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Genome-wide random regression 
analysis for parent-of-origin effects 
of body composition allometries in 
mouse
Jingli Zhao1,2,*, Shuling Li3,*, Lijuan Wang4, Li Jiang2, Runqing Yang1 & Yuehua Cui5,6

Genomic imprinting underlying growth and development traits has been recognized, with a focus on 
the form of absolute or pure growth. However, little is known about the effect of genomic imprinting 
on relative growth. In this study, we proposed a random regression model to estimate genome-wide 
imprinting effects on the relative growth of multiple tissues and organs to body weight in mice. Joint 
static allometry scaling equation as sub-model is nested within the genetic effects of markers and 
polygenic effects caused by a pedigree. Both chromosome-wide and genome-wide statistical tests were 
conducted to identify imprinted quantitative trait nucleotides (QTNs) associated with relative growth 
of individual tissues and organs to body weight. Real data analysis showed that three of six analysed 
tissues and organs are significantly associated with body weight in terms of phenotypic relative growth. 
At the chromosome-wide level, a total 122 QTNs were associated with allometries of kidney, spleen and 
liver weights to body weight, 36 of which were imprinted with different imprinting fashions. Further, 
only two imprinted QTNs responsible for relative growth of spleen and liver were verified by genome-
wide test. Our approach provides a general framework for statistical inference of genomic imprinting 
underlying allometry scaling in animals.

Genomic imprinting, an epigenetic phenomenon of parent-of-origin-specific gene expression, has been widely 
observed in plants1 and animals2–9 and has been recognized for its role in shaping developmental processes10–12. 
Genomic imprinting is a highly complex process that is involved in a number of growth axes operating coordi-
nately at different development stages and showing a time-dependent effect during development. Most imprinted 
genes play important roles in controlling embryonic and post-natal growth and development in mammals. Based 
on the parental origin of the expressed allele, imprinting is classified into paternal imprinting and maternal 
imprinting. Imprinting can be further categorized as complete imprinting, when only one allele is expressed, or 
partial imprinting, when both alleles are expressed but at different levels13–15. To date, imprinting quantitative trait 
loci (iQTL) for growth and development traits have been identified in which the traits are measured in absolute 
growth. Little is known about how genomic imprinting affects relative growth, partially due to a lack of efficient 
statistical modelling and inference procedures.

As a measure of relative growth, allometry scaling describes the relationship between the entire body size 
and partial body size or between certain two biological traits. A “simple equation of allometry” has been initially 
developed to quantify allometry scaling16. In a simple allometry equation, the two variables include not only body 
size measured in scale of length and weight, but also body shape, density and volume. By taking into account 
the correlations among multiple body parts, the joint static allometry scaling model17 was proposed to simul-
taneously evaluate allometry scalings of multiple body parts to the entire body. Allometry scaling relationships 
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between different biological traits contain three terms of allometries: static allometry, ontogenetic allometry and 
evolutionary allometry18–20. Static allometry refers to the relative growth between two different traits in adult or 
at a particular developmental stage. Ontogenetic allometry is the growth trajectory of one trait relative to the 
other in ontogeny. Evolutionary allometry is the relative growth between traits across species. The differentiation 
in allometries among traits has been thought to be a driving force by which morphology and structure evolve21.

Methods for detecting imprinting loci have been adapted from methods of interval mapping for Mendelian 
quantitative trait loci (QTL). Imprinting effects can be estimated using either least squares9,22–24 or maximum 
likelihood methods25. Multi-step tests for contrast models have been also proposed to identify the imprinting 
pattern9,22–24. With Bayesian model selection, Yang, et al.26 estimated genomic imprinting effects and inferred 
more genomic imprinting patterns than those summarized by Cheverud, et al.27. In the aspect of relative growth, 
genetic analyses for allometry scalings between biological traits have been carried out by embedding a simple 
allometry equation into additive genetic effects of the mixed linear model28,29 and into genotypic effects of genetic 
model for mapping QTL30–32. However, all these approaches to map allometry scalings are based on a single QTL 
model. When allometry scalings are controlled by multiple QTLs, they perform low power to detect QTLs. So far, 
no statistical method has been proposed to search for imprinted QTL for multiple allometry scalings.

