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Genetic differences between individuals underlie susceptibility tomany diseases. Genome-
wide association studies (GWAS) have discovered many susceptibility genes but were
often limited to cohorts of predominantly European ancestry. Genetic diversity between
individuals due to different ancestries and evolutionary histories shows that this approach
has limitations. In order to gain a better understanding of the associated genetic variation,
we need a more global genomics approach including a greater diversity. Here, we
introduce the Healthy Life in an Urban Setting (HELIUS) cohort. The HELIUS cohort
consists of participants living in Amsterdam, with a level of diversity that reflects the Dutch
colonial and recent migration past. The current study includes 10,283 participants with
genetic data available from seven groups of inhabitants, namely, Dutch, African
Surinamese, South-Asian Surinamese, Turkish, Moroccan, Ghanaian, and Javanese
Surinamese. First, we describe the genetic variation and admixture within the HELIUS
cohort. Second, we show the challenges during imputation when having a genetically
diverse cohort. Third, we conduct a body mass index (BMI) and height GWAS where we
investigate the effects of a joint analysis of the entire cohort and a meta-analysis approach
for the different subgroups. Finally, we construct polygenic scores for BMI and height and
compare their predictive power across the different ethnic groups. Overall, we give a
comprehensive overview of a genetically diverse cohort from Amsterdam. Our study
emphasizes the importance of a less biased and more realistic representation of urban
populations for mapping genetic associations with complex traits and disease risk for all.
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INTRODUCTION

The city of Amsterdam is a modern urban society with a vibrant composition of different ethnicities.
It is one of the most diverse cities in Europe with ethnic minorities making up more than half of its
population. The history of the Netherlands is well represented in the diversity of the communities
that live there. Several communities are from the Dutch former colony the Republic of Suriname.
During the colonial period, plantation labor was carried out by African slaves and after the abolition
of slavery by indentured laborers from Asia. The history of forced or voluntary migration of ethnic
groups from diverse continents is reflected in the current Surinamese population. Three of the main
Surinamese ethnicities living in Amsterdam are the Afro-Caribbean, hereafter named African
Surinamese; the South-Asian; and the Javanese Surinamese. Besides Surinamese, there are
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Moroccan, Turkish, and Ghanaian communities from recent
migrations living in Amsterdam. This diversity has
consequences for the city’s health-care system because the
ethnic background can be associated with disease
susceptibility, progression, and medication response (Wilson
et al., 2001; Gurdasani et al., 2019). Differences between ethnic
groups are partly based on cultural differences, differences in
lifestyle, socioeconomic factors, and genetic ancestry, which may
result partly from different evolutionary histories. For example,
research showed that the effect of hypertension treatment with
ACE inhibitors is less effective than calcium blockers for patients
with African ancestry (Brewster and Seedat, 2013). For treatment
of chronic hepatitis C virus infection, it is found that the
treatments are less effective for African Americans due to
genetic polymorphisms (Ge et al., 2009). These studies show
that European-based results regarding effective disease
treatments cannot always be generalized to individuals of non-
European ethnicities. This bias is also seen in much genetic
research that aims to understand the susceptibility of diseases.

The genome-wide association study (GWAS) approach has
proven to be successful in identifying genomic regions associated
with diseases and in studying how and to what extent genetic
variation contributes to disease susceptibility (Visscher et al.,
2017; Tam et al., 2019; Claussnitzer et al., 2020). In the early
GWAS, the focus was mainly on homogenous European cohorts,
but lately, there has been a shift toward a more trans-ethnic
strategy (Vujkovic et al., 2020). Despite the shift toward more
ethnically diverse cohorts, the diversity is still skewed in current
published data with ± 7% Asian, ± 1% African American or the
Caribbean, and less than 0.4% African data compared to ± 92%
European (Mills and Rahal, 2020). This imbalance in ancestry
forms the basis of results that are difficult to translate from
Europeans to populations with other ethnicities, as illustrated, for
example, by the Eurocentric bias in the predictive power of
polygenic risk scores (PRSs). A PRS predicts an individual’s risk
for a specific disease based on how many risk alleles he/she carries
(Wray et al., 2007). These risk scores aremostly based on European
GWAS results and perform notably worse when applied to cohorts
with other ancestral origins (Martin et al., 2019). Differences in
disease risks, susceptibility, treatment, and the appliance of
genomic methods due to ethnic background are still
underrepresented in genomics research, and a shift toward a
more inclusive global approach is needed (Claussnitzer et al., 2020).

