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Abstract 

Background:  New genes continuously emerge from non-coding DNA or by diverging from existing genes, but most 
of them are rapidly lost and only a few become fixed within the population. We hypothesized that young genes are 
subject to transcriptional and post-transcriptional regulation to limit their expression and minimize their exposure to 
purifying selection.

Results:  We performed a protein-based homology search across the tree of life to determine the evolutionary age 
of protein-coding genes present in the rice genome. We found that young genes in rice have relatively low expres-
sion levels, which can be attributed to distal enhancers, and closed chromatin conformation at their transcription 
start sites (TSS). The chromatin in TSS regions can be re-modeled in response to abiotic stress, indicating conditional 
expression of young genes. Furthermore, transcripts of young genes in Arabidopsis tend to be targeted by nonsense-
mediated RNA decay, presenting another layer of regulation limiting their expression.

Conclusions:  These data suggest that transcriptional and post-transcriptional mechanisms contribute to the condi-
tional expression of young genes, which may alleviate purging selection while providing an opportunity for pheno-
typic exposure and functionalization.

Keywords:  Abiotic stress, Evolutionary capacitance, Nonsense-mediated RNA decay, Open chromatin, Orphan genes, 
Young genes
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Background
The advent of whole-genome sequencing led to the dis-
covery of a subset of new genes in all domains of life that 
lack homologs in other lineages [1–4]. These genes, also 
called orphan or evolutionary young genes, may arise 
from pre-existing genes by diverging until no homology 
remains, or they may be born de novo from non-coding 
DNA [5–8]. In contrast to old genes, young genes are 
short, rapidly evolving, and usually do not have essen-
tial functions. They are therefore under weaker positive 

selection [9, 10]. Furthermore, the production of non-
functional proteins from young genes may represent 
an energetic burden for the cell, and their evolutionar-
ily non-optimized structure can lead to non-productive 
interactions, some of which may interfere with cellular 
functions [11, 12]. Consequently, despite increasing the 
population’s genetic diversity, most young genes are rap-
idly lost either due to genetic drift or purging selection, 
and only a few are fixed in the genome [13]. This raises 
the question of whether some young genes have the 
means to hide from purifying selection, expanding their 
lifespan in a genome and thereby increasing their chances 
of acquiring novel functions.

One possibility to mitigate the effect of purifying selec-
tion is by limiting the extent of expression and/or con-
ditioning it by developmental or environmental cues. 
Indeed, young genes often have low expression due to 
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the deposition of repressive chromatin marks and the 
lack of well-developed cis-regulatory elements required 
for transcription [14, 15]. The low expression level of 
young genes can lessen the burden of protein misfolding, 
hence reducing the negative selection pressure [11, 12]. 
Further, spatial or temporal restriction of expression may 
expand the lifespan of young genes by avoiding untimely 
exposure to natural selection and may provide an oppor-
tunity for phenotypic manifestation and functionaliza-
tion. In nematodes, young genes are born in the vicinity 
of enhancers and utilize their cis-regulatory elements to 
express themselves in limited cell types and tissues [16]. 
Moreover, the permissive transcription environment 
of isolated compartments, such as the testes in animals 
and pollen grains in plants, provides a perfect breeding 
ground for young genes to mature and gain function [17, 
18].

In this study, we investigated the mechanisms that 
contribute to the low or conditional expression of young 
genes via transcriptional and post-transcriptional regu-
lation in rice and Arabidopsis. We propose that the 
restricted expression of young genes through these 
mechanisms can mitigate exposure to negative selection 
and offer an opportunity for phenotypic manifestation 
under certain conditions, which permits gene function-
alization and genetic fixation in a population.

Result and discussion
Young genes are associated with closed chromatin 
and distal enhancers
We performed a protein-based homology search across 
the tree of life to determine the evolutionary age of 
protein-coding genes present in the rice genome using 
Phylostratr [19]. The genes were grouped into phy-
lostrata (PS) according to their evolutionary age, such 
that PS1 contains genes with the oldest known ancestor 
homolog, whereas the last phylostrata (PS19) includes 
the evolutionary youngest genes with no known ancestral 
homolog (Fig. S1). Consequently, PS1 was enriched with 
genes involved in biological processes such as replication, 
transcription, translation, cell cycle, meiosis, and DNA 
repair. In contrast, no specific biological process catego-
ries were enriched in PS19. To understand the differences 
in the gene regulation and the underlying reasons, we 
compared the steady-state expression of evolutionary old 
(PS1) and young genes (PS19) and observed that young 
genes largely had low expression relative to the old genes 
(Fig. 1A).

