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Abstract

To better understand the potential of drug repurposing in COVID-19, we analyzed control strategies over essential host factors for
SARS-CoV-2 infection. We constructed comprehensive directed protein–protein interaction (PPI) networks integrating the top-ranked
host factors, the drug target proteins and directed PPI data. We analyzed the networks to identify drug targets and combinations
thereof that offer efficient control over the host factors. We validated our findings against clinical studies data and bioinformatics
studies. Our method offers a new insight into the molecular details of the disease and into potentially new therapy targets for it. Our
approach for drug repurposing is significant beyond COVID-19 and may be applied also to other diseases.

Keywords: COVID-19, drug repurposing, network biology, network controllability, host factors

Introduction

The COVID-19 pandemic has caused more than 234 mil-
lion infections worldwide, with more than 4.8 million
deaths (as of October 2021) [1]. Several vaccines are
available since the fall 2020 and this has helped curtail
the infection rate worldwide. Many drugs are investi-
gated in clinical trials, and several have been approved
or recommended for use, including remdesivir, dexam-
ethasone and some combinations of monoclonal anti-
bodies. It remains of major interest to gain a system-level
understanding of the molecular details of the disease
and to translate them into effective treatment strategies
for the disease. Such data are increasingly available,
for example on the human proteins that associate with
SARS-CoV-2 proteins upon infection [2], on potential drug
targets based on mechanisms preserved in SARS-CoV-1,
SARS-CoV-2 and MERS [3], and on the host genes critical
for the infection with SARS-CoV-2 [4]. Computational
network-based methods can integrate SARS-CoV-2 data
into comprehensive models, as described in [5] through
a combination of network diffusion/proximity and artifi-
cial intelligence. Also, [6] has integrated data from multi-
ple sources to provide a network-based systemic under-
standing of protein–protein interactions (PPI), virus–host
interactions, biological processes, drugs and symptoms
related to COVID-19. Additional viruses were included in
[7] to demonstrate the systemic nature of SARS-CoV-2.
The recent results of [4] offer a dataset with a strong
therapeutic potential. Through a number of genome-
scale loss-of-function screens, it identified and ranked
host factors required for the SARS-CoV-2 viral infection,
i.e. genes whose loss of function confers resistance to the
infection. It identified the relevant host factors both at a
lower viral load of multiplicity of infections (MOI) 0.01
and a higher one of MOI 0.3. Out of the 200 top ranked
genes, only a small fraction are drug targetable [8] (24
from the MOI 0.01 host factors and 23 from the MOI 0.3
ones). We asked whether more of the host factors can
be targeted through drugs acting upstream of them. To
investigate this question, we built two directed PPI net-
works (one for each MOI dataset) integrating interaction
data upstream of the essential SARS-CoV-2 host factors
(separately for MOI 0.01 and MOI 0.3) and interaction
data downstream of all currently available drug targets
from DrugBank [8]. We analyzed the networks in the
framework of control theory [9] and sought to identify
minimal combinations of drug targets that offer control

(through cascading signals in the interaction network)
over the essential host factors (Figure 1). Network con-
trollability has been demonstrated successfully in sev-
eral studies: to identify repurposable drugs for a form of
leukemia [10], to identify the contribution of individual
neurons in the locomotion of Caenorhabditis elegans [11],
and for personalized drug repurposing in breast cancer
and COVID-19 [12]. We focused on short control paths
from drug targets to host factors to minimize the pos-
sible dissipation of the drug’s influence along the path.
Control here is understood in the sense of structural
network controllability and its results offer a systemic
view on how to influence the host factors simultaneously
through available drug targets. Moreover, the resulting
drug targets (and the drugs acting on them) can be
ranked with respect to how many host factors each can
control in the network, independently of the other drug
targets. Combining these results offers a number of drugs
and drug combinations that are potentially efficient at
influencing the host factors. The results of structural
controllability are qualitative: they offer therapeutically
promising drugs and drug combinations, but do not offer
numerical indications on the optimal concentrations and
possible toxicities. We compared our findings with clin-
ical trials data and bioinformatics analyses. We found a
number of drugs that have been investigated in clinical
trials, but also some new ones, not yet studied in connec-
tion to COVID-19.

Our key advance, therefore, is a new system-level
insight into the molecular details of the disease that is
able to offer a significant number of potentially efficient
therapies based on drug repurposing.

