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Abstract: Wireless rechargeable sensor nodes can collect additional data, which leads to an increase
in the precision of data analysis, when enough harvested energy is acquired. However, because
such nodes increase the amount of sensory data, some nodes (especially near the sink) may
blackout because more transmitted data can make relaying nodes expend more energy. In this
paper, we propose an energy-aware control scheme of data compression and sensing rate to maximize
the amount of data collected at the sink, while minimizing the blackout time. In this scheme,
each dominant node determines the data quota that all its descendant nodes can transmit during
the next period, which operates with an efficient energy allocation scheme. Then, the node receiving
the quota selects an appropriate data compression algorithm and sensing rate according to both its
quota and allocated energy during the next period, so as not to exhaust the energy of nodes near the
sink. Experimental results verify that the proposed scheme collects more data than other schemes,
while suppressing the blackout of nodes. We also found that it adapts better to changes in node
density and harvesting environments.

Keywords: wireless sensor networks; rechargeable; compression; sensing rate control

1. Introduction

Wireless sensor networks (WSNs) have been used to collect environmental information in less
accessible areas such as hazardous areas, battlefields, or deep water. A wireless sensor network
consists of a large number of tiny wireless sensor nodes, which typically have a finite lifetime because
they are battery-operated and often discarded when their batteries are exhausted. In WSN, therefore,
studies have been actively carried out to extend the lifetime of nodes by reducing their energy
consumption [1,2].

This has motivated the introduction of techniques for prolonging network lifetime using
rechargeable nodes that obtain energy from various sources such as the sun, vibration, wind,
and temperature differences [3–6]. Although the rechargeable nodes can continuously obtain energy, if
they consume more energy than harvested, they can also become depleted.

To solve this problem, energy prediction [7–10] and allocation [11–14] methods have been studied,
which limit the amount of available energy over time.

Kansal et al. [7] and Piorno et al. [8] introduced a harvested energy prediction scheme using
a moving average approach and daily weather change, respectively. Cammarano et al. [9] proposed
Pro-Energy, which can facilitate more precise prediction using long-term and short-term predictions
according to weather and time. Mousavi et al. [10] proposed a new nonlinear prediction model for
solar radiation on horizontal surface using ANN/SA, which is a hybrid method coupling artificial
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neural network (ANN) and simulated annealing (SA). Noh et al. [11] proposed a scheme to allocate the
necessary amount of energy to time slots considering the historic data according to time and weather.
Sharma et al. [14] provided throughput and mean delay optimal energy neutral policies for energy
harvesting sensor nodes. They have been known to effectively utilize energy, irrespective of changes
in the harvested energy. Some of them are especially appropriate for solar energy, which has a large
variation over time because it can be only harvested in the daytime.

Another problem of WSNs is a hot-spot problem [15,16], which occurs because sensor nodes
generally transmit data in a multi-hop manner; the closer nodes are to a sink node, the more data
they transmit and the more energy they consume. In case of using rechargeable nodes, especially,
additional data can be collected using the surplus energy harvested. If nodes far from the sink
node transmit more data, nodes around the sink node should become burdened. Therefore, energy
consumption of the nodes near the sink node should be considered when collecting additional data.
Data compression techniques for WSNs have been studied to solve this hot spot problem [17,18].
This requires considerable processing time, and hence energy, but if energy rich nodes far from the sink
compress their own data, nodes closer to the sink will use less energy in relaying that data. In contrast,
the case where nodes close to the sink node compress their own data is inefficient because there
leave only a few intermediate nodes to relay the compressed data. Therefore, it should be applied
considering the energy efficiency of both data collection and relay nodes.

The wireless sensor nodes are implemented as a tiny embedded system, resulting in slower
processing speed and less available memory. Existing compression schemes are not suitable for these
low-performance devices; therefore, lightweight compression schemes are required for the wireless
sensor nodes [18,19]. Sadler and Martonosi [20] introduced the sensor Lempel–Ziv–Welch (S-LZW)
algorithm, which is a simplified version of the well-known dictionary-based LZW lossless compression
algorithm. They also introduced S-LZW with the Burrows–Wheeler Transform (S-LZW-BWT)
algorithm, which conducts invertible BWT [21] before compression by S-LZW. These are some of the
most widespread compression techniques because they are designed to effectively compress sensory
data. Deepu and Lian [22] presented a lossless data compression scheme for joint QRS detection aimed
at wearable ECG devices. Marcelloni and Vecchio [23] introduced a compression algorithm exploiting
the principles of entropy compression used for image or video compression, which uses the difference
between each data. On the other hand, compression algorithms at the network level [24–31] have also
been devised while the aforementioned schemes are for compressing data sensed by one node.