Young genes have been reported to possess hetero-
chromatic epigenetic signatures and a closed chromatin 
state in Drosophila, nematodes, and Arabidopsis [14, 
20, 21]. To investigate whether the lower expression of 

young genes in rice was due to the closed chromatin 
architecture of their regulatory regions, we employed 
formaldehyde-assisted isolation of regulatory elements 
(FAIRE-seq) (Fig. S2; Additional file  2: Table  S1, S2). 
We observed that the TSS-proximal regions of the 
young genes have a more closed chromatin confor-
mation relative to old genes (Fig.  1B). Moreover, we 
observed an increased association of transposons with 
the TSS-proximal region of young genes in contrast to 
old genes (Fig. S3A). This is in agreement with higher 
levels of repressive histone modifications (H3K9me2 
and H3K9me1) and lower levels of permissive modi-
fications (H3K9ac and H3K4ac) at the TSS of young 
genes compared to old genes (Fig. S3B-E). These results 
suggest that a generally closed chromatin conformation 
limits the expression of young genes in rice.

Interestingly, our FAIRE-seq analysis in rice revealed 
an enrichment of open chromatin at the distal inter-
genic regions (> 1500 bp upstream from TSS) of young 
genes (Fig. 1C), which has also been observed in Arabi-
dopsis (Fig. S4). Open chromatin at a distal intergenic 
region is indicative of an enhancer [22], and enhanc-
ers have been suggested to be involved in the birth 
of young genes [14, 16]. To determine whether dis-
tal upstream regions of young genes indeed contain 
enhancers, we determined the overlap between open 
chromatin, which we identified by FAIRE-seq, and 
enhancers, identified by STARR-seq, in rice [23]. Our 
overlap analysis revealed that more than 60% of the 
known enhancers overlapped with open chromatin 
regions (Fig.  1D). Next, we compared the enrichment 
of enhancers in TSS-proximal and TSS-distal regions. 
We found that enhancers are enriched in the TSS-dis-
tal regions of young genes but not in the TSS-distal 
regions of old genes (Fig.  1E). We also observed that 
the average age of the nearest gene to distal intergenic 
enhancers is younger in contrast to the enhancers pre-
sent in the TSS-proximal region (Fig. 1F). Interestingly, 
we did not detect an enrichment of enhancers in TSS-
proximal regions of young genes. This is in contrast 
to previous findings in nematodes which suggested 
that genes are born within open regions of enhancers 
[14]. Instead, our result suggests that, at least in rice, 
distally positioned enhancers play a regulatory role by 
conditioning the expression of young genes [24, 25]. 
The utilization of distal enhancers likely contributes to 
the lower expression observed for young genes, which 
reduces the cost to the cell of translating misfolded and 
possibly toxic proteins. Moreover, enhancers evolve 
faster than promoters, thereby providing an opportu-
nity for young genes to evolve together with enhancers 
as they acquire novel transcription regulatory networks 
over time [26, 27].
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Abiotic stress alters chromatin architecture at TSS of young 
genes
The expression of young genes can provide species-
specific adaptation to environmental challenges [15, 
28–30], suggesting that their chromatin architecture 
and transcription are responsive to external stimuli. 
Since many young genes in rice have a closed chroma-
tin conformation in the promoter-proximal regions, we 
investigated whether abiotic stresses have the poten-
tial to affect chromatin conformation. We performed 

FAIRE-seq on rice seedlings subjected to varying dura-
tions of cold, heat, and salt stress (see the “Methods” 
section). Except for cold stress (12 h), all of the abiotic 
stresses we tested increased chromatin accessibility 
around the TSS of young genes (Fig.  2). These results 
suggest that chromatin architecture can be re-mod-
eled upon exposure to external environmental factors, 
allowing young genes to gradually evolve interactions 
between cis-regulatory elements and regulatory pro-
teins, thereby providing an opportunity to increase 
their expression and gain function.