Results
COVID-19–specific directed PPI networks
We constructed directed PPI networks around the host
factors identified in [4] to be required for SARS-CoV-
2 infection. We constructed two different interaction
networks, one for each set of top-ranked host factors
reported by [4], one obtained at a low (0.01) MOI, the other
at a high (0.3) MOI. From each experiment we included
the top 200 ranked genes, whose loss-of-function muta-
tions led to enrichment in their pools. We also included
all drug targets from DrugBank [8]. For the interaction
data we used KEGG [13], OmniPath [14] and SIGNOR
[15]. We only included the directed PPIs found in these
databases. The networks were well connected (a single
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Figure 1. Study design of network controllability for drug repurposing. We included all the approved and investigational small molecule drugs, except
for those illicit or nutraceutical. For each drug (red in the bottom-left network) we identified their drug targets [8] (yellow in the bottom-left network). We
also included the top 200 host factors required for SARS-CoV-2 infection found by [4] for viral loads at MOI 0.01 and 0.3, and all protein–protein-directed
interactions from KEGG [13], OmniPath [14] and SIGNOR [15]. Using the NetControl4BioMed platform [16], we identified all control paths of length at most
3 from drug targets to host factors. We ranked the drugs based on the number of host factors they can control through any of their targets.

connected component in one, two in the other), compact
(diameter equal to 10) and rich in interactions (over 20
000 interactions). Each network included more than 1000
drug targets and about one-third of the top 200 host
factors (70 for MOI 0.01 and 62 for MOI 0.3; the others
were further from the drug targets in our networks).
A description of how the networks were generated and
their topological analysis is available in Supplementary
Information, Section 1.

Network-based identification of repurposable
drug targets
We performed structural target controllability analysis
on the two interaction networks, considering as control
targets the MOI-specific top 200 host factors of [4]. The
mathematics of structural target controllability is dis-
cussed briefly in Supplementary Information, Section 2.
We used as preferred control inputs the drug-targetable
genes from DrugBank [8]. In each analysis, we identified
the drug(s) whose targets control the most host factors.
The analysis is based on a stochastic search for paths
from drug targets to host factors and so, repeated anal-
yses identified multiple results on the same network.
For each network, we repeated the analysis until three
consecutive runs identified no new drugs. The analyses
were run on the NetControl4BioMed platform [16]. The
goal was to find directed paths from the drug targets
to the set of host factors that are structural target con-
trol paths in the sense of control theory. To achieve
this, a Greedy algorithm is applied to solve a directed
graph matching problem using a minimum number of

input nodes, selected as much as possible from among
the set of drug targets. Details on the algorithms are
in [17].

We found that the host factors can be controlled
though 35 drug targets for the MOI 0.01 network and
through 15 for the MOI 0.3 network (see Figure 1 in
Supplementary Information), of which 10 are common
for both networks: ACTB, AKT1, ATM, ATP6AP1, CSNK2A1,
CDK2, EGF, MAPK14, MTOR and TP53. Of these 10, two are
essential host factors for the SARS-CoV-2 infection [4]:
ACTB (in the MOI 0.3 experiment) and ATP6AP1 (in both
MOI experiments). Additionally, ATP6AP1 is also known
to interact directly with SARS-CoV-2 [2]. We identified
116 drugs from the analysis of the MOI 0.01 network
acting on these targets and 55 drugs from the analysis of
the MOI 0.3 network, with 41 common to both of them
(Figure 2).

Not all host factors could be controlled by repurposed
drugs: only 44 MOI 0.01 host factors and only 28 MOI 0.3
host factors were included in the control results found by
our analysis (see Figure 1 in Supplementary Information).
In the MOI 0.01 analysis, the gene that turned out to be
the easiest to control is GALT: it can be controlled by more
than 10 drug targets (Figure 3). On the other hand, the
well-known ACE2 is one of the hardest to target: it can be
controlled by only one drug target, namely AGT.

A ranking of the theoretical efficacy of a drug target
can be done on the basis of how many host factors were
found to control in our analyses (Figure 3A and B). Also, a
ranking of how easily controllable a host factor is can be
done on the basis of how many drug targets can control
it (Figure 3C and D).
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Figure 2. Drug categories. (A) The overlap between all approved or investigational drugs. (B) The overlap between drug targets in both networks. (C) The
overlap between approved and investigational drugs for each network and their intersection.

