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Abstract

Recurrent copy number alterations (CNAs) play an important role in cancer genesis. While a number of computational
methods have been proposed for identifying such CNAs, their relative merits remain largely unknown in practice since very
few efforts have been focused on comparative analysis of the methods. To facilitate studies of recurrent CNA identification
in cancer genome, it is imperative to conduct a comprehensive comparison of performance and limitations among existing
methods. In this paper, six representative methods proposed in the latest six years are compared. These include one-stage
and two-stage approaches, working with raw intensity ratio data and discretized data respectively. They are based on
various techniques such as kernel regression, correlation matrix diagonal segmentation, semi-parametric permutation and
cyclic permutation schemes. We explore multiple criteria including type I error rate, detection power, Receiver Operating
Characteristics (ROC) curve and the area under curve (AUC), and computational complexity, to evaluate performance of the
methods under multiple simulation scenarios. We also characterize their abilities on applications to two real datasets
obtained from cancers with lung adenocarcinoma and glioblastoma. This comparison study reveals general characteristics
of the existing methods for identifying recurrent CNAs, and further provides new insights into their strengths and
weaknesses. It is believed helpful to accelerate the development of novel and improved methods.
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Introduction

Identifying recurrent copy number alterations (CNAs) in cancer

genomes is an important step in locating cancer driver genes and

understanding the mechanisms of tumor initiation. Many human

cancers including ovarian serous carcinoma [1], lung adenocar-

cinoma [2], glioblastoma multiforme [3], and other types of

cancers [4,5], have been largely explored by analyzing CNAs.

However, the identified CNAs with high frequency of occurrence

across multiple samples only account for a small fraction of

clinically or biologically relevant aberrations for many cancers.

The most common reason for missing some well-known driver

mutations is that almost all cancers are heterogeneous [6],

indicating that many recurrent CNAs only appear in a subset of

samples (i.e., samples within subtypes) and accordingly their

frequencies are less-extreme across the whole samples. For this

challenge, a number of statistical and computational methods with

promising results have been reported. They are divided into one-

stage [7,8,9,10] and two-stage approaches [3,4,11,12,13]. Many of

them were reviewed and discussed by Rueda and Diaz-Uriarte in

their latest paper [14].

One outstanding phenomenon of copy number profiles is that a

part of markers are changed in identical regions in multiple

genomes and the remainder markers are changed in random

places of the genomes. Thus, the frequency of CNA occurrence

across samples is usually used to help distinguish recurrent events

from random markers. However, due to the complicated

structures of copy number data, the identification of less-extreme

recurrent CNAs is an extremely difficult task. Below we profile a

real copy number dataset to show the complexity of CNAs, and

further use it as an example to illustrate why the less-extreme

CNAs are difficult to detect.

Figure 1a and Figure 1b depict the rate of CNA occurrence

across the entire genome and its frequency across the samples in

a set of lung cancers, which contains 371 samples and 216,327

markers [3,5]. It can be noted from the figures that most of the

markers are changed (amplified or deleted) in at least one

sample and many of them are overlapped by a part of samples.

Additionally, the sizes of CNA regions vary from chromosome

to chromosome. For a given set of N cancer samples, assuming

all the observed CNAs are randomly distributed across the

genome in each sample, the expected probability (E(P)) of one

CNA marker shared by at least n samples (corresponding to a

percentage f of the whole samples) can be estimated using

Equation (1), and consequently the expected number (E(l)) of

such shared markers in the genome can be expressed by

Equation (2).
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where L is the length of the genome being analyzed; rki and rkj
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n
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Let us consider a set of 100 samples with each having 1000

markers, and in each sample the rates of CNA are 0.035 for

amplification and 0.040 for deletion (these frequencies are

relatively less than the means of the above lung cancer dataset).

If we assume the CNAs are randomly placed in the genome, the

probability of one marker shared by at least 100f (0, f #1)

samples can be regarded as a cumulative probability, termed Pc(f )

(shown in Equation (3)). For instance, Pc(0.1) equals to 0.0027 in

the case of amplification, indicating that the probability of one

marker amplified in at least 10 (0.1 multiplies 100) samples is

0.0027. Figure 2 shows such cumulative probability versus the

frequency of one CNA marker across the 100 samples. Conse-

quently, the number of such markers in the whole genome can be

estimated as 1000 Pc(f ).

Pc(f )~E(P(f )) ð3Þ

If the frequency is used as a statistic to test the significance of

CNAs individually, the estimated p-value for the marker with

frequency f can be calculated using Equation (4), which is under

the max-T procedure to control the family-wise error rate (FWER)

[15]. For clearly understanding the relationship between the CNA

frequency and its p-value, we demonstrate the p-value as a function

of the frequency ranging from 0.01 to 1 for amplification and

deletion separately in Figure 3. It can be noted that the p-value

decreases with the increased frequency of the CNA, and

particularly, p-value is 0.05 when f = 0.13 in the case of

amplification and p-value equals to 0.05 when f = 0.14 in the case

of deletion. These suggest that if a p-value cutoff 0.05 is employed,

the CNA markers with frequency less than 0.13 for amplification

(or less than 0.14 for deletion) could not be detected, while in real

data such frequency may be of significant biological relevance

since many CNAs may affect only a minority of cancer samples

[3,7].

p-value(f )~
1 if 1000Pc(f )w1

1000Pc(f ) else

�
ð4Þ

Generally, the frequency-statistic and random permutation of

markers in the above example is just a basic strategy to test

significance. To complement this strategy, many methods design

various statistics and null distributions for this challenge. For

example, STAC (Significance Testing for Aberrant Copy number)

[4] proposes a new statistic ‘‘footprint’’ to score each marker and

establishes the distribution under the null hypothesis that the

observed CNA regions are equally placed anywhere across the

genome; GISTIC (Genomic Identification of Significant Targets

In Cancer) [3] scores each marker by combing frequency and

amplitude, and constructs a semi-exactly approximated null

distribution, and its extension GISTIC2.0 [11] considers the

distinction of the background frequency between focal CNAs and

broad CNAs and scores each marker proportional to its amplitude;

CMDS (Correlation Matrix Diagonal Segmentation) [9] scores

each marker based on its correlations with its surrounding sites

and constructs a student’s t distribution; and DiNAMIC (Discov-

ering Copy Number Aberrations Manifested In Cancer) [13]

employs a summary statistic and a cyclic permutation scheme to

generate the null distribution. In addition, to adjust statistic values

and improve null distributions, many methods employ a peel-off

algorithm to iteratively test CNAs [3,13,16,17]. This will help

much in identifying low-to-moderate-frequency (or/and low-to-

moderate-amplitude) markers.