An important step toward global genomics is to compose
cohorts from the modern ethnic urban landscapes and a trans-
ethnic inclusion of participants. This more diverse composition of
cohort sampling likely ensures a more representative genomic
disease prediction and optimized treatment decisions. The
Healthy Life in an Urban Setting (HELIUS) study was
initiated to address multiethnic representation in life science
research. HELIUS is a prospective cohort study characterized
by several large ethnic groups living in Amsterdam (Snijder et al.,
2017). A cross-selection of 10,283 HELIUS participants was
genotyped to get insights into the genetics of this cohort.
Here, we first present a population genetic overview showing
the diverse genetic composition of the HELIUS cohort. The
population genetics show complex genetic diversity between

and within the HELIUS ethnic groups. Second, we investigated
the best quality control and genotype imputation strategies of this
trans-ethnic cohort. Third, GWASs on body mass index (BMI)
and height were performed to compare results of the individual
ancestral groups with a cross-ancestry meta-analysis. Finally,
PRSs were constructed for BMI and height based on large
European GWASs, and their predictive power was assessed
across all ethnic groups. Overall, this study provides an
overview of challenges and difficulties of genetic analyses
when using ethnically diverse cohorts and highlights the
importance of this broader genomics approach.

MATERIALS AND METHODS

HELIUS Cohort
Healthy Life in an Urban Setting (HELIUS) is a prospective
cohort study executed in Amsterdam, characterized by ethnic
diversity (Martin et al., 2019). HELIUS includes six large groups
of inhabitants of Amsterdam, namely, Dutch, African
Surinamese, South-Asian Surinamese, Turkish, Moroccan, or
Ghanaian background, and one small group with a Javanese
Surinamese background (Stronks et al., 2013). The HELIUS
cohort consists of approximately 25,000 participants aged
18–70 years. For most participants, data on social,
environmental, and biological determinants were collected, and
follow-up data are obtained. Detailed information on the cohort
participants and gathered data has previously been published
(Stronks et al., 2013; Snijder et al., 2017). In addition to the
general measurements and questionnaires, specific
measurements such as microbiomes were also collected for a
cross section of the participants (Deschasaux et al., 2018).
HELIUS was compiled according to the Declaration of
Helsinki (6th, 7th revisions), and ethical approval from the
Amsterdam University Medical Centre (location AMC)
Medical Ethics Committee was obtained. All participants
approved by giving written informed consent.

DNA Isolation, Genotyping, and Quality
Control
A cross-selection of 10,283 HELIUS participants was made for
genotyping. Whole blood for DNA isolation was collected in
EDTA tubes and stored at −80°C in the AMC Biobank. DNA was
isolated using the Gentra Puregene Isolation Kit (Qiagen), and
quality control procedures were performed to determine the
DNA yield and purity.

DNA was shipped to the Erasmus MC Human Genomic
Facility where genotyping was performed. For genotyping, the
Illumina Global Screening Array 24v1-0 designed for the
multiethnic genome-wide content purpose was used. An in-
house protocol of the Human Genomic Facility, with
Illumina’s GenomeStudio software, was used to perform the
initial genotyping of the array. Subsequently, a second quality
control (QC) was performed for removing the individuals with
discordant gender information and when more than 5% called
data on markers per individual were missing.
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A general QC for the autosomal markers was executed removing
variations withmore than 5% calls missing, minor allele frequencies
(MAF) of <1%, violation of the Hardy–Weinberg equilibrium
(HWE) (p ≤ 10−5), and heterozygosity deviations from a mean
larger than ± 3 SD (Anderson et al., 2010). Because the cohort
consists of participants with different ancestries, where allele
frequency differences between the groups can influence the QC,
two different QCs have been performed. First QC was done on all
samples together. Using PLINK, data weremerged and pruned with
the 1000G cohort to perform a principal components analysis
(PCA), using smartpca, for determining the ancestry based on
the genomic background (Patterson et al., 2006; Purcell et al., 2007;
Genomes Project et al., 2015). HELIUS database–reported ethnicity
and PCA were used to detect divergent genetic ancestries, which
were removed. For the Surinamese participants, the database-
reported ethnicity was retained because varying degrees of
admixture make it difficult to strictly define clusters. All
homogeneous clusters were thereafter subtracted from the data,
and a secondQCwas specifically performed on all samples from the
same ethnicity. This resulted in eight QCed datasets, namely, of all
samples together, and of participants with African Surinamese,
South-Asian Surinamese, Javanese Surinamese, Ghanaian,
Moroccan, Turkish, and Dutch ancestries. All markers are
reported with respect to the reference allele and coordinates of
GRCh37.