Most current reports on genomic imprinting have been focused on brain and placenta in mammals33–35. 
Imprinting also affects adult traits either through the persistent effects of early growth and development36–38 or 
through direct effects on adult physiology. In absolute growth, a genome-wide mapping has been undertaken to 
identify quantitative trait nucleotides (QTNs) that have an imprinting effect on adult body composition using a 
three-generation intercross between inbred mouse strains39. To identify imprinted QTN for relative growth of 
tissues and organs to body weight in mice, here we developed a random regression model in which a joint static 
allometry scaling model is nested into genetic effects of markers and polygenic effects. The model was derived 
under the random regression framework, in which genetic effects of markers and genomic imprinting patterns 
are statistically inferred using chromosome-wide and genome-wide statistical tests.

Methods
Joint allometric scaling model.  Let x x x, , , m1 2  denote m partial body sizes and y be the entire body 
size. The joint static allometry model17 is defined as

β= β β β
y x x x (1)m0 1 2

m1 2

where β0 is an intercept, and β = j m, 1, ,j  are partial scaling exponents of the jth partial component to the 
entire body size. Nonlinear least squares method is generally used to get unbiased estimators of the partial scaling 
exponents. Under the linear mixed model framework, a linear transformation of model (1) facilitates genetic 
analysis of allometric scalings. Taking the natural logarithm on both sides of model (1), we have

β β β β= + + + .y x x xln ln ln ln ln (2)m m0 1 1 2 2

With the transformation, the joint static allometric scaling model can be optimized through a stepwise regression 
analysis.

Random regression model for multiple static allometries.  For a family-based population, suppose 
that n individuals are genotyped for q markers and observed for m partial body sizes. Four possible genotypes, 
denoted as QQ, Qq, qQ and qq, are distinguished at each marker. The first allele of each genotype is inherited 
from the paternal parent when considering the parental origin of alleles. In addition to the additive and domi-
nance effects, the two reciprocal heterozygotes Qq and qQ carry the genetic imprinting effect that reflects the dif-
ference in allele expression derived from the two parents. Polygenic effects can also be estimated using data from 
multiple full-sibling and half-sibling families. Following a simple animal model for a single trait, the relationship 
between the logarithm of entire body size and markers can be modelled as

∑ ∑= + + + + += =y h b z a w d s i g eln ( ) (3)i l
l

il l j
q

ij j ij j ij j i i1 1

where yi is the entire body size for the ith individual; bi represents the lth fixed effect in l systematic environments, 
such as sexes; aj, dj and ij are additive, dominance and imprinting genetic effects for the jth marker; hil, zij, wij and 
sij are indicator variables corresponding to bl, aj, dj and ij, where zij, wij and sij are defined in Mantey et al.40; gi is the 
polygenic genetic effect derived from the pedigree information, assuming that σ~g N A(0, )i g

2  with A being a 
relationship matrix and σg

2 being the polygenic genetic variance; and ei is the residual error with σ~e N (0, )i e
2 .

To genetically analyse allometric scalings of multiple partial to entire body sizes, we embed model (2) into 
systematic environments, genetic effects of markers and polygenic effects in model (3), yielding the following 
random regression animal model41,42:
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where θ β β= + ∑θ θ
=f x x( , ln ) ln ( ln )j j k

m
kj ki0 1  with θ ∈​ b, a, d, i or g. Let ϕ ϕ ϕϕ = 


x xln lnij ij ij i ij mi1 , 

with ϕ ∈​ h, z, w or s and ϕ ∈​ h, z, w or s, = x xx [1 ln ln ]i i mi1 , β β βθ = 
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0 1 , then in matrix form, model (3) can be rewritten as,
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In this model, genetic effects are fixed for all markers and polygenic effects are random for all individuals. 
Thus, = ∑ + ∑ + += =( )y b a d i g u b z a w d s iE ln , , , , ( )i j j j j i j

p
ij j j

q
ij j ij j ij j1 1  and σ= ⊗ +Cov y A G I(ln )i e

2, 
where A and G are the numerator-relationship matrix and polygenic genetic covariance matrix for multiple allo-
metric scalings, respectively.