Along with recent advance of genomic technologies and rapid

production of huge datasets, new methods with more sophisticated

capabilities and features for detecting recurrent CNAs continue to

emerge. However, the relative strengths and weaknesses of the

existing methods are difficult to discern, due to the lack of

comprehensive performance comparisons. This is a true problem

especially from the perspective of biological researchers who need

to choose a method for a dataset of interest. In this paper, we

compare six classic and publicly available methods based on

criteria including type I error rate, detection power, Receiver

Operating Characteristics (ROC) curve and the area under curve

(AUC), and computational complexity, so that users can quickly

get an overview of them and their performance. Various

simulation datasets and two real datasets obtained for lung

adenocarcinoma and glioblastoma samples are used to evaluate

the methods.

Materials and Methods

Methods for Identifying Recurrent CNAs
A variety of statistical and computational methods have been

proposed recently for identifying recurrent CNAs. These methods

can be categorized in different ways, such as frameworks, strategies

for establishing null distributions, source codes, and so on.

Generally, different cancer datasets have distinct profiles and

patterns of copy number alterations, and they may require

different computational methods for analysis, as there is no single

method that could be suitable for all datasets. It is necessary to

explore those methods that possess distinct features and different

advantages. To mirror this, we carefully select six representative

methods for assessment and comparison, based on their reported

effectiveness in real applications. We list the six methods in Table 1

as well as their properties for an overview. These methods have

been developed under different rationales in the latest six years

and some of them have been widely used in cancer data analysis

[2,18,19]. For a general understanding of them, we give a brief

summary of their principles as follows.

(1) STAC [4]. The input of STAC is a binary matrix X, in

which each element xij represents the status of j-th marker at

sample i. Specifically, xij = 1 stands for amplification (or deletion),

xij = 0 means normal. It analyzes amplification and deletion

matrices separately, and tests significance of them in the same

way. The null hypothesis behind STAC is that the observed CNA

segments are randomly placed anywhere in the chromosome being

considered [4,17], hence permuted samples can preserve the

original structures of the copy number data. STAC adopts two

statistics, frequency of aberration and ‘‘footprint’’, to assess p-

values for each marker, and controls the family-wise error rate

Comparative Analysis on Identifying Recurrent CNAs
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(FWER) based on the extreme right-hand tail probability

[4,13,20].

The ‘‘frequency’’ for marker x is calculated as the proportion of

samples sharing the aberration, while the ‘‘footprint’’ for marker x

is calculated as a number of locations contained in a stack, which is

a set of intervals containing x across samples [4]. The principle

behind the ‘‘footprint’’ is that the tighter alignments of aberrations

are less likely to be expected by chance and thus are more likely to

suggest biologically relevant events, while the more relaxed

Figure 1. The rate of somatic CNA across the genome and the frequency of somatic CNA across the samples in a set of segmented
lung cancer profiles. Here we use log2-ratios 0.322 (2.5 copies) and 20.415 (1.5 copies) to define amplifications and deletions. (a) The average rates
of CNA for amplification and deletion among the 371 samples are 0.0379 and 0.0417, respectively. (b) A large part of amplifications and deletions are
less than 0.1 in terms of frequency.
doi:10.1371/journal.pone.0052516.g001
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alignments of aberrations might suggest passenger mutations with

higher probability.

(2) GISTIC [3]. This method requires segmented input data

with continuous log2-values resulted from single sample analysis

methods such as CBS [21] and GLAD [22]. It permutes individual

markers on the whole genome by assuming that the markers are

independent [3,17], and derives a semi-exact estimated null

distribution based on the convolution function [3] of

Damp~h
amp
1 6h

amp
2

:::6hamp
n ð5Þ

where h
amp
i is the distribution (histogram) of amplification in the i-

th sample. Based on the null distribution, GISTIC uses a G-score

combining both frequency and amplitude (Equation 6) to assess

the significance for each marker and corrects for multiple

hypothesis testing through the Benjamini-Hochberg FDR proce-

dure [23]. The same procedure is applied to the analysis of

deletion and LOH (loss of heterozygosity).

G
amp
j ~f

amp
j |c

amp
j ð6Þ

where f
amp

j and c
amp
j are the frequency of the amplification and the

average amplitude of the j-th marker across the samples.

The intuition behind the G-score is that an aberration with

higher amplitude and frequency is more likely to be a driver event.

In order to relieve the side effect of peak regions with the highest

amplitude and frequency, GISTIC adopts a ‘‘peel-off’’ algorithm

to iteratively test the CNAs within the significant regions.

(3) KC-SMART [8]. Different from the above two methods,

one-stage framework is embraced for this method without

requiring a prior step of segmenting (smoothing) copy number

profiles. The principle behind KC-SMART is that it imposes a

kernel function at each location m to construct a statistic, kernel

smoothed estimate (KSE) [8]:

KSE(m)~

P
Mi

ai
:gi(m)P

Mi
gi(m)

ð7Þ

where ai is a summed positive or negative log2-ratios across all

samples for each location, gi(m) is a kernel function (e.g. flat-top

Gaussian kernel function), and Mi is a set of markers around

location m and it is usually determined based on the width of the

kernel function. Theoretically, this statistic considers the correla-

tions among copy number data and incorporates information

gained from neighboring markers.

To identify peak locations (i.e., recurrent CNAs), the method

compares the observed KSE of each location against a null

distribution which is established through permutations of individ-

Figure 2. Cumulative probability as a function of the CNA
frequency across samples for amplification and deletion in the
sample set being considered.
doi:10.1371/journal.pone.0052516.g002

Figure 3. Estimated p-value as a function of CNA frequency in the sample set being considered. In the case of amplification, p-value
(0.12) = 0.20 and p-value (0.13) = 0.05; in the case of deletion, p-value (0.13) = 0.18 and p-value (0.14) = 0.05.
doi:10.1371/journal.pone.0052516.g003
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ual log2-ratios on the genome being considered. To correct the

effect of multiple hypotheses testing, KC-SMART adopts

Bonferroni strategy by multiplying the assessed p-values using

the total number of locations being tested.

(4) CMDS [9]. The input data to CMDS is largely similar to

KC-SMART. This method doesn’t directly utilize the frequency

and amplitude of copy number aberrations to construct test

statistic. It assigns a RCNA score to each marker. The RCNA

score is an averaged correlation value over the surrounding sites of

the marker. The null hypothesis of CMDS is that there is no

correlation between markers within chromosomes, thus it can be

created by randomly permuting individual markers in the stretch

of the chromosome being considered. To save computational time,

CMDS uses the information from the observed correlation values

in the copy number genome to establish a standard normal

distribution, as a closely approximated t distribution. The multiple-

testing effect is also corrected using Bonferroni strategy, exactly

like the KC-SMART method.

