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Resting-state functional MRI (fMRI) exhibits time-varying patterns of functional
connectivity. Several different analysis approaches have been developed for examining
these resting-state dynamics including sliding window connectivity (SWC), phase
synchrony (PS), co-activation pattern (CAP), and quasi-periodic patterns (QPP). Each of
these approaches can be used to generate patterns of activity or inter-areal coordination
which vary across time. The individual frames can then be clustered to produce temporal
groupings commonly referred to as “brain states.” Several recent publications have
investigated brain state alterations in clinical populations, typically using a single method
for quantifying frame-wise functional connectivity. This study directly compares the
results of k-means clustering in conjunction with three of these resting-state dynamics
methods (SWC, CAP, and PS) and quantifies the brain state dynamics across several
metrics using high resolution data from the human connectome project. Additionally,
these three dynamics methods are compared by examining how the brain state
characterizations vary during the repeated sequences of brain states identified by a
fourth dynamic analysis method, QPP. The results indicate that the SWC, PS, and CAP
methods differ in the clusters and trajectories they produce. A clear illustration of these
differences is given by how each one results in a very different clustering profile for the
24s sequences explicitly identified by the QPP algorithm. PS clustering is sensitive to
QPPs with the mid-point of most QPP sequences grouped into the same single cluster.
CAPs are also highly sensitive to QPPs, separating each phase of the QPP sequences
into different sets of clusters. SWC (60s window) is less sensitive to QPPs. While the
QPPs are slightly more likely to occur during specific SWC clusters, the SWC clustering
does not vary during the 24s QPP sequences, the goal of this work is to improve both
the practical and theoretical understanding of different resting-state dynamics methods,
thereby enabling investigators to better conceptualize and implement these tools for
characterizing functional brain networks.

Keywords: dynamic functional connectivity, resting-state fMRI, k-means clustering, sliding window correlation,
phase synchrony, co-activation patterns (CAPs), quasi-periodic pattern (QPP)
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INTRODUCTION

Resting-state functional MRI (rsfMRI) is a powerful tool for non-
invasive examination of brain networks in healthy cognition,
aging, disease, etc., but the traditional time-averaged approach
only gives a summary of what happens over the course of the
scan. Time-varying rsfMRI methods provide deeper insight into
the brain’s functional architecture and the large-scale changes in
activity that play out over the course of a scan (Keilholz et al.,
2017; Preti et al., 2017) and have been shown to correlate with
underlying neural activity (Tagliazucchi et al., 2012; Thompson
et al., 2013; Keilholz, 2014) and behavior (Liegeois et al., 2019).

Several analysis methods have been proposed to capture
time-varying activation and deactivation of functional networks
throughout the brain. Some are based on the pattern of activity
across the brain, while others specifically examine how the
relationship between areas evolves over time. The temporal
resolution of the technique is related to the length of the
window used, which can range from a single TR to more
than a minute. These analysis methods result in a time-varying
series of matrices, which are often condensed into a handful of
brain states using clustering techniques (Hutchison et al., 2013).
Currently, there is little consensus about which analysis methods
or parameterizations should be used, and as a result, researchers
tend to choose methods somewhat arbitrarily. The wide variety
of approaches hinders the comparison of findings obtained
with different methods. Here we compare the outcomes for
three different dynamic analysis methods coupled with k-means
clustering and applied to the same data set, to provide insight into
the similarities and differences of the results. A brief summary of
each rsfMRI dynamic analysis method can be found in Table 1.

Sliding Window
One of the most common techniques for examining time-varying
rsfMRI is a sliding window (SWC) correlation analysis (Chang
and Glover, 2010; Keilholz et al., 2013; Preti et al., 2017).

TABLE 1 | Summary of dynamics methods.

Method Sliding window
correlation
(SWC)

Phase
synchrony
(PS)

Co-activation
patterns (CAP)

Quasi-periodic
patterns (QPP)

Summary Finds FC within
brief (∼60s)
windows.
Repeating at
each time-step
along the full
duration.

Finds the
instantaneous
phase of each
voxel timeseries
using a Hilbert
transform.
Calculates
synchrony
between phase
angles of each
voxel pair at
each timepoint.

Cluster
timepoints of
BOLD data
directly. Often
performed on
signal peaks
above a given
threshold (i.e.,
top 15%) for
each voxel.

Searches the
BOLD timeseries
to find repeating
spatiotemporal
sequences of
activation with the
specified window
length.