Statistical inference for genomic imprinting.  Restricted maximum likelihood method43 is imple-
mented to estimate parameters in the random regression model described above, which gives maximum likeli-
hood estimates and standard errors for fixed genetic effects at each marker, in addition to polygenic and residual 
variances. A student t statistic is formulated to statistically infer significance of marker genetic effect, which is 
calculated as

= = = 

ˆ ˆ ˆ
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Similarly, another t statistic is calculated as
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−
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to statistically infer imprinting patterns.
The two test statistics asymptotically follow a standard normal distribution if the sample size is large enough 

so that the difference between the sample size and the number of estimated parameters exceeds 120. Under a 
standard normal distribution, the critical value is taken as 1.96 or 1.301 for −​log(p) (p is the probability of the test 
statistic greater than 1.96) at the significance level of 5%. Thus, the iQTLs can be identified at chromosome-wide 
and genome-wide levels: by chromosome-wide test, the markers with significant genetic effects are screened from 
each chromosome, and then by genome-wide test, iQTLs are detected from all the significant markers screened 
by chromosome-wide tests.

In fact, we need to test whether or not a QTL exists, in which fashion the detected QTL inherits and what 
imprinting pattern the iQTL carries. A marker is identified as a QTL if one of the genetic effects is significantly 
different from zero by formula (6). In the case of no significant imprinting effect, the detected QTL is defined as 
a Mendelian QTL; otherwise, it is defined as an iQTL. The imprinting pattern can be further classified as either 
additive imprinting or dominance imprinting. Classification of imprinting patterns depends on the value and 
sign of i relative to a and d. The additive imprinting is composed of four subtypes: the complete or partial paternal 
additive imprinting corresponding to hypothesis d =​ 0 and a =​ i or d =​ 0 and a ≠​ i, respectively; and the com-
plete or partial maternal additive imprinting corresponding to hypothesis d =​ 0 and a =​ −​i or d =​ 0 and a ≠​ −​i, 
respectively. The dominance imprinting is further classified into bipolar dominance (H0: a =​ 0 and d =​ 0), polar 
over-dominance (H0: a =​ 0 and d =​ i) and polar under-dominance (H0: a =​ 0 and d =​ −​i). Following the definition 
of different imprinting types and the corresponding null hypothesis26,27,44, the imprinting pattern for the detected 
QTL can be statistically inferred by formula (7).

Case analysis.  A set of reciprocal cross families for distinguishing the four genotypes considering parental 
origin was derived from an F2 intercross of large (LG/J) and small (SM/J) inbred mouse strains45–47. Ten LG/J 
females were crossed with 10 SM/J males to produce 54 F1 hybrids. These F1 hybrids were intercrossed to produce 
510 F2 animals. The F2 males and females were then reciprocally mated to produce 158 full-sibling F2 families with 
a total of 1,632 F3 progenies. Animals were sacrificed after 70 days of age. They were weighed to obtain an overall 
measure of body size (y). The length of the tail (x1) was measured with callipers. The mice were then immediately 
dissected by necropsy, and reproductive fat depot (x2), heart (x3), kidneys (x4), spleen (x5), and liver (x6) were 
weighed to the nearest 0.01 g with a digital scale.

A total of 353 single nucleotide polymorphism markers were chosen from the 4,200 polymorphic markers 
scored as part of the CTC/Oxford genotyping consortium. These makers were genotyped for all F2 animals and 
their F3 offspring. The F2 and F3 genotypes were used to reconstruct haplotypes using the “block-extension algo-
rithm” in the PedPhase program48. With the inferred haplotype information, it was possible to distinguish all four 
genotypes in the F3 population at each marker locus with the paternal allele listed first and the maternal allele 
second.

Focusing on the form of absolute growth, Cheverud, et al.27 have mapped imprinting effects on the six tissues 
and organs in mice to know about the contribution of imprinting to quantitative variation in trait expression. 
By reanalysing the real dataset, we will estimate genomic imprinting effects and infer their patterns for relative 
growth of the adult body composition to body weight using the random regression model. Before gene mapping, 
these observations of traits were adjusted for the effects of ages at necropsy and litter sizes at birth45 and the resid-
uals with population mean were used in the following analysis.
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Stepwise regression analysis showed that not all six tissues and organs are significantly associated with body 
weight in relative growth. Thus, we dropped non-significant partial allometry exponents for model (2), and 
reached the following phenotypic joint static allometry scaling model by

= . . . .ˆ x x xy 35 9357 (8)4
0 2258

5
0 0327

6
0 4424

where x4, x5 and x6 refer to allometry scaling variables for kidney, spleen and liver, respectively. The joint static 
allometry scaling model of kidney, spleen and liver were chosen for a genome-wide random regression analysis 
to infer imprinting allometries; fatpad, tail and heart were excluded from the model due to their non-significant 
phenotypic partial allometry scalings effects.