Genetic Ancestry and Admixture
For all population genetic analyses, a dataset was created where all
QCed HELIUS samples were merged with 1000G cohort samples.
After merging, variations on the genomic high LD regions were
filtered out, and the remaining dataset was pruned using PLINK,
as described in Anderson et al. (2010). Smartpca from the
EIGENSOFT package was used for modeling ancestry
differences between samples using a principal components
analysis (PCA) approach (Patterson et al., 2006). Because it is
known that the HELIUS dataset includes admixed individuals,
namely, the Surinamese samples, the ancestry was estimated
(Micheletti et al., 2020). Estimates of the degree of mixed
ancestry were obtained using ADMIXTURE software
(Alexander and Lange, 2011). ADMIXTURE estimates were
run, starting with 2 up to 10 ancestral populations (K). Cross-
validation within the ADMIXTURE package was used to infer the
best fit.

Imputation
To determine the imputation performance of different reference
panels on the GSA array, a random set of 25% of the genotyped
markers of the arrayed were removed per ethnic group. The
random markers were generated for each ethnic group separately
to minimalize any effect of population-specific markers. After
marker removal, imputation was performed using the TopMed
imputation panel and server, the Michigan imputation server,
and the Sanger imputation server (Das et al., 2016; McCarthy
et al., 2016; Kowalski et al., 2019). The TopMed and Michigan
imputation servers use Eagle2 for phasing the data and Minimac4
for the imputation (Das et al., 2016). We used version R2 of the
Trans-Omics for Precision Medicine (TopMEd) reference panel,

which is built on a subset of 97,256 samples with a multiethnic
background. With the Michigan imputation server, the ethnically
diverse 1000G phase 3 panel consisting of 26 populations and the
African American Panel (CAAPA) were used on the African
Surinamese (Mathias et al., 2016). For phasing, the Sanger
imputation server used Eagle2, but for imputation, it uses
PBWT (Durbin, 2014; McCarthy et al., 2016). Reference panels
used with the Sanger imputation server were the 1000G phase 3
panel and the Haplotype Reference Consortium (HRC) reference
panel version 1.1 consisting of 32,470 samples of mostly pan-
European and the 1000 Genomes Phase 3 (McCarthy et al., 2016).

After imputation, the removed markers per ethnicity were
filtered out and compared with the array genotype calling results.
Disagreements between imputations andmeasured genotypes per
individual were determined for each imputation reference panel
separately. As an indication of imputation accuracy, the
percentage of mismatches per ethnicity is reported.

All imputations were performed on data after the QC of all
samples together and repeated for all ethnicities separately.
Marker disagreements between both imputation methods were
determined after the QC of the imputations. Within the QC, all
markers were removed with an MAF <1%, HWE p ≤ 10−5, or
INFO scores <0.4, for Sanger imputations, or R2 <0.3 for
Michigan and TopMed, or when a marker was only imputed
by one of the imputation methods. After QC, marker
disagreement was determined and expressed as percentage.

GWAS and Meta-Analysis
TopMed and Sanger 1000G imputations were used for the
subsequent GWAS analysis. It was decided to make the
filtering stricter for the Sanger 1000G imputation that
performed less during the testing of the imputation
performance. For the GWAS, all markers were removed with
an MAF <1% or R2 0.03 (TopMed) or INFO scores <0.8 (1000G
Sanger imputation). Height phenotypes were measured as
individual’s length in centimeters. For the height analysis,
gender, age (Wilson et al., 2001), and the first 10 PCs were
included in the analysis as covariates. BMI was regressed on
age (Wilson et al., 2001) and the first 10 PCs of the genetic data to
obtain residuals. This was done separately by sex and inverse-
normally transformed to obtain a normal distribution. The
procedure was performed on the entire cohort and for all
ethnicities separately when conducting the analysis used for
the meta-analysis.