Parameter
dependence

Window length Robust Robust Window Length

Example
references

Chang and
Glover, 2010;
Allen et al.,
2014, 2018;
Damaraju et al.,
2014; Hindriks
et al., 2016

Glerean et al.,
2012; Yaesoubi
et al., 2015;
Cabral et al.,
2017

Liu et al., 2013;
Chen et al.,
2015; Gutierrez-
Barragan et al.,
2019; Zhang
et al., 2020

Majeed et al.,
2011; Thompson
et al., 2014;
Yousefi et al.,
2018; Abbas et al.,
2019a; Yousefi and
Keilholz, 2021

Based on widely-used methods for calculating average functional
connectivity (FC) as the correlation between brain areas over
the course of the entire scan, in SWC, the fMRI timeseries is
segmented using a time window of length w (typically 30–60s)
and the correlation between pairs of brain regions is calculated
for each window at every timestep.

Phase Synchrony
Phase synchrony (PS) is similar to the sliding window approach,
except the window length is reduced to a single timeframe by
using Hilbert (Glerean et al., 2012; Cabral et al., 2017) or wavelet
(Chang and Glover, 2010; Yaesoubi et al., 2015) transformations
to obtain the instantaneous phase of the timeseries at each
timepoint, then the PS between pairs of brain regions can
be calculated. As with the sliding window approach, k-means
clustering (Yaesoubi et al., 2015; Cabral et al., 2017) can then be
applied to identify temporal dynamics.

Co-activation Patterns
Another approach to the analysis of single timeframe rsfMRI
is to examine co-activation patterns (CAP) (Liu et al., 2013;
Chen et al., 2015). In contrast to the phase synchrony approach,
CAP analysis identifies simultaneous occurrence of BOLD signal
peaks or troughs in different brain regions independent of signal
phase. The relationship between the BOLD signal and neural
activity has been shown to arise from the temporally sparse
events which form the basis of CAP analysis (Zhang et al., 2020).
CAP analysis typically utilizes k-means clustering to identify
different CAPs and this allows temporal dynamics to be identified
and potentially compared to other time-varying rsfMRI methods
including SWC and PS.

Quasi-Periodic Patterns
Finally, one alternative to temporal clustering of single
timeframes is to identify spatiotemporal patterns which occur
repeatedly over sequences of frames (Majeed et al., 2011).
Quasi-periodic patterns (QPPs) observed through this type
of analysis represent a known dynamic feature of rsfMRI
(Yousefi et al., 2018; Bolt et al., 2021) and have been shown
to correlate with neural activity (Thompson et al., 2014). The
strongest QPP typically consists of a sequence displaying a
transition between a period of strong activation of default-
mode network (DMN) and deactivation of sensory and attention
networks to a period of DMN deactivation coupled with
activation of sensory and attention networks (Abbas et al., 2019a;
Yousefi and Keilholz, 2021).

We examine the relationship between brain states formed
using SWC, PS, or CAP analysis, and investigate how each one
classifies QPPs observed in the dataset. Our findings highlight
commonalities and disparities across the methods and provide
some insight into the sensitivity of various approaches.

MATERIALS AND METHODS

Data and Preprocessing
The minimally preprocessed grayordinate and FIX de-noised
rsfMRI of the HCP S900 release (Van Essen et al., 2012) consisting
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of 817 individuals with four complete rsfMRI scans (1,200-
timepoints, TR = 0.72s) were downloaded and preprocessed for
previous studies (Yousefi et al., 2018; Keilholz et al., 2020). In
brief, each timeseries was demeaned and bandpass filtered (0.01–
0.1 Hz), and global (white matter, cerebrospinal fluid (CSF),
and gray matter) signals were regressed. The spatial dimension
was reduced to 360 cortical parcels (Glasser et al., 2016) and
each parcel’s timeseries was z-standardized. The first scan of
the first day for each subject was used in all calculations of
time-varying FC.

Sliding Window Connectivity Analysis
Square 60s windows (83 timepoints), overlapping for all but a
single timepoint, were utilized for the sliding-window analysis
(Shakil et al., 2016). The Pearson correlation for each parcel-pair
was calculated and Fisher transformed to normalize the variance
during each 60s time-window from the first timepoint and at
each ensuing time-step (1TR = 0.72s) with windows overlapping
except for a single timepoint. A symmetrical 360 × 360 matrix
of pairwise values for all brain regions was obtained for each
window (1,117 per scan = 1,200 total timepoints–window length)
and a vector-by-time matrix containing a single value for each
of the 64,620 parcel-pairs (equivalent to the lower triangle of the
360 × 360 matrix) at each timepoint served as the input for the
clustering algorithm to define brain states.

