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ABSTRACT

The three-dimensional conformation of genomes is
an essential component of their biological activ-
ity. The advent of the Hi-C technology enabled an
unprecedented progress in our understanding of
genome structures. However, Hi-C is subject to sys-
tematic biases that can compromise downstream
analyses. Several strategies have been proposed
to remove those biases, but the issue of abnor-
mal karyotypes received little attention. Many ex-
periments are performed in cancer cell lines, which
typically harbor large-scale copy number variations
that create visible defects on the raw Hi-C maps.
The consequences of these widespread artifacts on
the normalized maps are mostly unexplored. We ob-
served that current normalization methods are not
robust to the presence of large-scale copy num-
ber variations, potentially obscuring biological dif-
ferences and enhancing batch effects. To address
this issue, we developed an alternative approach
designed to take into account chromosomal abnor-
malities. The method, called OneD, increases repro-
ducibility among replicates of Hi-C samples with
abnormal karyotype, outperforming previous meth-
ods significantly. On normal karyotypes, OneD fared
equally well as state-of-the-art methods, making it a
safe choice for Hi-C normalization. OneD is fast and
scales well in terms of computing resources for res-
olutions up to 5 kb.

INTRODUCTION

One of the crown achievements of modern biology was to
realize that genomes have an underlying three-dimensional
structure contributing to their activity (1–3). In mammals,
this organization plays a key role in guiding enhancer-
promoter contacts (4), in V(D)J recombination (5) and in
X chromosome inactivation (6). A significant breakthrough
towards this insight was the development of the high
throughput chromosomal conformation capture technol-
ogy (Hi-C), assaying chromosomal contacts at a genome-
wide scale (7). Nowadays, exploring the spatial organization
of chromatin has become a priority in many fields and Hi-C
has become part of the standard molecular biology toolbox
(8).

Contrary to the precursor technologies 3C, 4C and 5C
(9–12), Hi-C interrogates all possible pairwise interactions
between restriction fragments. However, this does not guar-
antee that the method has no bias. On the contrary, local
genome features such as the G+C content, the availability
of restriction enzyme sites and the mappability of the se-
quencing reads have been shown to impact the results (13),
in addition to general experimental biases such as batch ef-
fects. It is thus important to normalize Hi-C data in order
to remove biases and artifacts, so that they are not confused
with biological signal.

Several methods have been proposed to remove biases in
Hi-C experiments (14). The first strategy is to model biases
explicitly from a defined set of local genomic features, such
as the G+C content. This approach is used in the method
of (13) and in HiCNorm by (15). The second strategy is to
implicitly correct unknown biases by enforcing some regu-
larity condition on the data. This approach is used in the It-
erative Correction and Eigenvector decomposition method
(ICE) of (16), whereby the total amount of contacts of ev-
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ery bin is imposed to be the same. ICE is currently the most
popular method, due in part to its speed and simplicity.

Neither of these strategies were designed for cell types
with karyotypic aberrations, most common in cancer. Yet,
Hi-C is very sensitive to aneuploidy, copy number varia-
tions and translocations. Actually, these aberrations have
so much influence on the outcome that they can be used
as signatures to re-assemble the target genome (17). An ad-
ditional complication is that karyotypic aberrations are not
experimental biases, so it is unclear whether they should be
corrected at all or be considered part of the biological sig-
nal.

So far, the only attempt to address the issue was the
chromosome-adjusted Iterative Correction Bias method
(caICB) of (18). However, caICB applies a uniform
chromosome-wide copy number correction, effectively ex-
cluding the numerous cases of partial aneuploidy and re-
gional copy number variations.

Here, we propose OneD, a method to correct local chro-
mosomal abnormalities in Hi-C experiments. OneD explic-
itly models the contribution of known biases via a gener-
alized additive model. The normalized data is more repro-
ducible between replicates and across different protocols.
Importantly, OneD is also efficient when cells have a nor-
mal karyotype, where it performs as well as the best nor-
malization methods. Finally, the implementation is as fast
as ICE and it scales up to 5 kb resolution with reasonable
computing resources.

MATERIALS AND METHODS

Model

The most common representation of Hi-C data is a contact
matrix, obtained by slicing the genome in n consecutive bins
of fixed size (the resolution) and computing the number of
contacts between each pair of bins. The values are stored
in the cells of the contact matrix (xij), quantifying the in-
teraction frequency between the two loci at positions i and
j.

Our approach is to model the total number of contacts
for each bin, thus reducing the matrix to a one-dimension
score (hence the name OneD) referred to as the ‘contact
profile’. We assume that the total number of contacts per
bin ti can be approximated by a negative binomial distribu-
tion. This choice is sensible because the amount of contacts
is a discrete variable that often presents a variance higher
than the mean (19) (a phenomenon known as overdisper-
sion), and because the negative binomial distribution allows
for overdispersion (20). We further assume that the explicit
sources of bias have independent contributions to the mean
of the distribution for a given bin �i.

