0 0 0 48.5 49.4 −0.9 68.7 68.2 0.5 56.2 57.2 −1.0

Based on the Pareto chart analysis (Figure S2), we determined which coefficients of
the regression equation are significant. We concluded that only the product of the input
variables x1 and x3 (tcalculated = 3.27) is significant (tcalculated > tcritical). It was found that
among the input variables, the linear relationship x1x3 has the greatest effect on y1, so the
value of the variable x2 was set as a constant equal 1).

The equation that describes the degree of esterification defined by titrations methods
(y1) is:

y1 = 49.2 + 14.4 × x1 × x3 (3)

The response surface is the graphic presentation of the calculated model (Figure 10).
Based on the results of the F-test, the adequacy of the model used was determined.

The value of F for the equation with one significant variable was 14.94 (Fcalculated < Fcritical),
so the applied model can be considered adequate (Tables S1 and S2).
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Figure 10. Dependence of esterification degree (EDtit) of PGItc, on the OH/COOH ratio (x1) and the
time (x3), x2 = 1.

The coefficient R2 is 0.53. It means that although only the x1x3 relationship is significant;
the other input variables and their relationships, although not significant, affect the output
variable y1.

The esterification values obtained from the titrations were compared with those
obtained from the model (Table 1). The experimentally obtained values differ from the
approximated values by ±15.1 percentage points, although for some experiments, the
differences are minor (±0.5 percentage points).

Obtainment of the highest esterification degree is possible when the process is con-
ducted for 5 h with the 1.5 OH/COOH ratio or 3 h and 0.5 OH/COOH ratio— EDtit > 60.0%.

Running the process using a ratio of 1.5 (excess glycerol hydroxyl groups) is associated
with a higher EDtit, meaning that linear rather than branched products are more likely
to be formed. Running the process for 5 h at a functional group ratio of 0.5 results in an
EDtit < 35.0%.

Pareto chart analysis (Figure S3) contributed to the conclusion that the input variable
x1 (tcalculated = 7.56) has a significant effect on the output variable y2 (tcalculated> tcritical). The
variable x3 has the least significant effect on the output variable y2. Therefore, the time
value was set as a constant, x3 = 1. Although the input variable x2 was insignificant, it
was included in the regression equation because the effect score was just below the critical
value for the significance level of p = 0.05. The addition of the variable x2 to the regression
equation contributed to an increase in the R2 coefficient from 0.72 to 0.81.

The equation that describes the degree of esterification determined from the analysis
of 1H NMR spectra (y2) takes the following form:

y2 = 68.2 + 2.21 × x1 − 0.738 × x2 (4)

Using the regression equation, the response surface graph was plotted (Figure 11).
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Figure 11. Dependence of esterification degree (EDNMR) of PGItc, on the OH/COOH ratio (x1) and
the temperature (x2), x3 = 1.

Based on the F-test, we concluded that the calculated value of Fcalculated for the equa-
tion with significant variables is 4.96 and <Fcritical. Thus, the used model is adequate
(Tables S3 and S4).

The EDNMR values obtained from the experiments were compared with the values
obtained calculated by the model (Table 1). They differ by only ±1.4 percentage points.
The coefficient of determination R2 is 0.81.

A high EDNMR value (>69.5%) can be obtained by running the reaction at 140 ◦C with
an OH/COOH ratio equal to 1.5. By conducting the reaction at 110 ◦C with a functional
group ratio of 0.5, the EDNMR value is less than 67.5%. The EDNMR < 65.5% was achieved
by conducting the reaction at a functional group ratio of 0.5 at 140 ◦C.

The Pareto chart analysis determined the significance of the regression equation
coefficients (Figure S4). Only the variable x1 (tcritcal = 3.41) (tcalculated > tcritical) has a
statistically significant effect on the degree of itaconic anhydride conversion. The input
variable x2 was also included in the regression equation. However, it was taken into the
regression equation due to the substantial increase in the coefficient of R2 from 0.29 to 0.44.

The equation is of the form:

y3 = 57.1 + 5.35 × x1 −3.76 × x2 (5)

This equation was used to plot the dependence of the degree of itaconic anhydride
conversion (y3) on the temperature (x2) and the ratio of functional groups (x1) for x3 = 1
(Figure 12).

The Fcalculated value for the equation with significant variables is 6.32 < Fcritical, so the
model used is adequate (Tables S5 and S6).

The variability of the output variable y3 is also influenced by other variables and their
relationship, although they were insignificant.

The %X13C
NMR values obtained from the model differ from the approximated values

by ±13.0 percentage points, but for some experiments, the differences are ±0.1 percentage
points (Table 1).