The intuitive notion behind CMDS is that the copy number

noise is not correlated while the recurrent CNAs are in high

correlation. Another outstanding feature of CMDS is that it

doesn’t analyze amplification and deletion separately, but uses the

average copy number value over the predefined window across all

samples and its significance level [9] to determine whether the

corresponding marker is amplification or deletion. This is different

from most other existing methods.

(5) DiNAMIC [13]. This method accepts both continuous

raw signal and discrete segmented data. It adopts a global

summary statistic that incorporates both frequency and amplitude

of each marker for analyzing either amplification or deletion. Two

novel features underlying DiNAMIC are concluded as follows.

First, it employs a cyclic permutation strategy to generate the null

distribution [13,17], which preserves the structures of the original

copy number data at a higher degree than most other methods

such as STAC [4] and GISTIC2.0 [11]. Second, to increase the

power for detecting less-extreme CNA markers, the method

utilizes a ‘‘peel-off’’ algorithm different from that used by GISTIC

[3], which assesses the significances of new regions by removing all

aberrations overlapped by the previously detected recurrent

regions, while DiNAMIC re-tests markers by generating a new

null distribution on a new data matrix in which the previously

detected markers K are null and the markers contribute to the

significance of K are scaled using a factor.

This method is supposed to test one marker during each ‘‘peel-

off’’ iteration procedure, thus computational cost will be a

significant issue, especially when a large number of iterations are

required. For this, DiNAMIC provides Quick Look and Detailed Look

platforms for the user’s options. In the first one, the original null

distribution is re-used to test the significance of the most extreme

markers, and thus accordingly saves a piece of computational time.

In addition, the significance for multiple testing is corrected using

max-T procedure exactly like STAC [4].

(6) GAIA [16]. In contrast to other existing methods

[3,13,24], GAIA (Genomic Analysis of Important Alterations)

incorporates within-sample homogeneity into the ‘‘peel-off’’

procedure under its statistical hypothesis framework: first,

individual markers are randomly permuted to generate a null

distribution, based on which the observed count (the number of

aberrations across samples, this is equivalent to the effect of

frequency of aberrations) of each marker is assessed and assigned

with a significance level; second, GAIA defines a homogeneity

value for each paired adjacent markers in every sample and

produces a new data matrix called H (N6M-1), in which each

element HijM{0, 0.5, 1}, represents maximum, medium or

minimum homogeneity; finally, a homogeneous peel-off is

performed on the matrix H to expand the boundaries of the

significant regions detected previously. This ‘‘peel-off’’ scheme was

expected to identify more recurrent CNA peaks and omit spurious

peaks.

Evaluation of the Methods
Fairly evaluating the relative merits of these methods is

necessary, but this is complicated due to several realistic issues.

First of all, the input data formats (segmented or raw) to different

algorithms are not always the same, and those requiring

segmented inputs usually adopt different segmentation algorithms.

For example, the default segmentation algorithms used by STAC,

GISTIC, DiNAMIC, and GAIA are GenePix Pro 4.0 [25], GLAD

[22], CBS [26], and VEGA [27] respectively. Considering that

different segmentation algorithms might have different abilities in

processing individual CNA profiles, and thus will pose great

impact on downstream analysis, we choose to use the CBS

segmentation algorithm [26] for all the two-stage methods in this

comparison study, since CBS is a very popular algorithm and it

performs consistently well in detecting copy number changes [28].

Secondly, the significance outputs of the six methods include two

types: p-values (STAC, KC-SMAR, CMDS, and DiNAMIC) and

Table 1. Methods evaluated in this comparison study.

Name Framework Statistic Null distribution Peel-off Software

STAC Two-stage Frequency/Footprint Permutation of segments on
chromosome

No JAVA, http://cbil.upenn.edu/STAC

GISTIC Two-stage G-score Permutation of markers on
whole genome

Yes Matlab, www.broad.mit.edu/cancer/pub/GISTIC

KC-SMART One-stage KSE (Kernel smoothed
estimate)

Permutation of log2 value in
each marker

No R package, http://bioc.ism.ac.jp/2.8/bioc/html/
KCsmart.html

CMDS One-stage RCNA score t distribution created based
on marker correlations

No R package, https://dsgweb.wustl.edu/qunyuan/
software/cmds

DiNAMIC Two-stage Summary statistic T Cyclic permutation on
chromosome or whole genome

Yes R package, http://www.bios.unc.edu/research/
genomic_software/DiNAMIC

GAIA Two-stage Aberration count Permutation of markers on
chromosome

Yes R package, http://bioinformatics.biogem.it/
download/gaia

For the ‘‘peel-off’’ column, ‘Yes’ and ‘No’ indicate whether the methods adopt peel-off procedure.
doi:10.1371/journal.pone.0052516.t001
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q-values (GISTIC and GAIA), and the thresholds for declaring

significant in these methods are different. For a fair comparison,

we choose the commonly used thresholds 0.05 for p-value and 0.25

for q-value here. Thirdly, the parameters in different methods

differ greatly. For example, DiNAMIC requires an input of

number of iterations, where the default setting is 10. However,

such a setting is usually not large enough in real applications, since

there might be a great number of aberrant markers which should

be assessed. Thus, we change this default setting into a larger

number in the implementation of the algorithm. For most of the

algorithm parameters, we use the default settings as much as

possible or the values suggested in the papers or program

documents. Finally, different algorithms were written in various

languages and implemented in different platforms, as shown in

Table 1. This will increase the difficulties to compare the

computational time of the methods in practice.

To quantitatively evaluate the performance of the methods, we

test four commonly used criteria [13,28,29,30] based on a large

number of simulation datasets. The criteria are described in detail

below.

1. Type I error rate. The purpose of assessing type I error

rate is to investigate the meaning of the significance levels resulted

from the statistical methods for detecting recurrent CNAs [13,30].

If type I error rate is too conservative or too aggressive, the

intended meaning of the p-values (or q-values) would be reduced or

lost, and it doesn’t agree with the real false positive rate in results.

Thus the accuracy of the type I error rate is a critical index for

evaluating methods. To this aim, we simulate a large number (S)

of replicated datasets with null ground truth CNAs, and calculate

the type I error rate using Equation (8):

Type I error rate~
1

S

XS

i~1

Xi(a) ð8Þ

where a is the threshold for calling significant (e.g. a~0:05), and

Xi(a) is an indicator function, i.e., if any CNAs in dataset Xi are

declared significant, then Xi(a)~1; otherwise, Xi(a)~0. Thus,

Equation (8) is actually a calculation of family-wise type I error

rate [17].

2. Detection power. Since CNA is a structural unit and it

usually includes a number of markers, the detection power can be

calculated through two ways: unit-based and marker-based

calculations.