Sample relatedness and population stratification in diverse
cohorts, like HELIUS, are confounding factors that could lead to
spurious associations. Besides the inclusion of PCs as covariates
to further control for these confounding factors, the mixed linear
model (MLM)–based tool fastGWA was used for the GWAS
(Jiang et al., 2019). Height and BMI associations were calculated
for the entire cohort, namely, the joint analysis, and for each
ethnicity separately. Due to the small number of genotyped
Javanese Surinamese, they were excluded in the ethnicity-
specific GWAS and meta-analysis.

All GWAS ethnic-specific analyses were used to determine the
best meta-analysis. For determining the best meta-analysis
method, several were first applied on the BMI results, namely,
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the fixed-effects (FE), random-effects (SE), and the Han and
Eskin’s random effects model (SE2) usingMetasoft (Han and Eskin,
2011). Beside these three methods, two specific trans-ethnic meta-
analysis methods were also used, namely, MANTRA and MR-
MEGA (Morris, 2011; Mägi et al., 2017). Most of the methods
showed similar associations for markers, with a p-value ≤1.0e-5
(Supplementary Figure S5). The specific trans-ethnic MR-MEGA
attempts to correct for the genetic variation between the ethnic
groups as covariates and was therefore chosen for comparison with
the results of the entire cohort analysis for BMI and height.

Heritability and PRS
Heritability estimation for height and BMI was calculated using
GCTA-GREML (Yang et al., 2015). In summary, the segment-
based LD scores were first calculated for the entire cohort and all
ethnicities separately using the unimputed QCed genotypes. LD
scores were used to stratify the SNPs in quarters and used to
calculate the genetic relationship matrices (GRMs). GRMs were
used in mixed-model regression analyses using restricted
maximum likelihood for the heritability estimation.

Polygenic risk scores were calculated using the protocol
described in Choi et al. (2020). In summary, the GWAS
statistics for height and BMI were used from Yengo et al.
(2018). The obtained GWAS summary statistics were checked
on genome built and filtered on SNPs with an MAF ≥1%. All
duplicates and ambiguous results were removed from the
summary statistics. For HELIUS, the imputed genetic data of
all ethnicity SNPs with an MAF ≥1%, HWE ≤1e-6, ambiguities,
and duplications were excluded. To prevent mismatching of
variations between files, all were checked on strand-flipping
and recoded to match the GWAS summary statistics.

PLINK was used for clumping and calculating the polygenic
scores with the score function. PRS was calculated for p-value
thresholds 0.001, 0.05, 0.1, 0.2, 0.3, 0.4, and 0.5. Regression in R,
with correction for the first 10 PCs, was used to determine the
“best-fit” PRS for each ethnicity, explaining the highest
phenotypic variance. Bootstrapping was used to calculate the
CI for each “best-fit.” Results were plotted with the European
ancestry proportion based on the highest K in European
ethnicities of the ADMIXTURE K � 3 prediction.

RESULTS

Determination of the Genetic Background
Within the HELIUS Cohort
The multi-ancestral Global Screening Array (GSA) was used for
genotyping the HELIUS cohort (Supplementary Figure S1).
After genotyping and quality control (see Materials and
Methods section), principal component analysis (PCA) of the
genotypes was used to check congruence between genetic
ancestry and the HELIUS database reported ethnicity. PCA
was performed after merging the HELIUS cohort with the
1000 Genomes (1000G) cohort to evaluate the clustering with
known reference populations (Genomes Project et al., 2015).
Based on the first two principal components, a clear
separation of the African, European, and Asian continental

populations was observed when the admixed Surinamese were
excluded (Figure 1A). All cohorts showed a clear clustering
according to their ancestral origin.

Admixture Within HELIUS
Because of the admixture within the different ancestries from the
diverse continents within the Surinamese, we used the program
ADMIXTURE to detect the substructure within the three
Surinamese ethnic groups. The HELIUS cohort was merged
with the 1000G cohort to infer these substructures and
ancestral admixture. For the admixture method, it was
necessary to make assumptions on the number of ancestral
source populations (Supplementary Figure S3). Assuming
three source populations (K � 3), admixture showed the
amount of African, Asian, and European ancestries within
each individual but did not show the similarities between the
HELIUS cohort ethnicities very well (Figure 1B). In contrast, the
best inference by cross-validation K � 8 provided more insights
into the admixture within the ethnicities (Figure1B,
Supplementary Figure S3). Admixture showed that South-
Asian Surinamese have a comparable ancestral pattern as the
1000G populations from South Asia, but some individuals do
seem to have a larger amount of African ancestry. This African
ancestral admixture is also seen when displaying the
Surinamese in the PCA plot (Figure 1C). Another
observation was that the scattered clustering seen within the
African Surinamese was larger than that in African Americans
(Levene’s test p-value � 0.002 for C1 and p-value � 0.003 for C2)
and other African Caribbean’s (Levene’s test p-value � 9.2e-13
for C1 and p-value � 2.0e-08 for C2), possibly indicating
different degrees of ancestry variance. The genetic
background of the HELIUS cohort demonstrates the
complexity of the diversity in individuals with widely
separated geographic ancestry and admixture.