The process should be run at the highest functional group ratio at the lowest tempera-
ture to obtain the highest %X13C

NMR value. A high %X13C
NMR value cannot be obtained

despite high-temperature usage when the functional group ratio is 0.5.
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Figure 12. Dependence of itaconic anhydride conversion on the OH/COOH ratio (x1) and the
temperature (x2), x3 = 1.

2.3. Experiment under Optimal Conditions

Poly(glycerol itaconate), characterised by the highest possible values of the output
variables, was obtained by the response utility profile function software (available in
Statistica). The utility of the values of output variables was determined (low, medium,
and high utility values—Table S7). The highest values obtained in the experimental plan
were used as the low utility values of the output variables. We determined that the highest
degrees of conversion could be obtained if the synthesis was conducted at a functional
group ratio of 1.5 (x1 = 1) at 140 ◦C (x2 = 1) for 5 h (x3 = 1) (Figure S5).

The experiment was carried out under the assumed conditions, summarising the
analysis results in Table 2.

Table 2. Calculated vs. experimental results.

Results EDtit [%] EDNMR [%] %X13C
NMR [%]

Calculated 52.8 69.7 63.0
Experimental 62.3 70.4 62.8

The calculated value of the degree of EDtit esterification is larger than the result
calculated from the profile of approximated values by more than ten percentage points.
Despite the difference, it can be considered that this value is not significantly different from
the expected value. The calculated experimental value of EDNMR differs by 0.7 percentage
points from the value calculated using the profile. The experimentally calculated value
of the degree of the itaconic anhydride conversion (%X13C

NMR) differs from the value
calculated using the profile by only 0.2 percentage points.

Received values indicate a good fit of the statistical models to reality.

3. Materials and Methods
3.1. NMR

A nuclear magnetic resonance (NMR) spectroscopy was used. A total of 130–150 mg
of product was dissolved in 1 ml of DMSO d-6 (Deutero GmbH, Kastellaun, Germany).
The mixture was shaken for 24 h and then transferred to an NMR tube. NMR spectra were

Figure 12. Dependence of itaconic anhydride conversion on the OH/COOH ratio (x1) and the
temperature (x2), x3 = 1.

2.3. Experiment under Optimal Conditions

Poly(glycerol itaconate), characterised by the highest possible values of the output
variables, was obtained by the response utility profile function software (available in
Statistica). The utility of the values of output variables was determined (low, medium,
and high utility values—Table S7). The highest values obtained in the experimental plan
were used as the low utility values of the output variables. We determined that the highest
degrees of conversion could be obtained if the synthesis was conducted at a functional
group ratio of 1.5 (x1 = 1) at 140 ◦C (x2 = 1) for 5 h (x3 = 1) (Figure S5).

The experiment was carried out under the assumed conditions, summarising the
analysis results in Table 2.

Table 2. Calculated vs. experimental results.

Results EDtit [%] EDNMR [%] %X13C
NMR [%]

Calculated 52.8 69.7 63.0
Experimental 62.3 70.4 62.8

The calculated value of the degree of EDtit esterification is larger than the result
calculated from the profile of approximated values by more than ten percentage points.
Despite the difference, it can be considered that this value is not significantly different from
the expected value. The calculated experimental value of EDNMR differs by 0.7 percentage
points from the value calculated using the profile. The experimentally calculated value
of the degree of the itaconic anhydride conversion (%X13C

NMR) differs from the value
calculated using the profile by only 0.2 percentage points.

Received values indicate a good fit of the statistical models to reality.

3. Materials and Methods
3.1. NMR

A nuclear magnetic resonance (NMR) spectroscopy was used. A total of 130–150 mg
of product was dissolved in 1 mL of DMSO d-6 (Deutero GmbH, Kastellaun, Germany).
The mixture was shaken for 24 h and then transferred to an NMR tube. NMR spectra were
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obtained using an Agilent 400 MHz spectrometer. 13C NMR spectra were collected without
the nuclear Overhauser effect.

3.2. FTIR

IR spectra were obtained in ATR technics using ALPHA II BRUKER spectrometer. For
each sample, 32 scans in the range 400–4000 cm−1 were performed and averaged.

3.3. Acid Number

A total of 0.5–1.5 g of the sample was weighed and dissolved in 25.00 mL of methanol.
Then, it was titrated with 1M aqueous NaOH solution until the indicator (thymol blue) turned
from yellow to blue. The acid number (AN) was calculated using the following formula:

AN [mgKOH/gsample] = ((V − V0) × MNaOH × 56.1)/m (6)

where
V, the volume of 1 M NaOH solution used to titrate the sample;
V0, the volume of 1 M NaOH used for blank titration;
MNaOH, the titer of the solution for the titration (1 M);
56.1, the molar mass of KOH;
m, sample weight.
The final result is the average of three determinations.