CNA unit-based detection power: for a ground truth (recurrent) CNA

unit, it is necessary to observe how likely it can be successfully

declared significant by a method. We define this detection power

as the sensitivity to detect the recurrent CNA unit. Generally,

exactly detecting the boundaries of (or all the markers within) the

recurrent CNA unit is difficult to achieve, and this is not always

necessary for locating the genes covered by CNA. For example,

the genes can be mapped if a part of markers within them are

overlapped by the detected CNA units. For a convenient

assessment, we use the middle marker of the recurrent CNA unit

to determine whether the unit is declared, i.e., if the middle

marker is detected, then we suppose that the unit is successfully

detected, otherwise, it is not. Accordingly, the CNA unit-based

detection power of a method can be calculated by [30]

Power~
1

S:R

XS

i~1

Xi(R,a) ð9Þ

where R is the total number of ground truth CNA units in each

simulated dataset, and Xi(R,a) indicates the number of ground

truth CNA units that are declared significant in the i-th dataset.

CNA marker-based detection power: in addition to the location of

cancer driver genes, recurrent CNAs can also be used to analyze

chromosomal instability index and other biological meanings [1].

So it is necessary to see how many ground truth markers are

detected. Accordingly, we define this power as Equation (10) [30],

in which R0 is the total number of ground truth CNA markers and

Xi(R
0,a) indicates the number of ground truth markers that are

successfully detected in the i-th dataset.

Power~
1

S:R0

XS

i~1

Xi(R
0,a) ð10Þ

3. Receiver operating characteristics (ROC) curve and

AUC measure. We further assess the overall performance of the

six methods, measured by both sensitivity and specificity through

ROC curves, which shows how much percentage of ground truth

markers are selected conditioned on a given false positive rate.

Additionally, we measure the area under curve (AUC) for these

methods with the purpose of evaluating their average performance

especially when some ROC curves have crossed.

4. Computational complexity. We evaluate the computa-

tional complexity based on execution time and memory usage.

Since different methods are usually implemented in different

platforms such as C++, R language, and JAVA, the comparison of

the computational time might be influenced. To overcome this

issue and provide a general comparison of the efficiency of the six

methods, we give big-O complexities for them, in addition to the

actual running times.

Simulation Datasets
Real datasets rarely have absolutely confirmed ground truth

CNAs, and thus can’t be used to evaluate the performance of the

methods. However, simulation technologies provide a reasonable

way to solve this problem [31]. Since the four evaluation criteria

illustrated above are utilized to quantify the methods from

different perspectives, it is necessary to employ different simulation

schemes to generate a variety of datasets.

For the first criterion of testing type I error rate, we adopt the

simulation algorithm introduced by Hsu et al [32] and Walter

et al [13] to create null datasets. The algorithm is based on an

instability-selection model [33], which has been originally used by

many researchers to model LOH (loss of heterozygosity). The

principle of simulating copy number aberrations under the

instability-selection model can be simply summarized as follows

[13]. The marker status is firstly denoted either by 0 as no

aberration or by 1 as aberration. To generate contiguous markers

which are inherent correlated along one chromosome with length

of M, an initial marker location xk (kM{1, 2, …, M}) is prespecified

and the status of its neighboring marker xk+1 is then modeled based

on the transition probability [13], pa, b(d) = p(T(xk+1) = a | T(xk) = b),

where a, b = 0, 1, and d is the distance between adjacent markers xk

and xk+1. Specifically, the transition probabilities have been

defined as [13,33]:

p1, 0(d)~m(1{e{ld )

p0, 1(d)~(1{m)(1{e{ld ) ð11Þ

Comparative Analysis on Identifying Recurrent CNAs
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where m is the background or sporadic probability of aberration at

a marker, and l is the transition rate between regions of aberration

and normality (i.e., no aberration). The other transition probabil-

ities are p0, 0(d) = 1- p1, 0(d) and p1, 1(d) = 1- p0, 1(d). According to

such probabilities, the status of the markers xk+1, …, xM is

determined based on a Binomial distribution. For the starting

marker xk, the status is assigned using a binomial random variable

with probability m [13]. The left part of the chromosome can be

also determined similarly.

To get an idealized copy number data, the above simulation

process is conducted two times, and the two simulated profiles are

then combined to generate an individual sample [13]. To make

the simulation data more realistic, a normal cell contamination

with a random proportion , Uniform (0.7, 0.9) will be added to

each sample, as well as a Gaussian noise with mean 0 and standard

deviation 0.25. For a more detailed description of this simulation

algorithm, interested readers can refer to [33], [13], and [32].

For the second criterion of testing statistical power of the

methods, we combine the features of the simulation strategies

introduced by Willenbrock et al [34] and Zhang et al [9], to

generate multiple ratio profiles with ground truth CNA regions,

and we further consider the signal scenarios summarized by Rueda

and Diaz-Uriarte such as scenarios I–III, and scenario V [14]. We

create an initial data matrix in which each element is assigned with

a normal copy number level. Based on this matrix, we insert the

ground truth CNA regions by considering the following factors

that are generally regarded to affect the statistical power of

detecting recurrent CNAs: length (L) and amplitude (CN) of

recurrent CNA, frequency (F) of recurrent CNA across samples

[9], signal noise level (s) of the ratio profiles, normal cell

contamination (d) in tumor samples [35]. To make the simulated

data more realistic, we add a number of randomly placed

background CNA regions to each sample. The lengths of these

regions are generally similar to that of the recurrent CNAs. For the

third and last evaluation criteria, we still adopt this simulation

scheme but use different factor settings. Particularly for the last

criterion, we focus on simulating the scale of datasets, i.e., the size

of samples and the length of genome, since these are generally

thought to be the main factors influencing computational

complexity.

To fully investigate the performance of the six methods under

different criteria, in each simulation scheme, we set the related

parameters to different values to configure various data replica-

tions. The details are demonstrated in each scenario in the next.

Results

Performance Evaluation on Simulations
According to the four evaluation criteria and their correspond-

ing simulation schemes, we present and analyze the comparative

results of the methods and also explore and discuss the principles

and features of the underlying methods.

Scenario 1 (Evaluation of type I error rate). Based on the

default parameter settings of the simulation algorithm introduced

by Walter et al [13], we create four types of null datasets by

altering the distance (d) between adjacent markers. The distance is

used to emulate the density of CNA markers distributed on the

genome. For example, the equally spaced copy number data

means that the markers are uniformly distributed in the stretch of

the genome, while 50% clumped copy number data means that

half of the markers are contained in the clumps accounting for 5%

of the genome size, and the other half of the markers are equally

spaced in the remainder intervals accounting for 95% of the

genome size. 25% and 75% clumped copy number datasets have

the similar interpretations. To accurately evaluate the type I error

rate for a method, under each setting of the distance d, we generate

10000 data replications, each of which consists of 50 samples and

2000 markers, and we calculate the type I error rates for

amplification and deletion separately. The experimental results are

shown in Figure 4, which suggests that the value of the type I error

observed in the DiNAMIC method is closer to the significance

threshold than other five methods, and the STAC method appears

relatively more liberal while the GAIA method shows relatively

more conservative. It should be noted that here we use the same

threshold a~0:05 for all the methods (including p-value and q-

value output methods) for a convenient comparison.