For the MOI 0.01 host factors, the top-ranked drug
target was MAPK8, which controls seven host factors.
Interestingly, MAPK8 was not identified as a control input
in our analyses for the MOI 0.3 list of host factors. For
MAPK8 we found two drugs acting on it: minocycline
and tamoxifen. The top-ranked drug targets occurring
in both sets of results is MTOR, controlling five host
factors from each list, and ATM, controlling four host
factors from each list. There are several drugs that act
on MTOR: everolimus, pimecrolimus, ridaforolimus, rim-
iducid, SF1126, sirolimus, temsirolimus and XL765.

For the 0.3 MOI host factors, the top-ranked drug tar-
get, in addition to MTOR, is BCL2, which regulates cell
death and attenuates inflammation [18]. The following
drugs act on this target: apoptone, dexibuprofen, doc-
etaxel, eribulin, ibuprofen, isosorbide, navitoclax, obato-
clax, paclitaxel, paclitaxel docosahexaenoic acid, rasagi-
line and venetoclax.

Control paths
Our analyses identified the structural target control
paths from the drug targets to the host factors. We
obtained 108 control paths for the MOI 0.01 network
and 43 control paths for the MOI 0.3 network, 8 of
them being common to both networks. We ran an
enrichment analysis with PANTHER and GO biological
process complete [19–21] with the false discovery rate
P < 0.05. To avoid spurious results, we only included

the control paths with three or more proteins. The most
specific processes in the enrichment hierarchy that
include all proteins involved in each control path are
presented in Tables 1 and 2. The results show many of the
enriched pathways to be part of the cellular response to
external stimuli and to stress, as well as of the regulation
of cell death.

Potentially repurposable drugs
Using data from DrugBank [8] we found 130 drugs acting
on the drug targets resulting from the two MOI datasets
and their corresponding control analyses, including 41
that act on the 10 drug targets common to the two
analyses. The results are listed in Supplementary Table
1. Of these drugs, 72 are approved for at least one con-
dition according to [8]. Most are drugs used in oncology,
and we also found direct inhibitors of thrombin, anti-
inflammatory, estrogens and mood-stabilizers. In terms
of their cellular location of action, most drug targets are
located in the surrounding of cytoplasmic vesicles, and in
the cell–substrate junction between the cell and extracel-
lular matrix (see Figure 2 in Supplementary Information).

Antineoplastic and immunomodulating agents

Most drugs identified in our analyses are antineoplastic
agents and, within this group, most of them are pro-
tein kinase inhibitors. Some of the drugs we identified
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Figure 3. drug targets and the number of host factors they can control. (A) MOI 0.01, (B) MOI 0.3. Host factors for the SARS-CoV-2 infection and the
number of drug–target genes that can be used to control them. (C) MOI 0.01, (D) MOI 0.3.

are not yet approved, and therefore do not have ATC
codes (e.g. alvocidib, gensitein, pelitinib, seliciclib). The
approved drugs are summarized in Table 3, grouped by
their targets in our networks. Some of these drugs were
included in this list through some of their secondary
targets (e.g. brigatinib on INSR and dasatinib on MAPK14),
and other drugs are included through several of their tar-
gets, potentially indicating increased efficacy (e.g. bosu-
tinib and brigatinib).

Some of these inhibitors have been investigated in
connection with several viruses, including SARS-CoV-
2. The EGFR inhibitors, which are principally used in
non-small cell lung cancers or breast cancers, may
act on SARS-CoV-2 virus replication [22], whereas JAK2
inhibitors could act on SARS-CoV-2 cytokine storm
because IL-6 and GM-CSF, which are stimulated in this
infection, depend on JAK2 signaling [23]. The mTOR

pathway can be targeted by many viruses (e.g. IAV, MERS)
to promote their replication. Its inhibition was shown to
lead to a decrease in SARS-CoV-2 virus production [24].

Other antineoplastic agents found in our analyses,
docetaxel, paclitaxel, eribulin, venetoclax, are not protein
kinase inhibitors. They were identified in the network
corresponding to the MOI 0.3 experiment.