3.4. Ester Number

A total of 0.2–0.5 of the sample was weighed and dissolved in 15.00 mL of methanol
and 20 mL of 1 M aqueous NaOH solution. The prepared solutions were refluxed for
1 h. Then, the mixture was cooled to room temperature. The excess NaOH was titrated
with a 1 M aqueous solution of hydrochloric acid against phenolphthalein until it became
discoloured. The ester number (EN) was calculated using the following formula:

EN [mgKOH/gsample] = (((V0 − V) × MHCl × 56.1)/m) − AN (7)

where
V, the volume of 1 M HCl solution used to titrate the sample;
V0, the volume of 1 M HCl used for blank titration;
MHCl, the titer of the solution for the titration (1 M);
56.1, the molar mass of KOH;
m, sample weight.
The final result is the average of three determinations.

3.5. Esterification Degree

The ED was calculated according to the following formula:

ED = EN/(EN + AN) × 100% (8)

where: EN, ester number; AN, acid number.

3.6. Statistical Analysis

Calculations and graphics were made in Statistica 13.1 (StatSoft, Cracow, Poland).

3.7. Synthesis Procedure

PGItc syntheses were carried out in a Mettler Toledo MultiMax parallel reactors system
in Hastelloy reactors. Glycerol (≥99%, Sigma Aldrich, Burlington, MA, USA), and itaconic
anhydride (99%, Ambeed, Arlington Heights, IL, USA) were used without prior preparation
(Figure 13). Glycerol (10.62 g, 0.115 mol; 13.53 g, 0.147 mol; 6.45 g 0.070 mol) and itaconic
anhydride (19.38 g, 0.173 mol; 16.47 g 0.147 mol; 23.55 g 0.210 mol) were weighed into the
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reactor in amounts depending on the molar ratio of the functional groups. Each time, the
sum of the reactants was 30.00 g.

Figure 13. Synthesis of PGItc from glycerol and itaconic anhydride.

Reactors were equipped with a mechanical stirrer, temperature sensor, and Dean-Stark
apparatus. In the first stage, the mixture was heated for over 20 min to temperature x2. The
temperature was held constant for x3 hours. After the reaction, the mixture was cooled
down to room temperature.

3.8. Optimisation Process

Experiments were planned according to the mathematical methods of planning exper-
iments according to the Box–Behnken plan. The natural values of the variables were coded
as −1, 0, or +1 according to Table 3.

Table 3. Box–Behnken Design—coding values.

Parameter Natural
Variable

Coded Value
Step

−1 0 +1

x1
OH/COOH

ratio 0.5 1 1.5 0.5

x2 Temperature [◦C] 110 125 140 15
x3 Time [h] 3 4 5 1

4. Conclusions

Three mathematical models were developed to consider the influence of the changed
parameters (ratio of functional groups, temperature, and time) on the investigated values
(degree of esterification determined by titration methods, degree of esterification received
based on 1H NMR spectra, and degree of itaconic anhydride conversion received based on
13C NMR spectra). All of the obtained models were adequate. The relationship between
the ratio of functional groups and the running time of the process has a significant effect
on the EDtitr value. To obtain the highest EDtitr value, the reaction should be carried out
for the shortest time (3 h) using the lowest ratio of functional groups (0.5) or carried out
for 5 h at a ratio of functional groups of 1.5. Only the ratio of the functional groups of
substrates used significantly affects the EDNMR. However, a value close to significant is
demonstrated by the temperature variable. The reaction should be carried out at the lowest
possible temperature (110 ◦C) with the highest functional group ratio (1.5) to obtain a high
EDNMR value. This conclusion seems illogical and may occur due to the low variability
of the EDNMR value. The %X13C

NMR value is significantly affected only by the functional
group ratio. Since the significance level is a conventional value, the effect of temperature
was also considered in determining the regression equation. The regression equation has
demonstrated that to obtain a high itaconic anhydride value, the reaction should be carried
out at the highest possible ratio of functional groups (1.5), and the process temperature
should be 110 ◦C.

The experiment was carried out under optimal conditions, i.e., functional group ratio
1.5, temperature 140 ◦C, and time 5 h, in which EDtitr = 62.3%, EDNMR = 70.4%, and
%X13C

NMR = 62.8% were obtained. The values of the obtained variables compared to the
predicted values show a good fit of the statistical model to reality.
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It could be interesting to extend the experimental area to increase the initial variables’
variability and obtain polyester with higher molecular weight. The following research
stage will be viscosity and cellular studies of the obtained materials.
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variable. Table S3: Significance test of regression equation coefficients for the EDNMR variable. Table
S4: Model adequacy test for the EDNMR variable. Table S5: Significance test of regression equation
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NMR variable. Table S6: Model adequacy test for the %X13C
NMR variable.
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