Phase Synchrony Analysis
The instantaneous phase was calculated at every timepoint
by taking the Hilbert transform for each parcel. The phase
synchrony between each parcel-pair was then computed as the
cosine of the difference in phase angles at each timepoint.
A vector-by-time matrix of 64,620 pairwise phase synchrony
values was obtained for each timepoint and used as the input for
the clustering algorithm.

Co-activation Pattern Analysis
The original CAP analysis applied an activation threshold (often
top 15% or z-score > 1) to a seed region and averaged BOLD
frames across all suprathreshold timepoints (Liu and Duyn,
2013). Further work extended CAP analysis to a more data
driven, whole-brain approach by performing k-means clustering
directly on the BOLD timeseries data (Liu et al., 2013). For
the present study we performed k-means clustering of the
360 parcels at each timepoint. In order to display cluster
centers in a comparable format to the other methods, after
clustering, the 360 elements of each centroid were multiplied
with themselves generating a 360× 360 outer-product matrix for
each cluster center.

K-Means Clustering
Clustering was performed in MATLAB using the k-means
function with k = 5 as the cluster number, correlation distance
as the distance metric, and 30 replications per run for each of the
SWC, PS, and CAP methods. Each of these methods generated
a 2D vector-by-time matrix of values for all 360 parcels (CAP)
or 64,620 parcel-pairs (SWC/PS) at every timepoint (1,200/scan

for PS/CAP) or every time window (1,117/scan for SWC). For
each dynamic analysis method, the vector by time matrices
were initially clustered for each individual scan. The cluster
centroids (means) from all individual scans were then clustered
by k-means using the same parameters to generate group-level
cluster centroids. The group-level centroids were the used to
initialize clustering of all timepoints across all individuals. This
iterative clustering process has been utilized in previous studies
of brain dynamics (Allen et al., 2014, 2018) and greatly reduces
the computational time and resources required for large datasets.

Selecting an appropriate number of clusters is a critical part
of this type of dynamic analysis. Larger numbers of clusters
can potentially provide more information but increasing the
cluster number greatly increases computation time and can
make interpretation more challenging by increasing complexity
and reducing the distinction between clusters. For this study,
preliminary results were generated using a range of 3–10 clusters
on a subset of 20 subject scans (but otherwise the same methods
described above). These preliminary results are displayed in
Supplementary Materials for k = 3, 7, and 10 clusters. Based
on these initial observations, k = 5 clusters were selected as a
sufficient number to provide an effective comparison between
the different dynamic analysis methods. While the ideal cluster
number may vary for the different approaches, it was important
to use a consistent number for this comparative analysis.

Comparing the Methods
The resulting clusters, termed brain states, for each dynamic
analysis method were visualized by plotting of the cluster
centroids as 360 × 360 pairwise matrices with the parcels
grouped into seven cortical functional networks as defined by
Yeo et al. (2014). Weighted cluster averages were computed
for each method as a comparison to time-averaged functional
connectivity by taking the mean of the five cluster centroids
weighted by the state occurrence rates. The clusters from each
method were also compared against each other using several
dynamic metrics, including the occurrence rate of each state,
the probability of a transition from one state to each of the
other states [after concatenating across subjects and ignoring
within-state transitions; method described by Cornblath et al.
(2020)], and the mean dwell time spent within one state before
a transition to another state. The state composition was also
compared for each method to determine whether timepoints
identified as belonging to a specific brain state by one method
were likely to belong to a specific state identified by one of
the other methods.

Quasi-Periodic Patterns
Quasi-periodic patterns analysis identifies repeating
spatiotemporal sequences of a specified duration using a
pattern finding algorithm (Majeed et al., 2011). The QPP can
be thought of as a sequence of specific brain states that repeats
over time. For this analysis, a duration of 33 timepoints (24s)
was used based on previous work showing prominent QPPs
with a duration of 20-24s occurring in resting-state data (Abbas
et al., 2019a). Over the full dataset a total of 6,717 occurrences
(defined as 33-timepoint sequences with a correlation of r ≥ 0.3
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to the QPP template) of the strongest QPP were identified. The
QPP was used to compare across dynamic analysis methods by
determining the probability of each of the 33 timepoints in the
QPP sequence being identified as belonging to a specific brain
state using each method.