The potential explanations about the deviations from type I

error rate of 0.05 are concluded based on a careful inspection of

the principles behind the methods. For the STAC method, two

reasons may result in a liberal type I error rate. The first reason is

the partial contribution of the non-changed locations to the null

distribution, since STAC creates null distribution by permuting

segments obtained from individual sample analysis methods

[22,26] but not removing the non-changed segments from the

genome. The second reason is that STAC tests the significance of

markers on chromosome-wide or chromosome arm-wide and

controls FWER only within the chromosome. From the perspec-

tive of genome-wide, the p-value threshold of 0.05 might be too

liberal since there are usually 23 multiple tests (i.e., 23

chromosomes) in the analysis of either amplification or deletion.

For the GAIA method, the primary reason for conservativeness is

that it does not take into account the correlations among copy

number data in both the statistic design and null distribution

generation, and also it does not incorporate signal amplitude into

the statistic. Theoretically, the dependency among test statistics

may also lead to conservativeness [36]. In addition, extreme loci

usually present higher amplitude than that of sporadic loci [1] so

that the methods ignoring amplitude may decrease the detection

power of extreme loci, and thus generate conservative results.

For the CMDS method, we observe that it produces a distinct

difference of the type I error rates between amplification and

deletion, i.e., it behaves much liberal on amplification while

conservative on deletion in all the cases of Figure 4. The most

likely reason is that CMDS does not deal with the overlaps of

amplification and deletion in the same regions (or windows). For

example, within one specific window, if a part of individuals are

deleted at an average copy number CNd and another part of

individuals are amplified at an average copy number CNa, the copy

number mean of the window across all samples might be larger

than 2, showing an amplification state, since the value of CNa

(CNaM (2, +‘)) can be generally much larger than that of CNd (CNdM
[0, 2)). Therefore, the deletion events tend to be masked by the

amplification events from the perspective of copy number mean

that has been used by CMDS to define amplification and deletion

states. Accordingly, in the datasets with evenly distributed copy

number gains and losses, CMDS may result in more amplification

markers with low significant levels while less deletion markers.

Scenario 2 (Evaluation of power based on CNA units and

markers). Since amplifications and deletions of copy number

are regarded to play different biological roles, and thus are usually

analyzed separately for understanding cancer pathogenesis

[1,11,18], we set out to calculate the power of the methods for

detecting amplification and deletion separately. To mirror this, we

first simulate three amplification events (i.e., ground truth

recurrent amplifications) according to the following basic settings:

L = {30, 20, 10}, CN = {3, 4, 5}, F = {0.08, 0.10, 0.12}, s = (0.1,

0.2), and d = (0.2, 0.4). s = (0.1, 0.2) means a uniform distribution

U (0.1, 0.2) from which the standard deviation s is randomly

Comparative Analysis on Identifying Recurrent CNAs

PLOS ONE | www.plosone.org 7 December 2012 | Volume 7 | Issue 12 | e52516



drawn and a zero-mean Gaussian noise with s is added to each

sample. Similarly d = (0.2, 0.4) indicates a uniform distribution U

(0.2, 0.4) from which the normal cell proportion d is randomly

drawn for each sample. Moreover, 2 to 5 background CNA

regions with lengths varying from 10 to 50 and copy numbers

varying from 3 to 5 are inserted in each sample. It is worth noting

that these settings have a clear interpretation: the CNA frequency

across samples and its amplitude are inversely proportional to the

CNA length [11].

To generate various datasets for understanding how the factors

(L, s, d, et al.) influence the power of the methods, we use three

parameters bL, bs, and bd to modify the lengths of the recurrent

CNAs, the noise level, and the normal cell contamination of the

copy number profiles. Under each configuration, we simulate 50

replications with log2-ratio values, each of which contains 50

samples and 2000 markers. The unit-based and marker-based

detection powers are calculated using Equations (9) and (10),

respectively, and the corresponding results are shown in Figure 5.

Similar to the analysis of amplification, we also evaluate the

detection power for the methods by simulating deletion events (i.e.,

ground truth recurrent deletions). The results are presented in

Figure S1.

As shown in these figures, most methods achieve slightly higher

power in the case of lower levels of noise and lower fractions of

normal cell contamination, and the unit-based power is usually

higher than the marker-based power, implying the generally

recognized fact that the boundaries of recurrent CNA regions are

more difficult to detect than the middle loci of the regions

[16,28,37]. Moreover, it can be noted in the figures that the STAC

method is more sensitive to recurrent CNAs in most cases than

other methods. Examination of the principles underlying STAC

reveals two reasons for this advantage. One contributor is the

‘‘footprint’’ statistic, which accounts for the lengths of aberrant

intervals covering the markers being tested and directly measures

tight alignment of the intervals (the intervals are contained in

different samples and are defined as a stack) [4]. The tight

alignment is a reasonable reflection of the concordance of CNAs.

The second and more important reason is that STAC generates

the null distribution corresponding to the number of intervals in a

stack covering the tested marker. For example, if one stack

contains 10 intervals (i.e., there are 10 samples aberrant in the

same region), in order to assess the significance of the anchor

markers contained in the stack, STAC calculates the footprints of

all stacks that consists of exactly 10 intervals on permuted data,

and then compares the observed statistic values to these footprints

to get p-values. Theoretically, such null distributions account for

subspace of the whole samples and thus facilitate finding consistent

CNAs within subsets of samples. Therefore, the combination of

the ‘‘footprint’’ statistic and the null distribution reduces the

influence of highly frequent copy number aberrations across whole

samples on detecting less-extreme markers.