In this paper, we propose a data compression and sensing rate control scheme for wireless
rechargeable sensor networks (WRSN) to address the above-mentioned problems and increase the
precision of sensory data by increasing the amount of data acquisition. In the proposed scheme, nodes
allocate the energy harvested to each time slot. Then, it determines the amount of data to be transmitted,
the data compression algorithm, and the sensing period within the allocated energy. The nodes around
the sink calculate and announce the transmission data quotas to their descendant nodes, and the
descendant nodes collect more data than the quota, compress it to fit the quota, and transmit it. This
increases the amount of data acquired in the sink without giving an overhead to the relay nodes on the
transmission route.

The proposed scheme is appropriate for smart farm [32], wildfire monitoring [33,34], or structural
health monitoring [35,36], where environmental data should be collected periodically.

The rest of this paper is organized as follows. In Section 2, we introduce our scheme for control
of the data compression and sensing rate, and describe how a node determines the limit of data
to be transmitted and its sensing rate. In Section 3, we present experimental results and assess the
performance of our scheme. Section 4 concludes the paper.

2. Data Compression and Sensing Rate Control Scheme

We propose a sensing rate control and compression algorithm selection scheme to increase the
amount of data gathered within the allocated energy in a WRSN application, which periodically gathers
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environmental information. In the proposed scheme, sensor nodes divide time into periodic time
slots (e.g., by one hour) and allocate energy to the slots. Subsequently, they determine the data quota
that can be transmitted within the allocated energy. To prevent the hot-spot problem, 1-hop distance
node from the sink (henceforth referred to as the dominant node) limits the amount of relay data by
announcing the quota to other nodes, thereby preventing the dominant node from consuming more
energy than available. In addition, the nodes selectively compress and transmit data to increase the
amount of sensing data within the quota. Figure 1 presents the overview of the proposed scheme.
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Figure 1. Overview of the proposed scheme.

2.1. Energy Consumption Model

It is assumed that rechargeable nodes have an energy buffer with capacity c and halt when
the remaining energy er becomes smaller than the minimum energy emin. For these nodes to use
energy efficiently, the amount of energy harvested should not exceed the capacity of the energy buffer.
Therefore, the nodes determine how they use energy within a range where the energy does not exceed
the energy buffer size and is not depleted. In this section, we determine the minimum bounds of the
amount of the transmission data to prevent energy overflow.

First, the consumed energy ec of a node during a slot can be represented as follows:

ec = etx + ee, (1)

where etx is the amount of energy consumed for data transmission, and ee is all the energy consumed,
other than that for transmission. ee can be obtained from the combination of the parameters
(i.e., idle, sleep, and reception energy) specified in the sensor node specification and duty cycle
determined in the application. ee becomes constant because these parameters are always steady if an
application uses the same sensor nodes. etx can be determined using the energy consumption model of
Melodia et al. [37]:

etx = ϕβdα, (2)

where ϕ is the number of bytes of data to be transmitted, d is the transmission distance in meters, and
α is the path loss exponent (2 ≤ α ≤ 5); the constant β (J/(bytes ·mα)) is determined by the design of
the node.

To obtain the minimum amount of transmission data that prevents the energy buffer from
overcharging, the amount of remaining energy at the next slot should be determined. The amount of
remaining energy in the battery e

′
r is represented as follows:
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e
′
r = er − ec + eh, (3)

where eh and er denote the energy harvested and remaining during the current slot, respectively.
If e

′
r ≤ c, the remaining energy in the next slot will not exceed the energy buffer. By substituting

Equations (1) and (2) into this condition,

ϕ ≥
er + eh − c− ee

βdα
. (4)

If Equation (4) is met, the remaining energy in the next slot is not overcharged. Therefore,
the minimum data size ϕmin can be derived as follows:

ϕmin =
er + eh − c− ee

βdα
. (5)

However, ϕ denotes the length that contains overhead bits such as packet headers. ϕ can be
represented as fpacket(l) the function of the amount of sensing data l as follows:

fpacket(l) = l +
⌈

l
lmax
tx

⌉
lo, (6)

where lmax
tx is the amount of sensing data that can be sent in one packet, and lo is the number of

overhead bits of one packet. The actual number of bits of data excluding the overhead bits fpacket(l)
can be derived using Equation (6) as follows:

f−1
packet(ϕ) =


ϕ

(
lmax
tx

lo + lmax
tx

)
, if lmax

tx = Cl, C ∈ N

(ϕ + lo)
(

lmax
tx

lo + lmax
tx

)
, otherwise.