The gender variable was considered as fixed in the final random regression model of multiple static allo-
metries. Each fixed effect and marker genetic effects were estimated for the partial allometry exponents, along 
with the covariance matrix for polygenic effects and residual variance in the random regression model were esti-
mated using REML via the DMU package. The initial values were defaulted as zero for each fixed effect, as identity 
matrix for the additive genetic covariance matrix and as one for the residual variance. Convergence precision for 
REML was set to 10−6.

Results showed that a total of 122 QTNs were detected using the chromosome-wide tests. These QTNs 
were distributed on all chromosomes, and 48, 54 and 44 QTNs were associated with the relative growth of kid-
ney, spleen and liver to body weight, respectively (results are shown in Table 1, Table 1S and Table 2S of the 
Supplementary file). Eleven QTNs were simultaneously associated with two of the three organs, showing plei-
otropic effects. The profiles of test statistics for imprinting allometries are depicted in Fig. 1 for kidney (upper), 
spleen (middle) and liver (bottom). A total of 13, 15 and 11 markers were identified to be imprinted for relative 
weights of kidney, spleen and liver, respectively, because their test statistics exceeded the critical value of 1.301 at 
the 5% significance level, as displayed in Fig. 1. Using the chromosome-wide test, Table 1 tabulates the imprinted 
QTNs for relative growth of kidney, spleen and liver to body weight in mouse. For these imprinted QTNs, three 
show pleiotropy effects; that is, marker 103 (on chromosome 6) is associated with the relative weight of both 
spleen and liver, while marker 118 (on chromosome 8) and 206 (on chromosome 11) have effects on the relative 
weight of both kidney and liver. Genome-wide tests further verified that only 18 QTNs are inferred to be statis-
tically significant at the 5% significance level, among which two are imprinted: marker 151 (on chromosome 15) 
regulates the relative weight of spleen and marker 184 (on chromosome 12) regulates the relative weight of liver.

Most of the imprinted QTNs inherit in bipolar dominance fashion with no significant additive and dominant 
effects. A total of 5 QTNs with over-dominance pattern control relative growths of three organs to body weight, 
among which SNPs rs3683086, rs13482635 and rs3713033 on chromosome 11, 15 and 19, respectively, were 
correlated with the kidney trait, while rs6296621 on chromosome 13 and rs3683086 on chromosome 11 were 
associated with spleen and liver traits, respectively. In particular, allometry of kidney to body weight was found 
to be regulated by imprinted SNP rs3688854 (on chromosome 2) in an under-dominance fashion, and allometry 
of spleen was regulated by SNP rs13480638 (on chromosome 10) with a complete maternal additive imprinting 
pattern. SNP rs13475748 (on chromosome 1) was inferred to be imprinted for the relative growth of liver to body 
weight, but its imprinting pattern was not defined since both the additive and dominant effects were significant.

Table 2 provides the significant QTNs for relative growth of kidney, spleen and liver to body weight based on 
the genome-wide test results. Eighteen out of 122 QTNs passed the genome-wide test, among which 4, 9 and 5 
were responsible for kidney, spleen and liver, respectively. Some QTNs showed an additive effect on allometries of 
three organs but no dominance effect (e.g., on liver). Two imprinted QTNs, rs13482486 (on chromosome 15) and 
rs3662939 (on chromosome 12) on spleen and liver, respectively, were further verified through the genome-wide 
test. Among the significant QTNs and polygene effects by genome-wide test, the two imprinted QTNs contributed 
17.12% and 37.12% of the total genetic variances for the relative growth of spleen and liver, respectively.

Simulation study.  The purpose of simulation was to investigate the statistical behaviour of detecting QTNs 
inherited in different patterns with the genome-wide random regression analysis. Based on the results from real 
data analysis, five additive/dominant QTNs (on chromosome 2) and two imprinting QTNs (on chromosomes 12 
and 15) were chosen for simulation analysis. In the simulation, the phenotypic values for kidney, spleen and liver 
were retained as well as the genotypes of genetic markers. Logarithm of body weights was generated by the esti-
mated fix regression effects for sex = 



. . . − .
. . . .



b̂ 2 6832 3 8641 0 1369 0 0482

0 1383 0 3029 0 5674 0 3707
, residual variance σ = . × −ˆ 3 4 10e

2 3 

obtained from the real data analysis, and polygenic genetic covariance matrix Ĝ for multiple allometry scalings. 
Two simulation scenarios were considered. In scenario 1, we evaluated the precision of parameter estimation and 
t h e  p o w e r  o f  Q T N  d e t e c t i o n  b y  g e n e r a t i n g  l o g a r i t h m  o f  b o d y  w e i g h t s  w i t h 

=










. − . − . .
− . . . − .
− . . . − .
. − . − . .