We also obtained selective immunosuppressants such
as: baricitinib, sirolimus, tofacitinib and a calcineurin
inhibitor, voclosporin. Sirolimus, a drug used to prevent
organ rejection in renal transplants and suggested for
COVID-19 also in [25], was identified in both network
analyses, due to its inhibitory effect on MTOR, whereas
baricitinib and tofacitinib were identified only in the MOI
0.01 network analysis, due to their inhibitory action on
JAK2. Both are used in rheumatoid arthritis, and barici-
tinib has Food and Drug Administration (FDA) approval
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Table 1. Enrichment analysis results for control paths with more than two proteins for the MOI 0.01 networks

Control path GO biological process complete

TP53 → CASP1 → CASP5 apoptotic signaling pathway, cellular response to external stimulus, cellular response to
environmental stimulus

MAPK1 → CASP8 → CASP1 → CASP5 cell death, cellular response to external stimulus, apoptotic process, regulation of response to
external stimulus, regulation of response to stress

ROCK1 → BECN1 → PIK3C3 cell division
AGT → BECN1 → PIK3C3 cellular response to external stimulus
TP53 → MCL1 → BECN1 → PIK3C3 cellular response to stress
AGT → REN → ATP6AP2 circulatory system process, endocrine process
GSK3B → BCL2 → BECN1 mitochondrion organization, regulation of autophagy, regulation of apoptotic signaling pathway
GSK3B → TBK1 → CALCOCO2 positive regulation of cellular catabolic process, regulation of autophagy
ABL1 → WAS → ARPC3 Regulation of protein-containing complex assembly, positive regulation of cellular component

biogenesis, positive regulation of organelle organization, regulation of cytoskeleton organization,
regulation of actin filament-based process, regulation of anatomical structure size, regulation of
actin filament organization, supramolecular fiber organization, actin filament-based process

PRKACA → CREB1 → ACP5 response to cytokine
EGFR → BECN1 → PIK3C3 response to extracellular stimulus, cellular response to external stimulus, endocytosis, regulation

of cell cycle process
MAPK8 → BECN1 → PIK3C3 response to extracellular stimulus, cellular response to external stimulus, response to starvation

Table 2. Enrichment analysis results for the control paths with more than two proteins for the MOI 0.3 network

Control paths GO biological process complete

ATF4 → BCL2 → BAX Cell death, response to endoplasmic reticulum stress, intrinsic apoptotic signaling pathway,
response to abiotic stimulus, response to light stimulus, response to UV, immune system
development, sensory organ development, animal organ morphogenesis, negative regulation of
cell death, negative regulation of neuron death, regulation of response to stress

MCL1 → BCL2 → BAX Cell death, signal transduction in absence of ligand, negative regulation of cell death, cellular
homeostasis, intrinsic apoptotic signaling pathway, negative regulation of cell communication,
negative regulation of signaling, regulation of apoptotic signaling pathway, cellular response to
DNA damage stimulus, regulation of intrinsic apoptotic signaling pathway, regulation of neuron
death, regulation of catabolic process

AKT1 → BECN1 → PIK3R4 cellular response to external stimulus
MCL1 → BCL2 → BECN1 → PIK3R4 cellular response to stress
CDK2 → BRCA2 → POLH → REV1 cellular response to stress, DNA metabolic process, macromolecule biosynthetic process, DNA

replication
CDK2 → PCNA → POLH → REV1 cellular response to stress, DNA metabolic process, macromolecule biosynthetic process, DNA

replication
MAPK14 → CSNK2A2 → HNRNPC negative regulation of catabolic process
TP53 → DKK1 → WNT3A → APCDD1 negative regulation of response to stimulus
BCL2 → CASP3 → PPP3R1 → DNM2 neurogenesis
CLK1 → SRPK1 → SRSF6 regulation of RNA splicing
ATF4 → BCL2 → BECN1 → PIK3R4 response to extracellular stimulus, cellular response to external stimulus, response to starvation,

cellular response to stress
BCL2 → BECN1 → PIK3R4 response to extracellular stimulus, cellular response to external stimulus, response to starvation,

regulation of cell cycle process
BCL2 → CASP3 → PPP3R1 tissue morphogenesis, tube morphogenesis

for use in COVID-19. We obtained voclosporin only for
the MOI 0.3 network because of its inhibitory effect on
PPP3R1 subunit of calcineurin, which leads to blocking
the transcription of early inflammatory cytokines [8].