Fig. 1  Transcriptional regulation of the young genes. A A violin plot showing the expression of old and young genes. The expression of genes 
in transcript per million (TPM) was log10-transformed before plotting. The statistical significance of the difference was calculated using the 
Mann-Whitney test. B A line plot showing normalized coverage of FAIRE-seq reads around the transcription start site (TSS) of old (PS1) and 
young (PS19) genes. C A bar plot was drawn to show the enrichment of FAIRE-seq peaks at either the TSS-proximal (up to 1.5 kb upstream of 
TSS), TSS-distal (> − 1.5 kb from TSS), or both (FAIRE-seq peak present at TSS-proximal as well as TSS-distal intergenic regions) of old and young 
genes. Enrichment was higher than background (expected) and was calculated as the total percentage of genes present in the old or young gene 
categories. D An area proportional Venn diagram showing the overlap of FAIRE-seq-identified open chromatin regions and STARR-seq-identified 
enhancers. E A bar plot was drawn to show enrichment of enhancers at the TSS-proximal (up to 1.5 kb upstream of TSS) and TSS-distal (> − 1.5 
kb from TSS) regions of old and young genes. The enrichment was seen over the background (expected), calculated as the total percentage of 
enhancers present in the old or young gene categories. F A box plot showing the association of STARR-seq-identified enhancers with the age of 
genes. Enhancer is characterized as TSS-distal if it is present > 1.5 kb upstream of the TSS, whereas TSS-proximal enhancers are located within 1.5 
kb upstream of TSS. If an enhancer is present at any part of the gene body, then it is characterized as a gene body enhancer. The age of the nearest 
gene is plotted at the Y-axis, where phylostratum 1 denotes the oldest and phylostratum 19 denotes the youngest class of genes
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Young gene transcripts are targeted 
by nonsense‑mediated RNA decay
Apart from transcriptional regulation, the expression 
of young genes can be reduced by post-transcriptional 
regulation. Young genes in Drosophila have been associ-
ated with increased occurrence of premature translation 
termination codons (PTCs) [31]. Since PTC-containing 
transcripts are degraded by the nonsense-mediated RNA 
decay (NMD) pathway [32, 33], we hypothesized that the 
expression of young genes is affected by NMD. To exam-
ine this hypothesis, we took advantage of the genetic and 
genomic resources available in Arabidopsis [34]. Indeed, 
compared to older genes, young genes were enriched 
for PTCs and long 3′UTRs, both hallmark NMD fea-
tures (Fig. 3A). We also observed an increased incidence 
of PTCs in young genes of maize and Arabidopsis (Fig. 
S5). We further found that young genes have signifi-
cantly reduced transcript stability compared to old genes 
(Fig.  3B). The Arabidopsis upf1 pad4 mutant, which is 
severely compromised in NMD [34, 35], exhibits a more 
pronounced increase in the expression of young genes 
than old genes (Fig. 3C). These results suggest that young 
genes are subject to post-transcriptional regulation by 
NMD.

The increased targeting of young gene mRNAs by 
NMD implies lower levels of translation. Therefore, we 
next evaluated the relative efficiency of translation by 
scoring the differences in ribosome association between 
old and young genes using the Targeted Purification of 
Polysomal mRNA (TRAP) dataset [36]. We observed that 
transcripts from older genes had substantially higher lev-
els of ribosome association than transcripts from younger 
genes, indicating less efficient translation of young genes 
(Fig. 3D). Previously, we determined that inactivation of 

NMD leads to increased translation of NMD-targeted 
transcripts, which was manifested as a shift of the tran-
scripts from monosomal to the polysomal fraction of 
ribosomes [34]. If NMD contributes to the translational 
repression of young genes, we also anticipated a similar 
trend for young gene transcripts. Indeed, NMD inactiva-
tion led to a significant decrease of the monosome score 
for young transcripts, which indicates their shift to poly-
somes and increased translation (Fig.  3E). In contrast, 
no significant difference was observed in the monosome 
score of older genes in the presence or absence of UPF1 
(Fig.  3E). These results further substantiate the role of 
NMD in limiting the expression of young genes at the 
level of RNA stability and translation. Because NMD effi-
ciency changes in response to environmental and devel-
opmental cues [37, 38], the repression of young genes by 
NMD is not constitutive. Rather, it could be lifted under 
certain conditions. The observation that young genes 
are subject to regulation by NMD is in line with our 
hypothesis where we proposed that NMD can act as an 
evolutionary capacitor, permitting the accumulation of 
cryptic genetic variation and exposing it conditionally to 
the selection [37].