Statistical Testing
Several comparisons between analysis methods were tested for
statistical significance using MATLAB functions. Permutation
tests were performed to quantify the significance of sequential
state transitions differing from chance in a method similar
to the one described by Cornblath et al. (2020). A total of
100,000 permutations were used to calculate the probability
distribution of transitioning to the next (different) state from
the current state given the overall occurrence rates of each
state with Bonferroni correction for multiple comparisons. The
Kruskal-Wallis test was performed to quantify differences in the
distribution of subject-mean dwell times across states within and
between each of the three analysis methods. The Mann-Whitney
test was performed for further pairwise comparisons of dwell
times using Bonferroni correction for multiple comparisons. Chi-
square goodness of fit tests were used to test for overlap in the
composition of states identified by the different analysis methods.
The occurrence rates of each state over all 980,400 timepoints
were input as the expected frequency and compared against
observed frequencies to determine overlap in state composition.
The same Chi-square procedure was used to quantify the
likelihood that timepoints belonging to a QPP would be clustered
into a specific state.

RESULTS

The cluster centers resulting from k-means clustering for each
of the dynamic analysis methods are illustrated in Figure 1.
To enable direct visual comparison, every plot in Figure 1
appears on the same color scale and the cluster centers are
z-score normalized and scaled by the standard deviation of
the time-averaged FC. The cluster centers for each method
appear qualitatively similar to previous findings (Allen et al.,
2014; Damaraju et al., 2014; Yaesoubi et al., 2015). Clear
differences are evident between the three methods, particularly
between CAP and the other two. The SWC and PS centroids all
somewhat resemble the plot of time-averaged FC over the entire
dataset, except with some variations in the levels of correlation
within major networks and considerable variation in correlations
between major networks. Qualitatively, the PS centroids appear
quite similar to SWC centroids but with slightly greater variation
between the states. In stark contrast are the CAP centroids, which
appear to capture periods dominated by activation of specific
networks and display a much greater degree of variation across
states. The weighted cluster averages for each method closely
resemble, and were strongly correlated to, the time-averaged
FC with r = 0.994, 0.998, and 0.863 for SWC, PS, and CAP
averages respectively.

Further differences between the methods are highlighted
by the metrics displayed in Figure 2 which highlights the
distributions of mean dwell time for each subject within each

state before a transition and also plots matrices of transition
probability from one state to another. The distributions of
mean dwell times differed substantially for the different analysis
methods (Kruskal-Wallis Chi-squared = 10,722; p < 0.05) with
SWC brain states exhibiting much longer dwell times than PS
(Mann-Whitney z = 35.2; p < 0.05) or CAP (z = 35.2; p < 0.05).
For SWC, state 2 had the shortest mean dwell time of 139 s
(median 114.5 s) while state 1 had the longest 163 s (median
128.5 s). Mean dwell times for PS states ranged from 12 to 13 s
and were significantly longer (z = 34.9; p < 0.05) than CAP states
which ranged from 5 to 6 s.

The transition probability matrices show that each analysis
method produces non-random state sequences. The plus and
minus signs overlayed on the heatmap indicate transitions to
the next (different) state from the current state that occur more
(“ + ”) or less (“−“) frequently than if state transitions occurred
randomly (p < 0.05; Bonferroni corrected for 20 comparisons per
analysis method).

Figure 3 displays the state occurrence rates for each method
and the probability that a timepoint belonging to a state from
one method corresponds to a specific state identified by another
method. For comparison to SWC, the observed CAP or PS
states corresponding to every timepoint within the SWC windows
were included for every SWC window of each state. Each
CAP state showed a significant deviation from the expected
(null) distribution in the frequency of belonging to specific PS
states (Chi-squared values = 53, 72, 85, 82, 74 respectively;
p < 0.05 for each, Bonferroni corrected). Similarly, each SWC
window showed a significant deviation from the expected (null)
distribution in the frequency of observed PS states (Chi-squared
values = 31, 58, 81, 113, 40 respectively; p < 0.05 for each,
Bonferroni corrected). However, only SWC windows in state 2
showed a significantly non-random distribution of observed CAP
states (Chi-squared = 23; p < 0.05, Bonferroni corrected).