Ĝ
2 2273 0 5842 0 1994 0 3084

0 5842 0 1609 0 0712 0 0942
0 1994 0 0712 0 0673 0 0561

0 3084 0 0942 0 0561 0 0739

 estimated from the real data analysis. In scenario 2, we investi-

gated the performance of QTN detection with . Ĝ0 2 . Simulations were repeated 100 times in each scenario to 
assess the power of QTN detection and precision of parameter estimation. Parameter estimates and statistical 
powers of QTL detection with genome-wide random regression analysis are shown in Table 3 for the simulated 
datasets. As can be seen, the higher the relative contribution of the simulated QTN, the greater the power to detect 
the QTN, which meets the general statistical behaviour in QTL mapping. When a QTN was detected, its genetic 
patterns can be further accurately inferred. In addition, we found that the power to detect the dominant and 
imprinting QTNs was low, as compared with that needed to identify additive QTNs. This observation is consistent 
with a regular QTL mapping study in which a QTL with an additive effect is easier to detect compared with the 
one with a dominant effect.
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Discussion
Taking the joint static allometry scaling model49 as sub-model, we constructed the random regression model to 
statistically infer genomic parent-of-origin effects on the relative growth of body composition to body weight 
in mice. With comparison to the random regression model for growth and developmental traits42 and mapping 
procedure for allometry scalings30–32, there are three major advantages of our analysis method. First, the joint 
static allometry scaling model can more accurately estimate allometry scalings of multiple tissues and organs to 
body weights than the simple allometry equation16. More importantly, it facilitates the comparison and genetic 
analysis of multiple allometry scalings. Second, when analysing growth and developmental traits with the random 
regression model, it is required for each individual to repeatedly measure the traits in growth and developmental 
duration. However, such repeat measurement is not a necessity in our study, because for each individual, body 
compositions were measured only once at necropsy. Third, our method incorporates polygenic effects derived 
from a pedigree into a random regression model, improving the estimation accuracy of marker effects.

It should be noted that our method can provide the estimates of iQTNs’ effects and polygenic effects but not 
heritabilities of iQTNs; that is, it cannot answer how much iQTNs contribute to phenotypic variation. If experi-
mental individuals are sacrificed at different ages, the residual covariance matrix for multiple allometries can be 
estimated by nesting the joint static allometry model into permanent environmental effects caused by multiple 