Antithrombotic agents

There is a known link between COVID-19 and coagulopa-
thy: in many severe cases, disseminated intravascular
coagulation is observed [26], which is associated with
higher mortality [27]. Our analysis revealed several
compounds in use as antithrombotic agents (argatroban,
bivalirudin, dabigatran etexilate and ximelagatran),

all based on their inhibitory effect on prothrom-
bin. We also obtained investigational drugs (flova-
gatran, gabexate, nafamostat) and an F2 agonist, in
other words an antihemorrhagic (kappadione). Kap-
padione is a vitamin K derivative, and vitamin K has
an important role in activating both pro- and anti-
clotting factors in the liver, and extra-hepatic vitamin
K deficiency has been observed in COVID-19 patients
[28].

One drug present on our list that cannot be used
in patients with COVID-19 is proflavine because it has
only topical use as a disinfectant, and it is toxic and
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Table 3. The top-ranked antineoplastic and immunomodulating agents identified in our analyses and their targets

Control inputs Drugs targeting the control inputs

ABL1 Bosutinib, brigatinib, dasatinib, imatinib, nilotinib, ponatinib, regorafenib
BRAF Dabrafenib, encorafenib, regorafenib, ripretinib, sorafenib, vemurafenib
CDK2 Bosutinib
EGFR Afatinib, brigatinib, dacomitinib, erlotinib, gefitinib, icotinib, lapatinib, neratinib, olmutinib, osimertinib, vandetanib,

zanubrutinib
INSR Brigatinib
JAK2 Entrectinib, fedratinib, ruxolitinib, zanubrutinib
MAPK14 Dasatinib
MTOR Everolimus, ridaforolimus, temsirolimus
PRKCA Midostaurin

carcinogenic in mammals [8]. It ends up being included
in our results through its targeted action on F2, which
was found to control several host factors.

Estrogens
Estrogens being included in our list is consistent with
COVID-19 mortality being not only higher in the elderly,
but also in men compared with women [29]. One cause
of these differences may be estradiol, several of which
are included in our results. Estradiol regulates several
pathways in the immune system [30].

Our analysis revealed BECN1 as being relevant, a gene
that plays a role in autophagy and may also play a role
in antiviral host defense [8]. Using these drugs carries
the risk of thromboembolism, even if they may increase
the expression/activity of ACE2 in the adipose tissue and
in the kidney [31]. Some studies recommend estradiol
for further investigation: 68 466 cases were analyzed in
[32] with the results indicating that estradiol decreased
COVID-19 fatality. However, estradiol has multiple func-
tions in the body, so its potential adoption in COVID-19
should be cautiously verified further.

Other compounds identified by our analyses are dis-
cussed in Supplementary Information, Section 3.

Drug combinations
We used the results of the target controllability analy-
ses to identify potential drug combinations (in Supple-
mentary Table 2). For each analysis, we identified the
combinations of two and three drugs whose drug targets
control together the highest number of host factors. We
only considered the combinations of drugs whose sets of
drug targets don’t fully overlap (i.e. each drug has at least
one specific drug target not shared with the other drugs).

In the case of the MOI 0.01 network, we found 23
unique combinations of two drugs with a maximum
number of controlled host factors. Some of them
included aspirin and one of the drugs acting on MTOR.

Other drug combinations are centered on alvocidib, a
drug investigated for use in non-small lung cancer. Its
combinations are with enzastaurin, minocycline, perifo-
sine, tamoxifen, phenethyl isothiocyanate and quercetin.
Enzastaurin and perifosine are AKT1 inhibitors and may

be associated with CDK4/6 inhibitors (two of the alvocidib
targets) [33].

In the case of the MOI 0.3 network, we found 42 com-
binations of two drugs with a maximum number of con-
trolled host factors. Dasatinib and ellagic acid are used
in multidrug-resistant tumors [34], whereas dasatinib
plus quercetin has been shown to be useful in relieving
intestinal senescence and inflammation [35]. Other com-
binations obtained are those with bosutinib and any of
the drugs that act on BCL2.

Our analysis also gave BCL2 inhibitors associated
with SF1126 or sirolimus (both MTOR inhibitors), and
this combination of BCL2 with MTOR inhibitors is used
in resistant acute lymphoblastic leukemia [36]. The
other drug combinations include tesevatinib with MTOR
inhibitors or caffeine.