(7)

Therefore, the minimum amount of sensing data size lmin, where remaining energy does not
exceed the energy buffer capacity, is as follows:

lmin = f−1
packet(xmin). (8)

Figure 2 shows the energy model and its notations used in energy model.
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Figure 2. Energy model and its notations.

2.2. Energy Allocation

It is possible that the energy of a node operating periodically is constantly consumed, but the
energy harvested can vary over time. In particular, solar energy, which is one of the most popular
renewable energy sources, dynamically varies depending on the time of day and the weather.
Thus, en energy allocation scheme that determines available energy to consume during a time slot
in order to achieve uniform operation independent of time is necessary. We divided a day into N
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slots, and sensor nodes allocate available energy ea to each slot by using the energy allocation scheme
proposed by Noh et al. [11]. Figure 3 depicts the energy allocation scheme.
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Harvested power

Allocated energy

1 slot

Time

Average harvested power

P
o

w
e

r

Figure 3. Energy allocation to the time slots.

For efficient use of energy, a sensor node determines the maximum amount of data lmax that
can be transmitted using only ea. Since a node must consume only the energy allocated to this
slot, the condition ec ≤ ea must be met. By substituting Equations (1) and (2) into this condition,
the following is achieved

ϕ ≤ ea − ee

βdα
. (9)

If Equation (9) is satisfied, the node will consume energy within ea. Therefore, the maximum
amount of packets to satisfy the condition ϕmax can be derived as follows:

ϕmax =
ea − ee

βdα
. (10)

The maximum amount of sensing data size excluding the overhead bits lmax can be represented
as follows:

lmax = f−1
packet(ϕmax). (11)

2.3. Node Operations

In the proposed scheme, each node performs the following operations every slot as shown
in Figure 4.

S ModeN mode L mode H Mode

pslot (1 slot)

Time

Determining ea and lq

pL
s

Routing and announcing lq

Selecting mode and ps

pH
sps pS

s

if eN
c ≤ ea,  S Modeif eH

c ≤ ea,  H Modeif eH
c > ea and eL

c ≤ ea,  L Mode

Compression and transmissionDetermining ea and lq

Routing and announcing lq Selecting mode and ps

Figure 4. Operation of a node over time during two slots.
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2.3.1. Energy Allocation and Determining Quota

Each node determines ea, the available energy during a slot, at the beginning of each slot,
as mentioned in Section 2.2. In case of dominant nodes that can communicate directly with the
sink node, they determine the amount of data that can be transmitted lq using ea.

2.3.2. Propagating Transmission Quota

The sink node periodically broadcasts routing information, and dominant nodes receive it.
Then, they relay it including lq to their descendant nodes. The nodes receiving it relay it to other nodes
to form a minimum depth tree route.

2.3.3. Mode Selection

The nodes that received lq determine their operating mode, compression scheme, and sensing
rate, considering their energy state. There are four modes that a node can choose from, as follows:

• N mode: When the allocated energy is not enough to collect and compress additional data, the
node operates in N mode of transferring gathered data without compression. Dominant nodes
usually operate only in N mode because they consume more energy than other nodes and cannot
save the energy of relay nodes even though they compress the data.

• L mode: If the allocated energy is sufficient to compress and transmit the data, the node operates
in L mode. The node in L mode gathers additional data so that the compressed data is in size of
lq, compresses it, and transmits it. Consequently, more energy is required to collect and compress
data. In this mode, nodes compress the data using the S-LZW [20] algorithm.

• H mode: In cases where it is expected that a large amount of energy will remain after compressing
and transmitting the data, the node gathers more data than the L mode and compresses the data
using the energy-intensive compression algorithm. As a result, it gathers more data and consumes
more energy for compression than L mode. In this mode nodes compress the data using the
S-LZW-BWT [20] algorithm.

• S mode: A dominant node selects S mode to save energy if the determined lq is less than the
minimum data requirement of the application lth. Other nodes select S mode to conserve energy
when the allocated energy is not enough to transmit data as much as lq. The node in S mode
transmits only the smallest amount of data required by the application and is excluded from
routing and does not relay data from other nodes. This can be done by not broadcasting routing
messages to other nodes when they are received.