Scenario 3 (ROC curve and AUC comparison of the six

methods). Since the identification of recurrent CNAs usually

incorporates more or less false positives in the results, it is

necessary to see how many ground truth CNAs can be identified

given a false positive rate. For this purpose, we employ the similar

Figure 4. Type I error rate comparison of the six methods. Amplification and deletion are tested separately, and the corresponding results are
figured with red and blue bars; the type I error rate of 0.05 is represented by the dashed line in the figure.
doi:10.1371/journal.pone.0052516.g004
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Figure 5. Power comparison of the six methods. Unit-based and marker-based powers are tested on CNA amplifications, and the values for
each parameter are calculated based on 50 simulated replications, which are depicted with pink and dark red bars respectively.
doi:10.1371/journal.pone.0052516.g005

Figure 6. ROC curve comparison of the six methods. Nine parameter settings are considered for comparing true positive rate (TPR) vs false
positive rate (FPR) of the methods when testing CNA amplifications. The values of TPR and FPR in each parameter are averaged over 50 simulated
replications.
doi:10.1371/journal.pone.0052516.g006
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simulations of scenario 2 to evaluate sensitivity-specificity ROC

curves for the six methods. The setting of the normal cell

proportion d is now changed to: d = (0.2, 0.8), and we further use

an additional parameter bF to alter the frequency of recurrent

CNAs across samples, aiming to increase the variety of simula-

tions. Again, in each factor configuration, we simulate 50

replicated log2-ratio datasets each with 50 samples and 2000

markers. The sensitivity (true positive rate, TPR) and specificity

(false positive rate, FPR) are calculated for each method by

ordering the markers according to their significance values, and

then are averaged over the 50 replications. The results obtained

from the analysis of amplifications are demonstrated in Figure 6,

from which we clearly see that the STAC and GAIA methods

perform consistently well. It is important to note that in Figure 6

we focus on the top-left part of the ROC curves. Specifically, we

start TPR from 0.5 in Y-axis and end FPR at 0.1 in X-axis, since

such curves would provide a clearer observation of the difference

between the methods than those ranging from 0 to 1 in both X

Table 2. The area under curve (AUC) measurements of the six methods under various simulation configurations.

STAC GISTIC KC-SMART CMDS DiNAMIC GAIA

bL = 1, bF = 1, bs = 1 0.976 0.907 0.924 0.899 0.863 0.956

bL = 1, bF = 1.5, bs = 1 0.998 0.933 0.973 0.927 0.962 0.996

bL = 1, bF = 1.5, bs = 2 0.961 0.866 0.894 0.929 0.907 0.962

bL = 2, bF = 1, bs = 1 0.995 0.947 0.918 0.929 0.880 0.969

bL = 2, bF = 1.5, bs = 1 0.999 0.948 0.977 0.961 0.976 0.998

bL = 2, bF = 1.5, bs = 2 0.984 0.887 0.873 0.939 0.917 0.978

bL = 3, bF = 1, bs = 1 0.998 0.921 0.943 0.951 0.930 0.987

bL = 3, bF = 1.5, bs = 1 0.999 0.985 0.969 0.961 0.983 0.998

bL = 3, bF = 1.5, bs = 2 0.997 0.886 0.893 0.950 0.959 0.995

doi:10.1371/journal.pone.0052516.t002

Figure 7. Comparison of execution times for the six methods. Computational time is depicted as a function of genome size when setting the
sample size to 50, and is then depicted as a function of sample size when setting the genome size to 2000.
doi:10.1371/journal.pone.0052516.g007
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and Y axis. Moreover, a TPR level higher than 0.5 and a FPR

level lower than 0.1 are usually required in real problems

especially in the analysis of high-resolution datasets, due to the

need of controlling true and false discovery rates [9].

Under the same simulation configurations, we measure the area

under curve (AUC) for the six methods. The results are shown in

Table 2, from which one can find that STAC and GAIA have the

highest AUC values in most cases. The observation from this

comparison is roughly consistent with that from the ROC curve

comparison.

Additionally, to test the methods in analyzing deletions of copy

number, we make a comparison of ROC curves in Figure S2,

where we can also see the advantages of STAC and GAIA.

Scenario 4 (Assessment of computational

complexity). Computational complexity of a method is a key

factor for its application to real data due to the huge size of the

genome being analyzed. Generally, three factors are regarded to

determine the computational complexity, sample size, genome

length, and algorithm for analyzing the data. To achieve a

reasonable comparison of computational complexities for the six

methods, we perform experiments using modest computational

resources, available to all researchers. Specifically, our computer

platform is: Linux OS (Ubuntu 9.04) and Windows XP OS,

5.99 GB RAM, and 2.00 GHz CPU. Various simulation datasets

are generated by changing genome length or sample size based on

the simulation scheme illustrated in previous text. Specifically, we

set the sample size to 50 and change the genome length from 1000

to 10000, and then set the genome length to 2000 and change the

sample size from 50 to 500 in the data simulations, with the

purpose of observing the changes of running time with respect to

the genome length and sample size. In each setting of parameters

(i.e., sample size and genome length), we simulate 50 replicated

datasets, and measure the running times and memory usages of the

six methods by averaging over the replications. In addition, for the

two-stage methods, including STAC, GISTIC, DiNAMIC, and

GAIA, we add the costs of the preprocessing of datasets (i.e.,

single-sample analysis) to the running times for making a fair

comparison. The comparative results of the running times are

depicted in Figure 7, which suggests that CMDS and GAIA are

Figure 8. Comparison of memory usages for the six methods. Memory usage is depicted as a function of genome size when setting the
sample size to 50, and is then depicted as a function of sample size when setting the genome size to 2000.
doi:10.1371/journal.pone.0052516.g008

Table 3. Comparison of big-O computation complexity for
the six methods.

Method Time complexity Memory complexity

STAC O((T+1)NL) O(NL)

GISTIC O(NL) O(NL/l)

KC-SMART O(TNLlogL) O(TNL+NLlogL)

CMDS O(NL) O(NL)

DiNAMIC O(TNL+L) O(NL)

GAIA O(NL) O(NL/l)

doi:10.1371/journal.pone.0052516.t003
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the fastest, while KC-SMART and DiNAMIC are the slowest. It is

worthy noting that in Figure 7 the efficiency of KC-SMART is

seriously affected with the increased genome length while it is

slightly affected with the increased sample size. Similarly, we

present the comparative results of the memory usages in Figure 8,

which suggests that CMDS and GAIA require the lowest memory

size while KC-SMART requires the highest memory size. Here, it

is important to note that the results shown in Figures 7 and 8

should not be strongly platform-dependent since the machine

memory is sufficient for the six algorithms to analyze the

simulation datasets that we have considered.

Different algorithms were written with different languages such

as R, Matlab, and Java, thus it is insufficient to assess the

computational complexities of the method only using the practical

running times and memory usages. To provide a general

comparison of the methods, we examine the principles of the

algorithms carefully and give big-O time costs and memory

requirements for them in Table 3, where N denotes the sample

size, L denotes the genome length (number of markers), T

represents the number of permutations, and l is the averaged

length of the segments obtained from the single-sample analysis of

the whole genome. Comparing Figure 7, Figure 8, and Table 3,

we find that the big-O computational complexities are roughly

consistent with the running time and memory usage results.