Experimental and clinical validation
Validation using the NCATS COVID-19 OpenData Portal

Our first approach to validate the results was to
search for them on the OpenData Portal [37]. This data
platform collects validation data on potential COVID-19
drugs in terms of viral entry, viral replication, in vitro
infectivity, life virus infectivity and human cell toxicity.
The platform lists both complete and incomplete results,
e.g. untested drugs, or drugs with parts of the test results
not yet available. We only focused on the results on
SARS-CoV-2 and excluded the analyzes made on MERS
and SARS. We also excluded human cell toxicology tests
because we considered these types of tests more as
a selection measure between two drugs with similar
effects and not as a validation of activity because a drug
can be inactive and can be very toxic or, conversely, can
be well tolerated. So, we included the Spike-ACE2 PPI
assay and counter assay, ACE2, TMPRSS2 and 3CLpro
enzymatic activity tests and SARS-CoV-2 cytophatic
effect and counter assay.

We divided our results into the five categories used in
the portal. The first category (in green in Supplementary
Table 1) is that of active drugs in at least one of the fol-
lowing five tests: Spike-ACE2 PPI, SARS-CoV-2 cytophatic
effect and enzymatic activity of ACE2, TMPRSS2 and
3CLpro. We also set the condition that, if it is active in
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Figure 4. Drug classification based on their activity according to NCATS COVID-19 OpenData Portal [37]. (A) Drugs identified in either of the two MOI
networks. (B) Drugs identified in both MOI networks. (C) Drugs identified in the MOI 0.01 network. (D) Drugs identified in the MOI 0.3 network. Color
code: green – active, orange – not tested, cream – inactive, but not tested in all assays, gray – inactive, yellow – active in the counter assay.

a test, it should be inactive in the corresponding counter-
test. The second category (in yellow in Supplementary
Table 1) contains active drugs in a counter assay, regard-
less of its status in the corresponding assay. The third
category (in gray in Supplementary Table 1) contains
drugs that are inactive in all tests. The fourth (in orange
in Supplementary Table 1) includes drugs that haven’t
been tested at all. Finally, the fifth category (in cream in
Supplementary Table 1) contains partially tested drugs
that have been found inactive in the tests performed. We
illustrated the distribution of our results among these
categories in Figure 4. The largest proportion is that of
the drugs active in counter assays.

We found the following results in the “active drug” cat-
egory: afatinib, baricitinib, docetaxel, entrectinib, enza-
staurin, erlotinib, fasudil, gabexate, imatinib, minocy-
cline, nafamostat, navitoclax, ponatinib, proflavine, R-
1487, ruxolitinib, sirolimus, suramin and venetoclax.

We also found several drugs active both in the assay, as
well as in the counter assay for the Spike-ACE2 PPI, and
several drugs in the counter assay for cytopathic effect
(see Figure 3 in Supplementary Information).

We also investigated the results on the enzymatic
activity of ACE2, TMPRSS2 and 3CLpro (see Figure 4 in
Supplementary Information) and found two drugs that
act on ACE2 and TMPRSS2, in other words on viral entry,
namely ruxolitinib and fasudil. Ruxolitinib was obtained
in our study on the MOI 0.01 network as a JAK2 inhibitor.
It has been previously recommended for investigation in
COVID-19 [38] and it has been included in clinical trials
with little success [39].

Fasudil was also obtained in the MOI 0.01 network,
targeting ROCK1 and PRKACA. It may help in the asso-
ciated acute lung injury and acute respiratory distress
syndrome, and, in addition to its protective effect against
lung damage, it possesses antifibrotic properties and the
ability to upregulate ACE2 [40]. We also found (in the MOI
0.3 network) a drug that acts on the enzymatic activity of
ACE2 and 3CLpro: venetoclax, a BCL2 inhibitor.

In vitro validation

About a quarter of the drugs we identified were already
reported in the experimental literature. One of them is
nafamostat, which inhibited mediated entry into host
cells with an efficiency approximately 15 times higher

than camostat mesylate [41] and also blocked infection
of Calu-3 cells with an effective concentration (EC) 50
around 10 nM, while a significantly higher dose (EC50
around 30 μM) was required for VeroE6/TMPRSS2 [42].

Other drugs were tested on several cell types and were
found to be active. For example, nilotinib inhibits SARS-
CoV-2 in Vero-E6 cells and Calu-3 cells [43].

Another drug is obatoclax, which can inhibit SARS-
Cov-2 replication in vitro, in human nasal epithelial cells
[44], and in Vero-E6 cells [45]. Tamoxifen not only showed
a 100-fold reduction in viral load in human cells in vitro
[4], but also showed inhibitory activity in Vero E6 cells
[46].

There are also drugs with conflicting results based on
the type of cells used, such as bosutinib, which is active
in Huh 7, active in Vero E6, but not as potent, and inactive
in Cacao-2 E6 and in iAEC2 [47].