Conclusions
We propose that young genes tend to have low expres-
sion levels due to closed chromatin, limited transcription 
by enhancers, and post-transcriptional degradation by 
NMD to avoid their untimely exposure to purifying selec-
tion. All three of these mechanisms are responsive to 
environmental stress and developmental signals, which 
provide an opportunity for the conditional expression 
and phenotypic manifestation of young genes, a prereq-
uisite for gene functionalization.

Fig. 2  Abiotic stress re-models the chromatin architecture of young genes. A line plot showing the normalized coverage of FAIRE-seq reads around 
the TSS (± 2000 bp) of young genes in control and stress subject rice seedlings
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Methods
Plant material, growth conditions, and stress treatment
Oryza sativa L. Japonica nipponbare was grown in a 
plant growth chamber (Conviron®) at 28 °C under a pho-
toperiod of 16 h/8 h. Fourteen-day-old seedlings were 
subjected to heat (42 °C for 30 min and 3 h), cold (4 °C 
for 12 h and 24 h), and salt (250 mM NaCl for 2 h and 6 
h) stress. The 14-day-old seedlings grown at 28 °C were 
taken as the control sample.

Formaldehyde‑assisted isolation of regulatory elements 
(FAIRE‑seq)
FAIRE-seq was performed on two independent replicates 
of 14-day-old stress-treated and control seedlings as per 

the protocol described previously [39]. The raw sequenc-
ing reads were aligned to the rice reference genome 
(IRGSP 1.0) using Bowtie2 with default parameters [40]. 
The reads aligning to the region of the chromosome with 
a known insertion site of the mitochondrial and chloro-
plast genome were removed. To remove reads mapped to 
multiple positions on the genome, reads with a mapping 
score of less than 10 were filtered out. To remove poten-
tial PCR duplicates, reads with the same start and end 
positions were considered only once. Broad peaks were 
called by MACS2 with default parameters except the 
no-model option to identify open chromatin regions in 
the rice genome [41]. Furthermore, peaks having a read 
count < 1 RPM in any biological replicates were removed 

Fig. 3  Nonsense-mediated RNA decay (NMD) post-transcriptionally regulates the abundance of young genes. A The accumulation of NMD features 
in old and young genes is presented as a bar plot. B A box plot representing the half-life (log10-transformed) of the old and young genes. C The 
relative change in expression of old and young genes due to UPF1 deficiency. D The association of old and young genes with the ribosome is 
shown as a box plot. E A box plot depicting the association of old and young genes with monosome and polysome either in pad4 or UPF1-null 
(upf1 pad4)
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from the analysis. A scatter plot was generated to observe 
the reproducibility of peaks among biological replicates. 
The overlap analysis was performed using the R package 
ChIPpeakanno [42].

RNA‑seq and analysis
RNA-seq libraries from RNA extracted (the Qiagen 
plant RNA extraction kit) from two independent rep-
licates were prepared using the TruSeq RNA sample 
preparation kit (Illumina Inc., USA). The libraries were 
sequenced for 50-bp single-end sequencing on Illumina’s 
HiSeq 2000 platform. The sequencing reads were filtered 
for quality using Trimgalore (https://​www.​bioin​forma​
tics.​babra​ham.​ac.​uk/​proje​cts/​trim_​galore/), and high-
quality reads were pseudo aligned to Rice transcriptome 
(ensemble 46 version) using Kallisto version 0.46.0 with 
default parameters [43]. The differential expression anal-
ysis was performed using a limma-voom pipeline enabled 
in 3D-RNA-seq [44].

Evolutionary age classification of genes, NMD features, 
and mRNA half‑life analysis
The evolutionary age or phylostratum of each peptide 
present in the Rice (Oryza sativa Nipponbare version), 
maize (B73 RefGen_v4), and Arabidopsis (Araport 11) 
was determined using Phylostratr [19]. In brief, a pairwise 
BLAST of the proteome of focal species (rice, Arabidop-
sis, and maize) against each of the species present in the 
NCBI tree of life (uniport proteome) was performed. The 
best hit for each protein of focal species was extracted 
and assigned phylostratum associated with the deepest 
clade. The subset of genes with no inferred homologs 
was classified as the evolutionary youngest genes. A tran-
script is defined as having an NMD feature if it has a pre-
mature termination codon (PTC) before (greater than 50 
bp) the last exon junction complex (EJC) or the length of 
its 3′UTR exceeds 350 bp. The mRNA half-life, TRAP, 
and NMD data were taken from [34, 36, 45].
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