The template of the strongest QPP (termed QPP1), consisting
of the average of all identified recurrences of the 33-timpoint
spatiotemporal pattern padded by the 17 timepoints before
and after, is shown in Figure 4. In agreement with previous
findings (Yousefi et al., 2018; Abbas et al., 2019a), QPP1 consists
of a period of high DMN activation followed by a transition
to a period of high sensory (visual and somatomotor) and
attention (both dorsal and ventral) network activation with
strong anti-correlation of the DMN to sensory and attention
networks evident during each phase. A video representation of
the QPP1 template mapped to a 3D brain surface can be found
in Supplementary Materials. A mean (± standard deviation)
of 8.2 ± 3.1 QPP1 sequences were observed per subject with a
maximum of 18 QPP1 sequences in one subject and three subjects
with no QPP1 sequences detected.

Figure 4 also displays plots of the probability of those same
timepoints belonging to the 5 brain states identified for each of
the three dynamic analysis methods. These plots highlight the
relationship between the methods. For the CAP analysis, states
1 and 2 significantly increase in likelihood (Chi-squared = 105;
p < 0.05) during high DMN activation, and states 3, 4, and
5 each increase significantly (Chi-squared = 74; p < 0.05)
in likelihood during high activation of sensory and attention
networks. For PS, the likelihood of state 1 increases while that

Frontiers in Neural Circuits | www.frontiersin.org 4 April 2022 | Volume 16 | Article 681544

https://www.frontiersin.org/journals/neural-circuits
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neural-circuits#articles


fncir-16-681544 March 29, 2022 Time: 17:0 # 5

Maltbie et al. Comparison of rsfMRI Dynamics Methods

of state 2 decreases for the entirety of the QPP, peaking in
the middle (Chi-squared = 51; p < 0.05). Finally, unlike with
the other two methods, SWC state probabilities remain nearly
constant throughout the QPP with no significant deviations at
any timepoint, although the QPP sequences did show increased
likelihood of occurring during SWC states 1 and 3 (Chi-
squared = 11; p < 0.05).

The results shown in Figures 1–4 were obtained using global
signal regression (Power et al., 2015). These analyses were
replicated on the same data with gray-matter signal regression
removed from the pre-processing with the results displayed in
Supplementary Materials (Supplementary Figures 1–4). While
the cluster centers in Supplementary Figure 1 differ visually from

those in Figure 1, the dwell times (Supplementary Figure 2),
overlap in cluster occurrence (Supplementary Figure 3), and
state trajectories during QPPs (Supplementary Figure 4) are
all qualitatively similar without gray-matter signal regression
with no apparent differences in the relationships between the
analysis methods.

The Supplementary Materials also contain results for each
analysis method performed on a subset of the data (N = 20)
using k = 3, 7, 10 clusters. Supplementary Figures 5–7 display
cluster centers (comparable to Figure 1) for each method with
these alternate cluster numbers. CAP centers show consistently
high within-network activity and become increasingly specific to
single networks with increasing cluster number, whereas SWC

FIGURE 1 | The top three rows plot cluster centers colored by z-scores of correlation, cosine, and BOLD (BOLD amplitude squared) between parcel-pairs of sliding
window connectivity (SWC), phase synchrony (PS), and co-activation pattern (CAP) clusters respectively. The clusters are sorted by occurrence rate (% shown above
each centroid). The 360 spatial parcels are sorted into seven major functional networks identified by Yeo et al. (2014). The bottom row displays the time-averaged FC
for the full dataset and the mean across cluster centers weighted by the occurrence rates for each dynamic method. The cluster weighted averages are correlated
with time-averaged FC with r = 0.994, 0.998, and 0.873 for SWC, PS, and CAP methods respectively.

Frontiers in Neural Circuits | www.frontiersin.org 5 April 2022 | Volume 16 | Article 681544

https://www.frontiersin.org/journals/neural-circuits
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neural-circuits#articles


fncir-16-681544 March 29, 2022 Time: 17:0 # 6

Maltbie et al. Comparison of rsfMRI Dynamics Methods

and PS centers capture different cross-network configurations
which display increasingly subtle variations as the cluster
number is increased. Supplementary Figures 8–10 show the
categorization of QPP timepoints (comparable to Figure 4) for
each method with the different cluster numbers. While the plots
appear less smooth due to the smaller dataset, the relationship

between the QPPs and clustering appears consistent across cluster
number for each method. Supplementary Figure 11 displays the
average sum of within-cluster distances for k = 2:10 for each
method using the same subset of the data. The plot displays
smooth curves for each analysis method and does not indicate
a clear optimal selection for the cluster number.