2.3.4. Data Gathering and Transmission

Nodes periodically collect data, compress, and transmit the data according to the determined
mode and the compression algorithm.

2.4. Determining Transmission Quota and Mode Selection at the Dominant Node

When a node far from the sink senses and transmits more data using extra energy, all nodes on
the path from the node to the sink node consume more energy to deliver the data, resulting in a faster
depletion of the energy of the nodes near the sink node. Therefore, we use a method such that dominant
nodes limit the amount of traffic by determining and announcing their available transmission data
amount to their descendant nodes.

Because a dominant node can transmit up to lmax of data during a slot, as in Section 2.2, this node
can send its own sensing data and data received from its descendant node up to the lmax. Therefore,
if the number of descendant nodes is n, the amount of data that each descendant node can send lq is
denoted as follows:
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lq =
lmax

1 + n
, (12)

where n is obtained from historic information so far. The dominant node announces lq to the descendant
nodes during the propagating transmission quota phase so that the descendant nodes do not send
data exceeding lq.

On the other hand, if lq is less than the minimum amount of data required by the application lth,
the dominant node considers that it is insufficient to operate as a relay node and selects the S mode.

2.5. Mode Selection at the Normal Node

Since a node that receives lq can only transmit as much data as lq during a slot, it gathers maximum
amount of additional data not exceeding lq and compresses it if it the allocated energy is expected to
be maintained. In contrast, if it has insufficient energy to transmit lq, it reduces energy consumption by
transmitting only the minimum amount of data without relaying data from the other nodes. The node
achieves this by selecting the mode mentioned in Section 2.3.

First, the node receiving lq decides whether to select the S mode according to whether it can
transmit data of the corresponding size. If a node and its descendant nodes collect lq of the data,
the amount of data that the node must transmit is lq (1 + n). Therefore, the amount of energy the node
consumes in this slot is as follows:

eN
c = fpacket(lq (1 + n))βdα + ee. (13)

If eN
c is greater than ea, the node i cannot transfer all of the data using the allocated energy.

Therefore, the node chooses the S mode if the following condition is met:

eN
c > ea. (14)

If a node compresses the sensing data such that the amount of compressed data is lq by selecting
the H mode or L mode, additional energy must be consumed during the compression. If eH

comp(x) and
eL

comp(x) denote the consumed energy for compression when compressing x bits data in the H mode
and L mode, respectively, the consumed energy in the H mode, eH

c and the L mode, eH
c are

eH
c = eN

c + eH
comp(lqRH) and (15)

eL
c = eN

c + eL
comp(lqRL), (16)

where RH and RL are the compression ratios in the H mode and L mode, respectively, and the
compression ratio is defined as Uncompressed size

Compressed size .

If eH
c or eL

c is less than ea, it means that sufficient energy is available to operate in the corresponding
mode. Therefore, the node selects the H mode if the following condition is met:

eH
c ≤ ea. (17)

Otherwise, if the following condition is met,

eL
c ≤ ea, (18)

the node chooses the L mode because it means that sufficient energy is allocated to operate in the L
mode, although it is insufficient to operate in the H mode. If neither of Equations (17) and (18) are
satisfied, the node operates in the N mode.
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2.6. Sensing Rate Selection

After determining the mode, the node must determine the appropriate sensing period to transmit
lq of data in that mode. If ls is the amount of data sensed at once, the sensing period ps to collect lq bits
during one slot is as follows:

ps =
ls
lq

pslot, (19)

where pslot is the duration of one slot. A node in the N mode, which transmits data without
compression, determines ps as its sensing period because it transmits data without compression.
If a node is in the H mode or L mode, it can gather data up to lqRH or lqRL, respectively because it
compresses the data. Therefore, the sensing periods pH

s , pL
s in the H mode and L mode, respectively,

are derived as follows:
pH

s =
ls

lqRH pslot and (20)

pL
s =

ls
lqRL pslot. (21)

A node in the S mode collects only the minimum amount of data lth to reduce the energy
consumption. However, since more energy than the limit of the battery capacity cannot be stored,
but the node should gather a larger amount of data compared to lmin in Equation (8) because surplus
energy cannot be stored. Thus, the sensing period in the sleep mode pS

s can be obtained by Equation (19)
as follows:

pS
s =

ls
max(lth, lmin)

pslot. (22)

In this way, each node can gather the amount of data according to the requirements of the
dominant node by determining the appropriate sensing period depending on its mode.