Real Applications
To investigate the behaviors of the methods in real applications,

we first test them on a cancer dataset with 371 lung adenocar-

cinoma samples [2,9,17]. Raw CNA profiles are segmented using

the CBS algorithm [26] and are transformed into the input

formats to the two-stage methods. Since this dataset has been

already analyzed by the GISTIC and CMDS methods in their

papers [3,9], we do not run them again but only use their

presented results for comparing to other four methods (STAC,

KC-SMART, DiNAMIC, and GAIA). Recurrent copy number

alterations usually include both arm-level and focal events, which

are regarded to have different lengths and distinct biological

consequences [3,11]. Specifically, focal events are generally

defined as the peak regions with the most significance levels

among the recurrent regions. Here, we focus on the comparison of

focal events being identified by the six methods, since these events

encompass limited number of genes and usually contain cancer

driver genes [2,11]. To mirror this, we employ the log2-ratio

thresholds of 0.848 and 20.737 for defining amplifications and

deletions to fit those methods (STAC, GISTIC, and GAIA) that

require copy number calls. Actually, these thresholds are the

default settings of GISTIC in its applications [2,3].

We produce the result of each method using its default

significance thresholds as aforementioned. For example, in the

STAC method, we use a p-value of 0.05 as a cutoff for declaring

significant, and in the GAIA method, we use a q-value of 0.25 as

the cutoff. The results derived by the methods are presented in

Table S1. Since there are no definite ground-truth driver genes in

real datasets, it is extremely difficult to quantify the performance of

the methods using the previously described criteria (e.g., power

and true positive rate vs false positive rate). Instead, we first

compare the total number of identified recurrent regions of the six

methods, and give the numbers of overlapped regions between any

two methods (shown in Figure 9). This will help observe which

method is the highest concordant one, i.e., which method overlaps

other methods in the largest area. From Figure 9, we observe that

GAIA overlaps the largest area with other methods. Specifically,

Figure 9. Result comparison of the six methods on the lung adenocarcinoma dataset. The red and blue colored numbers indicate the
numbers of amplified and deleted recurrent CNA regions, respectively. Specifically, (NA, ND) (e.g., (38, 74)) in each box means that there are NA

amplified regions and ND deleted regions identified by the corresponding method; and the cycled numbers denote the numbers of overlapped
regions detected by the corresponding two methods. For example, in the location of the first column and the last line in the figure, ‘279 represents
the number of amplification regions overlapped between STAC and GAIA, while ‘539 represents the number of overlapped deletion regions.
doi:10.1371/journal.pone.0052516.g009

Table 4. Comparison of the number of lung cancer related regions that are identified by the six methods on the lung
adenocarcinoma dataset.

STAC GISTIC KC-SMART CMDS DiNAMIC GAIA

# of lung cancer related amplifications 16 17 13 10 18 22

# of lung cancer related deletions 17 5 9 8 12 21

doi:10.1371/journal.pone.0052516.t004
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GAIA overlaps STAC with 80 regions and averagely overlaps 42.4

regions with the other five methods. From the perspective of

overlapping percentage, up to 83.9% of the regions in GISTIC

and 71.4% of the regions in STAC are overlapped by GAIA. We

also find (Table S1) that there are seven regions including 1q21.2,

7p11.2, 8q24.21, 11q13.3, 12q15, 14q13.3, and 17q12 are

overlapped by all the six methods. Most of these regions have

been validated to encompass or closely near to cancer related

genes such as MDM2, MYC, EGFR, ERBB2, CCND1, ARNT

[2,9].

Moreover, based on a collection of previous studies on lung

cancers and their subtypes [2,38,39,40,41,42,43,44,45,46,47,48,

49,50,51,52,53,54,55,56], we compare the methods using the

numbers of lung cancer related regions that are identified by them.

The comparative result is presented in Table 4. Here it should be

noted that we have only counted the regions reported to be

associated with lung cancer in previous studies, the remainder

regions in the result of each method are generally regarded as

candidates and need further investigation in terms of their

biological relevance.

Similar to the analysis of lung adenocarcinoma dataset, we

further compare the methods based on a set of glioblastoma

samples [3,57]. We still use the log2-ratio thresholds of 0.848 and

20.737 for defining amplification and deletion markers, and also

use the result already reported by the GISTIC method [3] in this

comparison. The numbers of recurrent regions identified by the

six methods and the numbers of overlapped events among them

are presented in Figure 10, from which we see that GAIA detects

the largest number of regions including 42 amplifications and 91

deletions, and also overlaps the largest area with other five

methods. For example, GAIA overlaps STAC with 94 (81.7% of

115 regions identified by STAC) events and overlaps DiNAMIC

with 24 (47% of 51 regions identified by DiNAMIC) events. The

detailed information of the identified regions by the six methods is

given in Table S2. Based on a large collection of previous studies

on glioblastoma patients [3,58,59,60,61,62,63,64,65,66,67,68,

69,70,71,72,73,74,75], we summarize the numbers of glioblastoma

related regions resulted by the methods for a further comparison.

This is shown in Table 5.

It should be noted that in this comparison we have used the

default segmented profiles [3] of the glioblasotma samples for both

the one-stage and two-stage methods. Specifically, we test the KC-

SMART and CMDS methods on the segmented data rather than

raw data, since these two methods also allow for segmented input

signals [8,9]. This will help to investigate the performance of the

methods on different data platforms. Comparing to the result of

the lung adenocarcinoma dataset (Figure 9), most of the methods

identify less regions in the glioblastoma dataset (Figure 10).

However, the number (92) of regions detected by CMDS in

Figure 10 is significantly larger than that (46) in the lung

adenocarcinoma dataset. The most likely reason is that the noise

level of the segmented profiles is significantly lower than that of

raw profiles, and the underlying principle of CMDS is to

distinguish recurrent copy number alterations from noise copy

number. Therefore, the input signals to CMDS with lower noise

level would result in more regions.

Discussion

Brief Summary
Six representative methods for identifying recurrent copy

number alterations are examined and compared in this paper. It

Figure 10. Result comparison of the six methods on the glioblastoma dataset. The red and blue colored numbers indicate the numbers of
amplified and deleted recurrent CNA regions, respectively. Specifically, (NA, ND) (e.g., (37, 78)) in each box means that there are NA amplified regions
and ND deleted regions identified by the corresponding method; and the cycled numbers denote the numbers of overlapped regions detected by the
corresponding two methods. For example, in the location of the first column and the last line in the figure, ‘329 represents the number of
amplification regions overlapped between STAC and GAIA, while ‘629 represents the number of overlapped deletion regions.
doi:10.1371/journal.pone.0052516.g010

Table 5. Comparison of the number of glioblastoma related regions that are identified by the six methods on the glioblastoma
dataset.