FIGURE 2 | Summary of dynamics metrics; Distribution of mean dwell time between state transitions for each state in each subject (N = 817) and transition
probability matrices from each state to the next. Mean dwell time is displayed with and without SWC included. The “ + ” and “−” symbols overlaid on the transition
probability matrices indicate transitions that are more or less likely, respectively, than chance to occur based on permutation tests (p < 0.05; Bonferroni corrected for
multiple comparisons).
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DISCUSSION

One of the challenges involved in interpreting time-varying
connectivity metrics in the current literature is that each
approach is sensitive to a different aspect of the brain’s dynamics.
Here for the first time, we look for an explicit relationship
between these different dynamic analysis methods applied to the
same dataset, providing a basis for understanding the relationship
between different analysis approaches.

The results provide a detailed comparison between brain states
obtained with the four dynamic analysis methods: SWC, PS,
CAPs, and QPPs. Perhaps unsurprisingly, the differences between
these methods are shown to result in prominent differences
in brain states identified by k-means clustering despite each
method closely reproducing time-averaged FC when the states
are averaged sequentially (as shown in Figure 1). In particular,
the results indicate that SWC with a 60s window length may not
provide the necessary temporal resolution to capture important
features of brain dynamics, such as QPPs, that occur on shorter
time scales. This is clearly illustrated by the much longer

dwell times for SWC states, which might be expected from the
temporal smoothness caused by the 60s windows overlapping
by all but a single timepoint of offset. While the 60s window
length is a common choice for SWC, the use of a shorter
window would likely produce a more similar result to the PS
method, however there is evidence that the use of very short
SWC windows can potentially introduce spurious correlations
(Leonardi and Van De Ville, 2015). See Shakil et al. (2016) for an
extensive evaluation of SWC parameters for dynamic analysis.

Meanwhile PS and CAP analysis both provide superior
temporal resolution at the level of a single timepoint, but each
produces quite different brain states following k-means clustering
due to the underlying features each method is sensitive to.
This point is demonstrated by how each of these two methods
captures QPPs. PS is sensitive to correlations between regions
and frequently categorizes the entire QPP into brain state 1
because of the prominent anti-correlation of the DMN to sensory
and attention networks that characterizes the QPP. Intriguingly
the probability of PS state 1 is highest during the transition
period between the QPP peak and trough, likely indicating

FIGURE 3 | Comparison of state composition across dynamics methods. Top-left shows the state occurrence rate of each analysis method with states sorted from
highest occurrence (state 1) to lowest occurrence (state 5). Top-right shows the probability of a timepoint that belongs to a specified co-activation pattern (CAP)
state corresponding to each of the five phase synchrony (PS) states. The bottom panels show the probability of a timepoint that belongs to a specified CAP state
(Bottom-left) or PS state (Bottom-right) corresponding to each of the five sliding window connectivity (SWC) states.
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FIGURE 4 | Comparison of most likely states during QPP1. Top-left shows spatiotemporal QPP1 template with timepoints on the x-axis and space (Glasser’s 360
parcels) on the y-axis and colors corresponding to z-score BOLD signal amplitude. The other three panels show the same timepoints on the x-axis with the likelihood
of being in each state plotted on the y-axis with the colors corresponding to the five brain states identified by each dynamic analysis method. A video representation
of the QPP1 template mapped to a 3D brain surface can be found in Supplementary Materials.

that this transition is the period of greatest coherence of the
regional signal trajectories. Meanwhile, because CAP analysis is
sensitive to signal amplitude the first phase of the QPP, when
DMN is activated, is categorized into states 1 and 2 while the
second phase of the QPP, when sensory and attention networks
are activated, is categorized into states 3, 4, and 5 but almost
never states 1 or 2. This finding could potentially explain the
unexpected result of longer dwell times for PS compared to
CAP as each QPP results in a greater number of CAP state
transitions than PS state transitions. A similar relationship
is observed when the data is analyzed without global signal
regression. The QPPs are frequently categorized into a single PS
state (especially during the mid-QPP phase transition period)
while each phase of the QPP is mostly categorized into different
CAP states and SWC states do not make any specific transitions
during the QPPs.