Imputing the HELIUS Cohort
Imputation reliability is highly dependent on the use of the
correct reference populations containing adequate haplotype
diversity compared to the imputed cohort. Imputation
reference panels from TopMed, Michigan, and Sanger
imputation servers using removed GSA array markers for the
HELIUS ethnicities were used to get an indication of imputation
accuracy. The Sanger imputation server was used with the
1000G and Haplotype reference panel (HRC) (McCarthy
et al., 2016). For the Michigan imputation server, 1000G and
TopMEd were used, and the African American reference cohort
(CAAPA) was evaluated only for the African Surinamese
(Vergara et al., 2018; Kowalski et al., 2019). After
imputation, the percentages of mismatches were determined
for each ethnic group as a degree of imputation discrepancy, as
shown in Figure 2. In general, the discrepancy between the
imputation methods and used reference panels for each
ethnicity showed no large differences. Differences between
the ethnicities showed that the large TopMed reference panel
including a large number of African Americans performed best
within the Ghanaian, Moroccan, Dutch, and African
Surinamese ethnicities. This highlights the importance that
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the reference panel and included haplotypes closely capture the
diversity of the cohort.

Genome-Wide Association Study on
Separate Ethnic Groups vs. Meta-Analysis
Population stratification can lead to false-positive or false-
negative signals in a genome-wide association study when
samples with different ancestries are analyzed simultaneously.
Some methods have been developed that take population
structure and relationships between samples into account, such
as linear mixed-effects regression models (LMM) (Yu et al.,
2006). GWAS datasets with varying ethnicities can be analyzed
in two ways, namely, by analyzing the entire cohort at once or by
meta-analysis summarizing the results of analyses per ethnicity
(Peterson et al., 2019;Wojcik et al., 2019). To investigate outcome
differences between the two approaches, we applied a GWAS on
height and BMI where height is likely less sensitive to
environmental factors (Zhou and Lee, 2021). The associations

for height and BMI were investigated using a linear mixed-model
GWAS applied to the entire HELIUS cohort and also per
ethnicity. For the meta-analysis, performance of several
methods has been compared (Supplementary Figure S4).
Eventually, the multiethnic method MR-MEGA, which takes
the genome-wide diversity of the included populations into
account, was chosen for the comparisons (Mägi et al., 2017).
For evaluating the effect of the imputation method, we chose the
TopMed and Sanger imputation server results. Table 1 gives an
overview of the genotyped cohort and imputation numbers.

The entire cohort and ethnic-specific height and BMI GWAS
results were compared with the results of previously published
GWAS on those traits (Yengo et al., 2018; Lango Allen et al., 2010;
Locke et al., 2015; Ng et al., 2017; Wood et al., 2014). Due to the
modest sample size of the cohort, we only focused on the
associations, with a p-value of <5 × 10e−8. Height’s strongest
association with both the entire cohort and ethnic-specific meta-
analysis was the GDF5-BFZB locus on chromosome 20 known to
be involved in the alterations in bone growth and development

FIGURE 1 | Genetic diversity between the HELIUS Cohort populations. Ancestry was explored by merging the HELIUS cohort together with the 1000 Genome
project populations. Differences were first inferred by using principal components analysis (PCA). (A) First two PCAs of the non-admixed populations grouped at their
continental origin. Population ancestry was estimated using ADMIXTURE. (B) Results of a genome-wide ancestry with K � 3 or 8 ancestral populations. All HELIUS
populations are displayed, and 1000G populations are marked by their continental origin (AFR � African, EUR � European, SAS � South Asian, EAS � East Asian,
and AMR � Admixed America). Numbers indicate the exact 1000G populations which can be found in Supplementary Figure S3. PCA of the Surinamese HELIUS
participants in (C) together with the African American (ASW) and African Caribbean (ACB) admixed 1000G populations highlighted.
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(Figures 3A,B,E) (Sanna et al., 2008). With the analyses of the
entire cohort, another signal was found on chromosome 1 that
disappeared when conducting the meta-analysis. This variant has

previously not been reported to be associated with height, and
because the signal was based on only imputed SNPs, it is difficult
without any replication to determine if this is a true new signal.