Given that this relationship might not be linear (see for
instance Figure 1A), we allowed a smooth representation
using thin plate penalized regression splines (21) in a gen-
eralized additive model (22). Thin plate regression splines
are ‘isotropic’ because rotation of the covariate co-ordinate
system does not change the result of smoothing and ‘low
rank’ because they have far fewer coefficients than there are

data points to smooth. The model can be parametrized as

ti =
n∑

j=1

xi j ∼ NB(λi , θ ) and

log(λi ) ∝
∑

k

fk(zk,i ),

where xij is the raw number of contacts between bins i and
j, and zk, i is the additive bias of genomic feature k in bin i.

The smooth functions {fk( · )} are estimated through the
thin plate spline penalty, jointly with the negative binomial
dispersion parameter � using the the default arguments of
the mgcv::s and mgcv::nb functions (22) of the R soft-
ware (23).

Once the parameters of the model are determined, the es-
timated means {�i} are rescaled to obtain a correction vec-
tor {λ′

i } that can be used to compute the corrected counts
x̂i j .

λ′
i = λi∑n

j λ j /n

x̂i j = xi j√
λ′

i λ
′
j

(1)

In line with previous methods (13,15), the default features
used to fit the model are the local G+C content, the read
mappability and the number of restriction sites. The model
and the implementation can be modified or extended with
any user-provided genomic features.

Copy number correction

Briefly, a hidden Markov model with emissions distributed
as a Student’s t variable is fitted on the corrected total
amount of contacts per bin t̂i = ∑n

j=1 x̂i j . The model con-
sists of 8 states that correspond to 1, 2, 3, 4, 5, 6, 7 and ‘8
or more’ copies of the target bin, for a total of four emis-
sion parameters (a single position parameter for states 1–7,
a position parameter for state ‘8 or more’, a single standard
deviation for all the states and a single degree of freedom
for all the states) and 56 transition parameters.

The model is fitted with the Baum–Welch algorithm (24)
until convergence, following a previously described imple-
mentation (25). The Viterbi path is then computed and cor-
responds to the inferred copy number of each bin ci.

A correction equal to the square root of the copy number
is then applied to the whole matrix. More specifically, the
entry at position (i, j) is updated to

x̂∗
i j = x̂i j√

ci c j
. (2)

Data sources

We gathered a set of published Hi-C data (26–31) and un-
published data of different cell types and organisms (Sup-
plementary Table S1).

The Hi-C experiments were performed in T47D breast
cancer cell lines (aberrant karyotype, six samples), K562
leukemia cell lines (aberrant karyotype, eight samples),
mouse primary B cells (normal karyotype, six samples)
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Figure 1. Modeling biases from the contact profile. (A) Nonlinear relationship between the number of restriction sites and the total number of contacts per
bin in T47D. (B) Total number of contacts per bin on chromosome 9 of T47D. The purple line represents the raw signal, the dark blue line represents the
signal after OneD bias correction, the light blue line represents the signal after OneD bias and copy number (CN) correction and the orange line represents
the signal after ICE bias correction. The grey line represents the copy number estimation by independent CNV array and it has been scaled to match the
figure ranges. Some regions of the long arm of chromosome 9 (the region corresponding to 60–140 Mb) are present in four copies, explaining that the
signal is about twice higher than for the short arm. Both figures present data at 100 kb resolution

ES cells (normal karotype, seven samples), GM12878 B-
lymphoblastoid cells (normal karyotype, fifty eight sam-
ples), BT474 breast cancer cell line (aberrant karyotype,
one sample), MCF10 breast cancer cell line (aberrant kary-
otype, one sample), MCF-7 cancer cell line (aberrant kary-
otype, one sample) and SKBR3 breast cell lines (aberrant
karyotype, one sample).

The experiments were carried out in different laborato-
ries, following either the original Hi-C protocol (7) or the
newer in situ version (29), and using different restriction
enzymes (DpnII, HindIII, MspI, MboI and NcoI). In the
figures, ‘same protocol’ means same laboratory, same Hi-C
protocol and same restriction enzyme, and ‘different proto-
col’ means that any of the three is different.

We also used array-based copy-number segmentation of
the two cell lines obtained from the COSMIC database (32)
as an external reference for validation.

All data were processed through a pipeline based on
TADbit (33). Briefly, after controlling the quality of FASTQ
files, paired-end reads were mapped to the correspond-
ing reference genome (hg38 or mm10) taking into account
the restriction enzyme site. Non-informative contacts were
removed applying the following TADbit filters: self-
circle, dangling-ends, error, extra-dangling-
ends, duplicated and random-breaks (for more de-
tails see (26)). In addition, the pipeline is available from the
Supplementary Material published by (34).

We developed the routines contained in the dry-
hicR package (available at http://www.github.com/qenvio/
dryhic) to efficiently create sparse representations of con-
tact matrices and further apply vanilla (a single iteration of
ICE), ICE, KR and oneD corrections. HiTC (35) and Hi-
Capp (18) were used to carry out the HiCNorm and caICB
corrections respectively. When not specified, the resolution
of the analysis is 100 kb.