How to Choose the Best Dynamic
Analysis Method for a Study
Sliding window connectivity may still be advantageous relative to
time-averaged functional connectivity for comparisons between
groups (Damaraju et al., 2014; Hindriks et al., 2016; Menon

and Krishnamurthy, 2019) and window lengths shorter than
the 60s used for this study may produce results closer to
the PS method. However, PS and CAP methods do provide
noteworthy advantages for dynamic analysis. In additional to
capturing information at shorter time scales, each can potentially
be performed without an arbitrary window length selection.
While the CAP analysis for this study did not employ an
activation threshold, performing clustering directly on the BOLD
data, seed-based CAP analysis commonly utilizes an arbitrarily
selected threshold that could influence the results (Liu et al.,
2013; Chen et al., 2015; Gutierrez-Barragan et al., 2019; Zhang
et al., 2020). Likewise, PS does not require the investigator to
set any specific parameters, but the data is commonly bandpass
filtered (Cabral et al., 2017) into frequency bands (typically
0.01–0.1 hz or lower) which is likely to reduce sensitivity to
dynamics at higher frequencies. CAP analysis also offers the
advantage of reduced dimensionality and computation time
given the clustering is performed on data from N parcels rather
than (N-1)∗N/2 parcel pairs. However, Cabral et al. (2017)
have shown that PS (and potentially SWC) analysis can be
effectively performed on the leading eigenvector of the parcel
pairs, reducing the dimensionality to the same number N and
producing similar results.
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Investigators may also wish to consider performing QPP
analysis for examining brain dynamics as this method has
demonstrated clear neural correlates (Thompson et al., 2014),
reproducibility across individuals (Yousefi et al., 2018) and across
species (Belloy et al., 2018a), and the potential to differentiate
patient groups from controls (Abbas et al., 2019b). Further, as
PS and CAP analysis have now been shown to be sensitive
to QPPs, it is possible that regression of one or more QPPs
could benefit a PS or CAP analysis by uncovering additional
features that might be obscured by the widespread spatial changes
of the QPP (Belloy et al., 2018b; Yousefi and Keilholz, 2021).
Meanwhile, for studies explicitly seeking to identify dynamic
changes occurring on slower time scales, the SWC method could
be advantageous specifically because it is less sensitive to QPPs
that could potentially confound the hypothesized differences.
Indeed, there is evidence suggesting that SWC methods featuring
window lengths ≥30s perform better than shorter windows or
single timepoint methods at segmenting different cognitive tasks
(Xie et al., 2019).

Finally, there is recent evidence that the correlation between
BOLD signal and underlying neural activity arises specifically
from the type of peak amplitude events utilized for CAP analysis
(Zhang et al., 2020), potentially making CAPs the most sensitive
method for studying neural brain dynamics. However, more
research is certainly needed to elucidate the relationship between
BOLD signal dynamics and neural activity.

Further Considerations and Limitations
One significant limitation of this study is that only k = 5
clusters/brain states were fully tested. Choosing an appropriate
number of states for a particular study is important and can
pose a challenge as there is not a well-established number of
brain dynamics features and no perfect method for determining
the optimal number to select. Some studies (Allen et al., 2014,
2018; Damaraju et al., 2014; Gutierrez-Barragan et al., 2019) have
employed the “elbow method” in which the ratios of within-
cluster distances to between-cluster distances are plotted for a
series of k cluster numbers (see Supplementary Figure 11) and
a number k is selected which protrudes from the plot such that
a greater contribution to optimizing the clustering is apparent
for k than for k + 1. However, the number of clusters featuring
optimized distances may not always be the optimal number for
investigating brain dynamics and ideally studies will investigate a
range of k clusters as shown here in the Supplementary Materials
for a subset of the data (N = 20). For this study, the subset
results do not indicate an optimal cluster number for any method
using the elbow criterion but do appear consistent across a range
of 3–10 clusters with each analysis method displaying common
features and clustering QPP sequences in a consistent manner.

An important methodological consideration for this type of
analysis is the distance metric employed for k-means clustering.
While the correlation distance was used for the present study,
some have suggested that L1 distance may offer advantages
for this type of analysis (Allen et al., 2014). However, in
performing this study the L1 distance was found to require
greater computation time than the L2 or correlation distance
metrics, and in limited testing the correlation distance appeared
to offer the most qualitatively consistent results.
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