FIGURE 2 | Comparison of imputation reference panels on HELIUS. Imputation performance was determined by filtering out 25% of the measured markers per
ethnicity. After filtering out, themarkers imputationwas performedwith the Sanger server using the 1000G and HRC imputation reference panels, Michigan imputation server
with the 1000G, and TopMed imputation reference panel. The Michigan imputation cohort CAAPA was also used for imputation on the African Surinamese. Plots show the
density of the percentage mismatches between imputed and measured genotypes per individual for each imputation server and reference panel per ethnicity.

TABLE 1 | HELIUS study cohort overview of genotyped participants with number of markers genotyped and imputed.

Population/ethnicity N Age (years) Gender (%
female)

Array markersb TopMedc imputation Sanger 1000Gd

imputation

Ghanaians 480 48.0 ± 9.2 57.3 352,956 14,170,590 11,684,750
Moroccans 3048 40.8 ± 12.8 60.6 436,920 10,314,717 9,216,391
Turks 2649 40.6 ± 12.1 53,6 458,667 8,226,331 6,674,703
Dutch 1287 51.8 ± 12.6 50.3 487,008 8,257,774 8,436,030
African Surinamese 1156 51.7 ± 10.5 60.6 381,499 14,011,528 12,324,000
South-Asian Surinamese 1502 46.9 ± 13.2 53.9 406,867 8,136,254 7,973,372
Javanese Surinamese 57 51.1 ± 10.9 52.6 373,195 7,575,865 7,213,944
HELIUS (joint) 10283a 44.7 ± 13.1 56.2 327,690 10,427,937 7,001,772

aA total of 104 samples come from other than these 7 backgrounds.
bIllumina GSA array resulted in 700078 genotyped markers before QC. For each population, QC included the markers present in at least 95% of the individuals, MAF below 1%, and
deviation of Hardy–Weinberg equilibrium (p ≥ 0.00001).
cTopMed imputed markers were filtered on SNPs only, MAF ≥1%, and R2 ≥ 0.3.
dSanger 1000G imputed markers were filtered on SNPs only, MAF ≥0.8, and INFO ≥0.8.
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With the different imputations, all detected the signal on
chromosomes 1 and 20. With the TopMed imputations, five
other signals were detected when analyzing the entire cohort
(Figure 3A). Three of these associations on chromosome 7
(p-value � 1.4e-06), 8 (p-value � 2.3e-07), and 11 (p-value �
3e-06) did not reach genome-wide significance with the Sanger
1000G imputation. The signals on chromosomes 9 and 14 were
only found when using the TopMed imputations. For markers in
these signals, a two-fold higher frequency was observed in African

populations. In line with the higher frequency of these markers in
African populations, we found that the TopMed signal of the
chromosome 7 marker was within the IGFBP3/TNS3 genomic
area previously reported in a height GWAS in individuals of
African ancestry (Graff et al., 2021). For the other four signals, we
found no previously reported height associations, and without
replication, it is hard to determine their reliability.

For BMI it showed that particularly for the entire cohort
analysis, despite not being genome-wide significant, the strongest