2.7. Pseudo-Code of the Proposed Scheme

In the proposed scheme, a node can increase the amount of gathered data within the allocated
energy by transmitting only the data of the amount that does not burden the relay nodes as
aforementioned in this Section. Algorithms 1 and 2 represent the entire operations of the dominant
and normal nodes.

Algorithm 1: The operation of a dominant node
Result: MODE and ps

Allocate energy ea for this slot [11];
Calculate lq and lmin using (12) and (8), respectively;
if lq < lth then

MODE←− S;
Calculate pS

s using (22);
ps ←− pS

s
else

MODE←− N;
Calculate ps using (19);
Broadcast routing information with lq;

end
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Algorithm 2: The operation of a normal node
Result: MODE and ps

Allocate energy ea for this slot [11];
Calculate lmin using (8);
Wait for lq;
Calculate eN

c , eH
c , eL

c , ps, pH
s , and pL

s using (13), (15), (16), (19), (20), and (21), respectively;
if eN

c > ea then
MODE←− S;
ps ←− pS

s ;
return

end
if eH

c ≤ ea then
MODE←− H;
ps ←− pH

s ;
else if eL

c ≤ ea then
MODE←− L;
ps ←− pL

s ;
else

MODE←− N;
end
Broadcast routing information with lq;

3. Performance Evaluation

3.1. Simulation Environments

We have compared the performance of our scheme with others: (1) no compression (Naive);
(2) simply compressing data (S-LZW); (3) advanced compressing data (S-LZW-BWT); (4) selective
compressing scheme [38] (Adaptive). We used the number of blackout nodes, the amount of data sensed
at the sensor nodes, and the amount of data arriving at the sink node as measures of performance.
The simulated WRSN consisted of 100 wireless rechargeable sensor nodes and one sink node, placed
at random positions, and the amount of energy harvested by the nodes was modeled by the measured
data [39]. Each test set ran 30 times for 2200 slots to obtain the average values. Table 1 contains the
important parameters used in our simulation.

Table 1. Simulation parameters.

Parameters Values

Number of nodes 200
Routing algorithm MDT
Transmission range 10 m

Battery capacity 100 J
pslot 1 h
lmax
tx 102 bytes
lo 31 bytes
ls 80 bytes
α 4
β 8−10 J

3.2. Simulation Results

Figure 5 shows how the number of blackout nodes changes over time from 2000 to 2100 slots
over 4 days. In other schemes except for the proposed one, the number of blackout nodes changes in
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a pattern similar to the change of solar energy harvested. We attribute this to the increased amount of
data that had to be transferred by the nodes near the sink node. However, very few blackouts occur
in the proposed scheme because the load on the nodes near the sink node is reduced by limiting the
amount of data transmission, and the sleep mode is selected for the node having insufficient energy.
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Figure 5. Change in the number of black-out nodes.

Figures 6 and 7 show how the number of sensed data and the number of data arriving at the sink
node change over time. In Figure 6, the nodes of the proposed and Adaptive schemes sensed more
data than those of other schemes. This is because both the schemes dynamically adjust the sensing
rate according to the energy state. However, note that deviations of the data sensed over time are
significant whereas the number of sensed data of the proposed scheme is almost constant. That is
because Adaptive does not apply an energy allocation method. Figure 6 shows how many sensed data
reach the sink node. In other schemes, many sensing data could not reach at the sink node because of
the depletion of relay nodes. Conversely, most of the sensed data arrived at the sink node because
very few blackouts occurred in the proposed scheme.
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Figure 6. Change in the number of data sensed.
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Figure 7. Change in the number of data arriving at the sink node.

Figure 8 represents the number of blackout nodes according to the change of node density. In other
schemes, it can be seen that as the density decreases, the number of blackout nodes increases. This is
because if the density is low, the intermediate nodes consume more energy because the data has
to go through several hops. In the proposed scheme, it can be seen that the number of blackout
nodes is almost constant because the nodes adaptively allocate and use energy. However, the number
of blackout nodes increases slightly as the data relayed by one node and the error of the expected
transmission size increase as the density increases.
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Figure 8. Number of cumulative blackout nodes with various node densities.