STAC GISTIC KC-SMART CMDS DiNAMIC GAIA

# of glioblastoma related amplifications 10 11 7 6 10 14

# of glioblastoma related deletions 10 4 7 4 5 12

doi:10.1371/journal.pone.0052516.t005
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is not straightforward to state which method is the best one.

However, according to experimental results on a larger number of

simulation datasets, we find that the STAC and GAIA methods

perform consistently well except for their liberal and conservative

significance levels. By observing the results under the three

performance assessment criteria (i.e., type I error, power, and

ROC), we further find that the behavior of type I error does not

has a clear relationship with that of power and ROC, while the

behavior of power displays a linear relationship with that of ROC

curves. In terms of computational complexity, KC-SMART is

heavily affected by the increased genome size while slightly by the

sample size. This is mainly because KC-SMART assigns KSE

score to each marker by incorporating information of a large

number of neighboring markers, which needs much computation-

al time. DiNAMIC is also the slowest method, which provides two

options (Quick Look and Detailed Look) for statistical significance

assessment. It should be noted that in our experimental

comparison, we always choose the Quick Look scheme in

DiNAMIC, which needs relatively less computational time when

compared with Detailed Look scheme with time complexity of

O(T9TNL), where T9 denotes the number of iterations. If we test all

the markers in the genome, T9 equals to L. The methods requiring

implementation of permutations are generally much slower than

those without permutations.

In the applications on the lung adenocarcinoma and glioblas-

toma datasets, the six methods identify different numbers of

recurrent CNA regions and display various pair-wise overlaps

(Figure 9 and Figure 10). Among these methods, GAIA identifies

the largest number of recurrent regions and shows the highest

concordance with other methods, and it further provides the

largest number of lung cancer and glioblastoma related regions

(Table 4 and Table 5). Nevertheless, the proportion of the cancer

related regions to the identified regions in GAIA is not as high as

that in GISTIC (e.g., 70.8% of 31 regions resulted from lung

cancer dataset). In addition, the STAC method also shows a high

concordance performance either in method comparison (Figure 9

and Figure 10) or cancer related gene comparison (Table 4 and

Table 5). Inevitably, the values in Table 4 and Table 5 might

contain some bias, since a large number of new studies on lung

cancer and glioblastoma are emerging, making it difficult to track

every novel discovery in this area especially for those being

published or unpublished. In these real applications, another

observation is that most methods identify more deletion regions

than amplification regions, but reveal relatively less deletion

regions associated with lung cancer or glioblastoma. The most

common explanation is that the homogeneous deletions are very

frequent in the lung cancer profiles, and the threshold (20.737) for

defining deletions is critical so that most homogeneous deletions

are preserved but some heterogeneous deletion regions (low-to

moderate-amplitude) with biological relevance might be filtered

out [11].

Challenging Issues
Although a number of methods have been developed for the

identification of recurrent copy number alterations in multiple

samples and new methods with more sophisticated capabilities

continue to emerge, several important and challenging issues in

this area have not yet been well solved. In the first place, the

relationship between significant, recurrent, and cancer driver

CNAs is less modeled in a decent way. Many existing algorithms

stop after obtaining significant CNA regions. Practically, the

significant regions may contain a huge number of genes, and not

all of them are the cancer driver genes. Accordingly, only

identifying significant regions is not enough to define biological

events, since the number of cancer driver genes is generally

limited. Thus, distinguishing driver mutations from significant or

recurrent CNAs is a critical and challenging issue. Interestingly,

GISTIC performs a further step to define ‘‘peak regions’’ with the

most significant levels from each significant region and employs a

relatively high threshold (e.g. over 3.6 copies of amplifications and

less 1.2 copies for deletions) to detect focal regions, which contain

limited numbers of genes [3]. Considering that the high threshold

may filter out low-to moderate-amplitude focal events, a new

version called GISTIC2.0 was proposed to separate the whole

genome into arm-level and focal regions, which were then

analyzed respectively by estimating the corresponding background

rates [11]. The focal events will be paid much attention to locate

biologically relevant genes.

The second challenge is to detect driver aberrations for cancer

subtypes, since most cancers are heterogeneous [76,77] and each

subtype displays distinct copy number patterns [1,4]. The answer

to this question will help much in providing important information

for diagnosis and treatment of subtypes. Many existing methods

have already tried to investigate the CNA patterns in cancer

subtypes. For example, STAC utilizes unsupervised two-way

hierarchical scheme to cluster samples based on its detected

regions [4], and pREC-S identifies subsets of samples that share

regions of CNA based on Hidden Markov Model (HMM) [14,78].

Some other methods use clinical information (e.g., primary vs

recurrent, high grade vs low grade, and survival time) or

phenotype to divide cancer samples into subsets and then analyze

each subset separately [1,79]. However, many cancers may be

involved with highly complicated heterogeneous structures. For

example, in the high grade ovarian cancer subtype, different

samples have different survival times and distinct copy number

patterns. This greatly increases the difficulties of defining small

cancer subtypes and identifying characteristic CNA regions

associated with specific subtypes.

Potential Extensions
Based on previous analysis and discussions, we conclude several

potential directions that can be pursued to improve the

identification of driver copy number alterations. First, the

advantages of the existing methods can be combined to refine

the methodology. For instance, STAC can be refined by

incorporating the peel-off scheme of the GISTIC method, so as

to detect a set of ‘‘peak regions’’ from the significant STAC

regions. This would be beneficial for reducing the scale of the

identified regions and improving the purity of cancer driver

alterations in the result. Second, one issue that has not been taken

into consideration in the current methods is the contribution of the

null markers (i.e., not changed markers) to null distributions.

Specifically, when the threshold for defining aberrations is very

high, a great number of markers are filtered out as null markers,

which are not removed from the genome when performing

permutations and generating the null distribution. Consequently,

the mean of the null distribution is theoretically a little biased to

the left, from the viewpoint of distinguishing recurrent CNAs from

random background aberrations. Although it is not clear how

much benefit could be obtained by removing the contribution of

the null markers, this can be worthy of trying. Third, since the

samples within a cancer subtype may themselves be heterogeneous

(e.g., high grade ovarian cancer), only performing one-dimensional

(i.e., across-genome) permutations in the whole samples may

achieve a limited number of subtype-specific CNA events. The

suggestion here is to adopt two-dimensional (i.e., across genome

and sample spaces) permutations to establish the null distribution.

One possible way to realize this is to incorporate the principle of

Comparative Analysis on Identifying Recurrent CNAs
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pREC-S [78] and bootstrap sampling scheme into one of the six

methods. Finally, analyzing absolute copy numbers in somatic

DNA alterations of cancers would be much helpful [17,80,81], in

either identifying cancer driver genes or exploring intra-tumor

heterogeneity. Currently, most existing methods have only

handled the relative copy number data that are generated directly

from array or sequencing experiments.
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