FIGURE 3 | Height and BMI association study on the HELIUS cohort. Miami plot of the height and BMI using the TopMed (A, C) or Sanger 1000G imputation
reference cohort (B, D)GWAS. Results of the entire cohort are plotted at the top panels, and theMR-MEGAmeta-analysis combines the ethnic-specific GWAS results at
the bottom panel. Y-axis displays the -log10 p values and the x-axis the associated marker location on each chromosome. Gray dashed lines indicate the 1.0e-5 and
genome-wide significant 5.0e-8 p-value thresholds. (E) Locus zoom of the height association peak on chromosome 20 showing the associated loci UQCC1/GDF5
within the area. (F) Heritability, and standard error, bar plot for the entire or ethnic-specific cohort, and each ethnic-specific GWAS for the BMI and height. The PRS for
BMI and height is displayed in (G). The y-axis represents the “best fitted”R2 for the entire cohort and each ethnicity with vertical error bars representing the bootstrapping
confidence interval. The average proportion of European ancestry, based on the ADMIXTURE K � 3 calculations, for the entire cohort and per ethnicity is displayed at the
x-axis. Horizontal lines were drawn between the smallest and largest measured European ancestry values for that group.
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associations were for known BMI-associated gene regions MC4R,
SEC16B, and, to a lesser extent, the FTO gene (Figures 3C,D,
Supplementary Tables S1–S4) (Dina et al., 2007; Scuteri et al.,
2007; Locke et al., 2015; Ng et al., 2017). Two signals were only
found using the TopMed reference panel for imputation. In
accordance with some of the height-specific signals, the BMI-
associated signals on chromosomes 5 and 10 were due to higher
frequencies of these markers within either the Asian or African
ethnicity. The strongest associations of the joint analysis, namely,
the region on chromosomes 18 (MC4F) and 19 (ZC3H4), were
less prominent in the MR-MEGA approach. In contrast, MR-
MEGA showed a significant association in a region on
chromosome 3 independent of the used imputation. To
confirm these signals, another meta-analysis method that was
specifically developed for multiethnic cohorts, namely, the
Bayesian method MANTRA, was used (Morris, 2011).
Comparing the results of MANTRA with MR-MEGA showed
an overlap of several associations, including the previously found
signal on chromosome 3 (Supplementary Figure S4A). It also
shows that geographic continental differences of the allele
frequency for signals with stronger differences may be the
underlying reason for observed chromosome 3 and more
single-variant signals (Supplementary Figure S4B).

SNP-Based Heritability for BMI and Height
SNP-based heritability for BMI and height was determined for
the entire cohort and all HELIUS ethnicities separately
(Figure 3F). The SNP-based heritabilities of both traits were
comparable across the ethnic groups (except perhaps for BMI in
the Ghanaian group, the smallest group, for which we likely
lacked the statistical power for this analysis).

PRS for BMI and Height
PRS results for the genetic complex height and BMI phenotypes
were substantially different between ethnicities in our cohort.
Especially the European ancestry of the cohort was correlated
with the degree of explained phenotype-variance by the PRS
(Figure 3G). The lower explained phenotypic variance for the
Ghanaian and African Surinamese for height (0.018/0.038) and
BMI (0.012/0.035) compared to the Dutch (0.125/0.089) indicates
a reduction in the predictive accuracy for these ethnicities.

DISCUSSION

The Amsterdam Urban genetic map shows the diverse
composition of the city and the challenges of urban
sampling. Besides the clustering of all participants with
their ethnic substructure, substantial admixture can be
observed (Figure 1). Notable substructures were observed
in the Moroccan group with clusters of individuals
representing a possible north and south Saharan gradient.
With the inclusion of all African and Asian populations, the
Turkish and Dutch participants seemed to partly overlap.
When zooming in to a more detailed picture of this overlap,
excluding the African and Asian populations these subgroups
showed the HELIUS Turkish and Dutch participants at

opposite sides of the first component in accordance with a
geographical south to north gradient (Supplementary Figure
S2A). In addition, a substructure was observed among the
Turkish participants who likely reflect the reported clustering
with Middle Easterners, and South Asians (Hodoglugil and
Mahley, 2012). Inclusion of the Moroccans within the
European PCA analysis showed the described gene flow
from the Near East, Europe, and sub-Saharan geographical
regions (Supplementary Figure S2B) (Henn et al., 2012). In
general, PCA revealed that there was a clear clustering
between Ghanaian, Moroccan, Turkish, and Dutch
ethnicities, but it also showed that within ethnicities, such
as the Turkish and Moroccan, additional subgroups were
observed.

Within the genotyped HELIUS participants, a large
proportion of individuals had Surinamese descent with three
distinct ethnic groups, namely, the African Surinamese, South-
Asian Surinamese, and Javanese Surinamese. African
Surinamese descended from the transatlantic slave trade to
the Americas having roots in Western Africa (Henn et al.,
2012; Micheletti et al., 2020). South-Asian Surinamese
ancestry originated from the Indian subcontinent coming to
Suriname as indentured workers. The smallest genotyped group
consisted of Javanese Surinamese having their origin from the
island of Java in the former Dutch East Indies where ancestors
were contracted to come as workers to Suriname. These
historical backgrounds and the different ancestries from
diverse continents within the Surinamese were observed in
the admixture substructure within the three Surinamese
ethnic groups (Figure 1B). Another observation was that
scattered clustering seen within the African Surinamese was
larger than that in African Americans and other African
Caribbeans (Figure 1C). The admixture within the
Surinamese and the genetic substructure within Turkish and
Moroccan will influence the performance of imputation and
genetic association studies.