Figures 9 and 10 respectively show how the number of sensed data and data arriving at the
sink node change with nodes density. In Figure 9, the schemes except for the proposed scheme
collect similar amounts of data regardless of node density. In Figure 10, however, the number of
data arriving at the sink node decreases as the node density decreases. This is because, if the node
density is low, the length of transmission routes get increases, more data is lost during transmission
when the relay node goes to the power failure state. This is because as the node density becomes
lower, the transmission route becomes longer. Therefore, when the relay node is depleted, more data
is lost during transmission. However, in the proposed scheme, when the transmission route is long
due to the low density, data is sensed in a small amount, and when the transmission path becomes
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short due to high density, a large amount of data is sensed because the amount of transmitted data is
determined at dominant nodes. The result also shows that most of the sensed data arrived at the sink
node because the occurrence of blackout nodes was suppressed by adjusting the amount of transmitted
data. Our scheme continues to outperform the other schemes as density is increased.
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Figure 9. Change in the number of data sensed with various node densities.
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Figure 10. Change in the number of data arriving at the sink node with various node densities.

Figure 11 shows the changes in the number of blackout nodes according to the unit sensing data
size. As the data size increases, the number of blackout nodes increases because the nodes must
collect and transmit more data, so they consumes more energy. Nevertheless, in the proposed scheme,
the nodes hardly black out independent of the unit data size due to their energy-aware operations.

Figures 12 and 13 respectively show how the number of sensed data and data arriving at the sink
node change with the data size that the nodes sense at once. In the proposed and Adaptive schemes,
larger data size leads to reduced amount of sensed data due to their adaptive operation. Even though
the other schemes gather data stably, more nodes black out according to the data size as shown in
Figure 11, so the amount of data obtained at the sink node is smaller than that of the proposed scheme.
In the proposed scheme, however, nodes adjusts the sensing period accordingly, so the amount of data
arriving at the sink node are greater than those of other schemes. Therefore, it is confirmed that the
proposed scheme has high scalability for the unit data size.
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Figure 11. Comparison of the number of blackout nodes according to the sensing data size.
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Figure 12. Comparison of the number of data sensed according to the sensing data size.
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Figure 13. Comparison of the number of data obtained according to the sensing data size.
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Figure 14 represents the cumulative number of blackout nodes according to the change of
harvested energy. The number of blackout nodes in the S-LSW and S-LZW-BWT schemes increases
as the harvested energy decreases because they consume much energy in compression. However,
the proposed and the Adaptive scheme adjust energy adaptively, so as to depress the number of
blackout nodes independent of the harvested energy.
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Figure 14. Comparison of the number of blackout nodes according to the solar energy.

Figures 15 and 16 respectively show how the number of sensed data and data arriving at the sink
node change with the amount of solar energy that the nodes can acquire. In the proposed scheme,
less solar energy leads to reduced amount of sensed data because the allocated energy varies with the
amount of solar energy. Although the amount of sensed data of the other schemes is larger than that of
the proposed scheme, more nodes black out as shown in Figure 8, so the amount of data arriving at the
sink node is smaller than that of the proposed scheme. As the solar energy increases, the allocated
energy increases and the node adjusts the sensing period accordingly, so the amount of sensed data
and data arriving at the sink node are greater than those of other techniques.
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Figure 15. Comparison of the number of data sensed according to the solar energy.
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Figure 16. Comparison of the number of data obtained according to the solar energy.

We have verified the performance of the proposed scheme so far. As a result, the proposed scheme
shows better performance than other methods by uniformly collecting sensory data in spite of the
drastic change of solar energy over time. It is inferred that this is because the appropriate operations
are determined by applying harvested energy prediction and allocation methods. Even when using
other energy sources (e.g., wind, temperature difference, piezo, or etc.) instead of the solar energy,
the proposed scheme is expected to show good performance by applying the accurate harvested energy
prediction and allocation model of the energy source.

4. Conclusions

We proposed a new compression and sensing rate selection scheme for WRSN. In this scheme,
a node periodically selects compression algorithm and sensing rate according to its allocated and
consumed energy, in order to increase the amount of data arriving at the sink node. Dominant nodes
announce data quota to their descendant nodes to prevent excessive traffic. Among the nodes that
have received the quota, nodes with sufficient energy gather more data than the quota, compress it
and transmit it. As a result, this scheme reduces the number of nodes that blackout and thus allows
more data to be obtained. However, the amount of data gathered at the dominant node drastically
changes depending on the number of descendants. We plan to consider a routing that distributes the
descendant nodes evenly. In addition, this scheme is designed for a flat topology and cannot be used
for hierarchical topology such as clustered or layered topology. In the future, we will devise it to apply
it to various structures.
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