Organ Chr. QTN Effect Se −log(p) Imprinting pattern

Kidney 2 rs13476790 −​0.246 0.108 1.641 Bipolar

2 rs3688854 0.165 0.065 1.968 Under-dominance

2 rs3715478 0.323 0.160 1.367 Bipolar

7 CEL-7_116160192 0.213 0.105 1.376 Bipolar

7 gnf07.120.460 −​0.235 0.111 1.472 Bipolar

8 rs13480023 −​0.226 0.079 2.38 Bipolar

8 rs3695597 0.174 0.076 1.643 Bipolar

9 rs13480180 −​0.177 0.077 1.669 Bipolar

11 rs3683086 0.167 0.077 1.527 Over-dominance

15 rs13482635 −​0.165 0.074 1.596 Over-dominance

19 rs3713033 −​0.110 0.056 1.316 Over-dominance

Spleen 4 mCV24740485 −​0.128 0.065 1.316 Bipolar

6 rs13478681 −​0.143 0.061 1.718 Bipolar

9 rs6182207 0.134 0.063 1.462 Bipolar

10 rs13480638 −​0.218 0.078 2.263 Complete maternal 
additive

10 rs13480797 −​0.114 0.053 1.506 Bipolar

10 rs3704401 −​0.113 0.057 1.324 Bipolar

10 rs6312070 0.151 0.063 1.793 Bipolar

13 rs13481990 −​0.159 0.045 3.401 Bipolar

13 rs3718727 0.122 0.058 1.448 Bipolar

13 rs6271232 0.106 0.049 1.497 Bipolar

13 rs6296621 0.158 0.048 2.958 Over-dominance

15 rs13482461 −​0.186 0.070 2.078 Bipolar

15 rs13482486 0.205 0.065 2.773 Bipolar

18 gnf18.051.412 −​0.140 0.070 1.351 Bipolar

19 rs6307076 −​0.091 0.046 1.314 Bipolar

Liver 1 rs13475748 −​0.263 0.110 1.784 Undefined imprinting

1 rs13475769 0.314 0.135 1.710 Bipolar

3 rs13477364 0.211 0.089 1.751 Bipolar

3 rs3658914 −​0.261 0.095 2.215 Bipolar

4 rs13478051 0.216 0.096 1.617 Bipolar

6 rs13478681 0.258 0.114 1.631 Bipolar

6 rs6339546 0.303 0.136 1.578 Bipolar

8 rs13480023 0.166 0.079 1.454 Bipolar

11 rs3683086 −​0.162 0.076 1.492 Over-dominance

12 rs3662939 −​0.325 0.161 1.358 Bipolar

12 rs3686891 0.339 0.158 1.490 Bipolar

14 rs13482174 −​0.266 0.100 2.091 Bipolar

16 rs4170074 0.218 0.093 1.723 Bipolar

Table 1.   Chromosome-wide imprinted QTNs for relative growth of kidney, spleen and liver to body weight 
in mouse.
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ages at necropsy. A complete random regression model can therefore be constructed to identify genomic imprint-
ing for joint allometries, denoted as

∑ ∑= + + + + + += =y eu b z a w d s i x g x pln ( ) (9)i j
p

ij j j
q

ij j ij j ij j i i i i i1 1

where xipi are random family and permanent environmental effect on multiple allometries. This allows us to 
successfully evaluate the genetic variation of multiple allometries, such as estimation of heritability for allometry 
scaling of each tissue and organ to body weight. In addition, a complete pedigree of many families and more 
recorded individuals are required to stably estimate the parameters in such a complex model. When separating 
real dataset with gender in case analysis, sub-dataset from male population is even not convergent in REML, this 
limits discussion about the effect of gender on imprinting status.

With the same dataset, Cheverud, et al.27 examined the contribution of imprinting to quantitative variation 
in trait expression by estimating imprinting effects on absolute growths of adult body composition traits. Of the 
eight pleiotropic iQTL the authors identified, only those on chromosomes 7, 12, and centromeric 18 were located 
in regions previously reported containing imprinted genes50. Their findings of imprinting loci, effects and pat-
terns on adult body compositions were strongly supported by genetic evidences of imprinting on chromosomes 
751, 1252 and 1853. In our study, most iQTL for relative growth of body compositions are in new locations that 
have not previously been associated with imprinting effects on the absolute growth. Only six iQTLs for relative 

Figure 1.  The profiles of test statistics of imprinted QTNs for relative growth of kidney (a), spleen (b) and liver 
(c) to body weight in mouse. The horizontal line in each plot represents the critical value of 1.301 for −​log(p).
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growth overlap with the four iQTLs identified for absolute growth on chromosomes 7, 12, and 18. In particular, 
the iQTLs for the relative growth on chromosomes 7, 12, and 18 have the same imprinting patterns as those for 
absolute growth, suggesting the existence of imprinting genes controlling both absolute and relative growth. By 
the chromosome-wide test, although the detected QTNs with additive, dominance or imprinting effect almost 
distributed on all chromosomes (see Tables 1S and 2S), only two iQTNs on chromosomes 12 and 15 were found to 
be associated with the relative growth of spleen and liver by the genome-wide test. Notably, the Pref-1/Dlk1 gene 
regulating growth retardation and accelerated adiposity is located on chromosome 12 in mice54.

If high density genetic markers are available that can distinguish the four genotypes, the method proposed 
here can be improved by doing an efficient marker selection, so that zero genetic effects can be first shrunk to 
zero by the least absolute shrinkage and selection operator55,56 for a sparse oversaturated regression model. Then, 
chromosome-wide or genome-wide non-zero genetic effects can be statistically inferred within the framework 
of the proposed model (5). If the detected QTNs only contribute to a small proportion of genetic variation for 
allometries, genome selection, for instance, whole genome regression57,58 and genomic best linear unbiased pre-
diction59–61 can be introduced to assess genomic variation of allometries based on our proposed model with high 
density markers.
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Ĝ Effect −​0.161(0.09) 0.227(0.08) 0.164(0.07) 0.303(0.06) −​0.098(0.08) −​0.301(0.06) 0.182(0.09)

Power 54% 72% 59% 84% 56% 70% 62%
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