The effect ethnicity has on the imputation results revealed
that both the imputation server and specific imputation
reference cohort have an impact on the results. Our re-
imputation data suggest that a close match of the genetic
background from the imported individuals with the reference
panel was important. This was also emphasized by studies of
human genetic variation that discover new common genetic
variation through the inclusion of new populations
(Bergström et al., 2020). It also underlines the importance
of increasing diversity in reference panels toward a more
global genomic approach at least as long as array genotyping
of large cohorts is more cost-efficient than a whole-genome
sequencing approach.

Besides imputation, another challenge is performing GWAS
with ethnically diverse cohorts. Despite the fact that the HELIUS
cohort is smaller in size than cohorts of previous height and BMI
studies, few of the reported associations were replicated. For the
strongest associations, no big differences between the used
imputation reference panels were observed. GWAS using the
TopMed reference panel did however found more genome-wide
associations. Better imputation of the HELIUS cohort with the

Frontiers in Genetics | www.frontiersin.org November 2021 | Volume 12 | Article 7272698

Ferwerda et al. Genetics of Amsterdam Society

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


TopMed reference panel could be the explanation for this. When
using the entire cohort, the risk is that ethnic-specific variations
will be lost during QC and not analyzed. This can be overcome by
splitting the cohort into ethnic groups on which the QC and
association testing are performed. The disadvantage of splitting
the cohort into ethnic groups for the meta-analysis is even smaller
groups were created, which is likely the reason that the replicated
associations were weaker (Figures 3A–D). Also ethnic-specific
signals, such as the TopMed height signal on chromosome 7, were
lost using a meta-analysis. Another challenge was shown by the
BMI ethnic-specific meta-analysis introducing other signals. Due to
unique ethnicities within HELIUS, it is hard to determine if these
observed signals are a true association or an artifact. Overall, we
think that with a cohort of the size of HELIUS, a meta-analysis
would be too strict, and when using a representative imputation
reference panel, joint individual–level GWAS approach is sufficient.

Height and BMI were specifically chosen as a trait because of
their high heritability. Compared to BMI, height showed a higher
degree of heritability across all groups. This higher heritability of
height than BMI is in line with previous findings reporting the
heritability of these complex traits (Wainschtein et al., 2019; Zhou
and Lee, 2021). Estimated heritability for BMI in the Ghanaian
group showed that one must be careful while interpreting
heritability when calculated within a small number of
individuals. Our PRS results showed what the effect is of the
used summary statistic. To construct the PRS of BMI and
height, we used the summary statistics from a GWAS study that
was conducted in individuals with European ancestry (Yengo et al.,
2018). When comparing the prediction accuracy of the PRS
between the HELIUS ethnicities, the populations with more
European ancestry showed higher prediction accuracy
(Figure 3G). These observations also illustrate the need for more
non-European cohorts to better predict within multiethnic groups.

Altogether, the HELIUS cohort with its Amsterdam urban
roots reflects the current genetic diversity of the Dutch
metropolitan city. The uniqueness of the dataset lies in the
considerable genetic diversity of the participants that all live in
close geographic proximity with each other and that therefore
all are exposed to similar urban environmental influences. Its
diverse composition covers a substantial portion of the human
population genomic diversity of today. The consequence of the
genetic diversity and admixture within the population will be
that the analytic methods must be carefully considered. An
important point is the choice of the imputation reference
cohort. With the genetic diversity of the HELIUS population,
the most diverse reference panel is preferred. When comparing
the BMI and height associations of the HELIUS cohort with the
ethnic-specific meta-analysis, the entire cohort analysis showed
stronger associations signals. The effectiveness of polygenic risk
prediction is dependent on the ancestral background of the
discovery GWAS, confirming the need for large-scale non-
European GWAS efforts for a wider range of complex traits
and diseases, to which the HELIUS cohort can potentially
contribute. Shifting toward more diverse cohorts in genetic
research has the potential to help health research improve for
larger portions of our increasingly globalizing and ethnically
diverse societies.
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