BRAF inhibitors (dabrafenib, regorafenib and sorafenib)
as well as baricitinib lead to increased virus growth [48].
Regorafenib may play a role in the receptor-mediated
host response to SARS-CoV-2 [49], dabrafenib may inhibit
SARS-CoV-2 infection [50] and sorafenib could prevent
in vitro replication [22]. According to [49], sorafenib
has antiviral activities, but the cytotoxic and antiviral
IC50 values are close. Baricitinib prevented progression
to a severe form by modulating the patient’s immune
landscape in a 20-case study [51] and its administration
resulted in an improvement in respiratory function in
a study of 62 patients who received baricitinib and
coticosteroids compared with 50 patients who received
only corticosteroids [52]. In another study [53] in rhesus
macaques, baricitinib suppressed the production of
proinflammatory cytokines, maintained innate antiviral
responses and SARS-CoV-2 T cells and limited the
recruitment of neutrophils to the lungs and neutrophil
cell death (NETosis).

Clinical trials

We checked which of the drugs identified in our analyses
have been included in clinical trials for COVID-19. We
looked for them first in the dedicated COVID-19 section
of [8]. We then verified ClinicalTrails.gov [54] and IRTC
[55] to identify drugs that weren’t listed yet on Drug-
Bank. Of the 130 drugs we identified in our analyses, 23
have been investigated in clinical trials. We included in
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Figure 5. The robustness analysis results. The box plots represent how often various drugs were identified in the control analyses we ran, with the
search done in various parameter settings: the host factors selected to be the top 50/100/150/200/250/300 ranked in the [4] datasets; the number of
in-between nodes set to be 1/2/3; the maximum length of the control paths set to be 2/3/4.

Supplementary Table 3, for each of the validated drugs,
a selection of clinical trials dedicated to them. Of the 23
drugs included in clinical trials, 14 were obtained only
on the MOI 0.01 network, 8 on both networks and one,
ibuprofen, only on MOI 0.3 network. A discussion on
some of these drugs is in Supplementary Information,
Section 4.

For each of the drugs we identified, we included in
Supplementary Table 4 a list of recent articles discussing
their potential in COVID-19 therapies.

Computational validation

More than half of the drugs identified by our anal-
yses were also found through other computational
approaches. Some of these drugs could have an inhibitory
effect on the main protease (e.g. dabigatran etexilate [56,
57], dasatinib [58], ellagic acid [59, 60], radotinib [61]),
on the papain-like protease (caffeine [62], phenformin
[63], ximelagatran [64]) or on the RNA-dependent RNA
polymerase (e.g. docetaxel [63], eribulin [65], nilotinib
[66], pelitinib [67]), as well as on the interaction between
the spike and ACE2 (e.g. dexibuprofen [68], midostaurin
[69], paclitaxel [70], ponatinib [71], regorafenib [72]), or
on another viral important point (e.g. nilotinib on nsp13
[73], isoprenaline on nsp9 [74], docetaxel on nsp14 [75],
enzastaurin on nsp15 [76], entrectinib on nsp16 [77]).
There are also drugs that can act on host and virus
interactions (e.g. erlotinib [78], XL019 [6]) or only on host
genes (e.g. lidocaine [79], kappadione [80, 81], phenethyl
isothiocyanate [80]). As we can see, a drug can act on
several points. For some of the drugs in our results we
found some proposed theories on their potential mode of
action (e.g. bryostatin [82], emodin [83–85] or ripretinib
[86]). Others can be deduced based on their targets,
identified in other studies (e.g. flovagatran, rimiducid,
rindopepimut).

Robustness analysis
To test the robustness of the control analysis method,
we performed additional analyses with variation in sev-
eral of the parameters. For each MOI, we selected the
sets consisting of the top 50, 100, 150, 200, 250 and

300 host factors and we synthesized the corresponding
interaction networks while using 1, 2 and, respectively,
3 intermediate proteins for the interactions among the
host factors and all known drug targets. We then ran the
controllability analysis on each of the resulting networks,
considering the maximum length of control paths 2, 3
and 4, for a total of 108 analyses. We aggregated the drugs
identified in each individual analysis, and we compared
the results obtained over all runs for each network and
dataset. As it can be seen in Figure 5, on average, about
40% of the identified drugs for MOI 0.01 and about 25%
for MOI 0.3 appear in over 60% of the corresponding runs.

Discussion
The recent study of [4] on the survivability of SARS-CoV-
2-infected cells identified many host factors that are
essential for the SARS-CoV-2 infection. This offers a new
guide to therapeutic targeting of COVID-19. Yet, out of
their top 200 ranked genes in each of the two viral load
experiments only 23 (24, resp.) are drug targetable [8].
We investigated whether they can be instead targeted
through short network signaling pathways and found 40
drug-targetable proteins that can control these genes. We
identified 130 drugs that target these proteins and can be
significant in COVID-19. Some of these include drugs rec-
ommended to be used, drugs that have been evaluated in
clinical trials and various in vitro assays. The network-
based approach offers a wider spectrum of options by
identifying drug-targetable nodes at a short distance
upstream of the SARS-CoV-2 infection host factors, able
to influence them in the sense of network controlla-
bility. Moreover, we also identified in this way possible
mechanisms of action for drugs, offering a mechanistic
understandings of drugs through the changes they may
induce in the PPIs.

Many of the drugs we identified act on the immune
system (including the FDA-approved COVID-19 drug
baricitinib) and on the coagulation cascade (e.g. nafamo-
stat). Antivirals were not found by our analyses because
for many of them (e.g. favipiravir, remdesivir, umifenovir)
their human targets are unknown. Our list of drugs also
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includes false positives, such as drugs that are applied
topically and should not be swallowed (e.g. ingenol
mebutate), but also possible harmful substances in this
disease (kappadione). They are found by our algorithms
because they do influence the host factors, in addition
to their other effects. Our results could be further
improved by leveraging data on the quantitative strength
of various interactions, on the result of their concurrent
activation/inhibition signals and on the specificity of
their mechanism in the context of the disease. Such data
would be needed for all the PPIs in our network, not just
for a selected subset of them. A quantitative version of
network controllability theory remains to be developed
to scale to become applicable to such data.

The network-based approach explored in this study
can be applicable to other diseases and can be especially
fruitful in drug repurposing for rare diseases. The key
part of our approach is identifying a set of targets, whose
control may be therapeutically beneficial. In this study
we used as control targets the host factors required
for SARS-CoV-2 infections. The network controllability
analysis yields a set of input nodes that can control these
targets. Moreover, the input nodes can be selected to a
large extent to be drug targetable with currently available
drugs, bringing this method within the drug repurposing
realm. Each of the input nodes identified by the analysis
(and the drugs targeting them), as well as various com-
binations of them, can be used to influence some of the
control targets. This yields a rich set of predictions that
could inform the setup of new drug repurposing clinical
trials.

Materials and methods
Data
The signaling data were extracted from the KEGG [13],
OmniPath [14] and SIGNOR [15] databases. Only the
directed interactions were considered. An interaction
can appear in multiple databases. The interactions
were matched based on the UniProt identifiers of their
proteins, which are provided by default by all of the three
databases.

We considered as targets of our study the 200 highest
ranked host factors in the cell survivability experiments
of [4] at 0.01 MOI and 0.3 MOI that were shown to be
required for SARS-CoV-2 infection. These proteins were
targeted through short multi-step signaling paths orig-
inating in drug targets. The drug targets were collected
from the DrugBank [8] database. We selected the drug tar-
gets of the approved and investigational small molecule
drugs, except for those illicit or nutraceutical. We also
discarded a number of specific 19 approved and/or
investigational drugs that have more than 50 targets,
most of which are not targeted by any other drug.

Network generation
For each of the two MOI experiments of [4] we identified
all proteins that are upstream of the top 200 highest

ranked host factors, at a distance of maximum two
interactions. We also identified all proteins that are
downstream of the drug target proteins, at a distance
of maximum two interactions. The network generation
is discussed in all details in Supplementary Information,
Section 1.

Key Points

• We constructed directed PPI networks linking drug-
targetable nodes with the host factors required for the
SARS-CoV-2 viral infection.

• Network controllability offers a new insight into the
molecular details of COVID-19 and into potentially new
therapies for it.

• We identified several drugs that have been investigated
in clinical trials, but also some new ones, not yet studied
in connection to COVID-19.

• The method is significant beyond COVID-19 and may be
applied also to other diseases.

Data and Code Availability
The drug target data set used in this article, the PPI
networks and the code used to generate the networks,
are available online in the GitHub repository [87].
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