Simulations

Simulations were based on altering four experimental
Hi-C samples obtained from diploid mouse cell lines
(b7fa2d8db bfac48760, fc3e8b36a 7bf1bf374, GSM987817
and GSM862720, see Supplementary Table S1), that were
performed in either B cells or ES cells, and from either CRG
(Center for Genomic Regulation) or UCSD (University of
California San Diego). The simulation strategy was the fol-
lowing: First we selected uniformly at random the amount
of copy number break points (from 3 to 10). We then placed
the break points along chromosomes 18 and 19 uniformly
at random. Next, we assigned a copy number (2, 3, 4 or 10
with equal probability) to each segment delimited by the
break points. We computed the outer product of this sim-
ulated copy number profile and multiplied it element-wise
with the original contact matrices of chromosomes 18 and
19. The resulting matrices were used as input for correction
methods. For each simulation (100 in total), we measured
the pairwise reproducibility score defined by (36) and com-
puted the average for pairs from the same cell type minus
the average for pairs from different cell types.

Comparison of Hi-C matrices

There is no universally accepted standard to compare Hi-C
matrices. The simplest metric is the Spearman correlation
applied to intra-chromosomal contacts up to a given dis-
tance (5 Mb in what follows). The second option is to mea-
sure the similarity of observed over expected contacts via
the Pearson correlation up to a given distance range. Com-
pared to the first, this metric gives more weight to changes
occurring away from the diagonal. The third option is to
compute a correlation per distance stratum and then obtain
a stratum-adjusted correlation coefficient (SCC) as defined
by (37). Finally, the ‘reproducibility score’ proposed by (36)
sums the distances between the leading 20 eigenvectors of
the Laplacian of the Hi-C matrix. This approach borrows

http://www.github.com/qenvio/dryhic
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the concepts of spectral clustering (38) and amounts to
comparing high level features of the matrix.

We defined five data sets to measure experimental repro-
ducibility after normalization: The first contained the sam-
ples from T47D plus two samples from K562, the second
contained the samples from K562 plus two samples from
T47D, the third contained all the mouse samples, the fourth
contained all the GM12878 samples and the fifth contained
one sample of each breast cancer cells (see Supplementary
Table S1 for details). Given a set of experiments and a met-
ric, we first computed all pairwise combinations between ex-
periments and then classified the comparisons according to
the characteristics of each pair (cell type, protocol, batch
and treatment).

To measure the gain or loss of similarity upon normal-
ization, we compared raw matrices to obtain a baseline. The
differences with this baseline were estimated using a linear
mixed model fitted with the lmer function of the lme4 R
package (39), where the fixed effect was the normalization
method and the random effect was the chromosome. To test
the ability of the different methods to separate samples from
different cell origin we generated receiver operating charac-
teristic (ROC) curves using the similarity metric (e.g. repro-
ducibility score) as the classifier score and the relative cell
type (i.e. same versus different) as the binary classification.
ROC curves were computed using the ROCR package (40).

RESULTS

Bias correction in Hi-C experiments

The principle of OneD is to explicitly model Hi-C biases on
a single variable: the total amount of contacts for each bin
of the matrix, also referred to as the contact profile. The rea-
son for this choice is that the total amount of contacts is
approximately proportional to the local copy number. For
instance, a duplicated region in a diploid genome will show
on average a 50% increase in the number of contacts. Dis-
continuities of the amount of contacts thus correspond to
changes of the copy number.

Experimental biases affect the contact profile in a contin-
uous but not necessarily linear way. Figure 1A shows the re-
lationship between the amount of contacts and the number
of restriction enzyme sites in T47D, a breast cancer cell line
with an aberrant karyotype. Four clouds are visible. Each
corresponds to sequences present in one to four copies. In
all of them, the relationship flattens as the number of re-
striction sites increases. To capture this relationship, OneD
fits a non-linear model between the total amount of con-
tacts and the known sources of bias (by default the G+C
content, the number of restriction sites and the mappability
of the reads).

The experimental biases are estimated genome-wide and
each entry of the Hi-C matrix is then corrected using equa-
tion (1). Note that the corrected contact profile is still pro-
portional to the copy number. In cancer cell lines, the con-
tact profile corrected by OneD is highly correlated to the
copy number estimated from an external source (Supple-
mentary Figure S1). Figure 1B shows the corrected contact
profile along chromosome 9 of T47D, where OneD greatly
reduces the fluctuations (dark blue line).

Optionally, OneD allows the user to also correct the Hi-C
signal for the copy number. In this case, a hidden Markov
model is fitted on the corrected contact profile in order to in-
fer the local copy number. Each entry of the Hi-C matrix is
then further corrected using equation (2), i.e. it is divided by
the square root of the inferred copy number. In essence, this
approach flattens the contact profile so that it is no longer
proportional to the local copy number. The light blue line in
Figure 1B shows the result of this process. After this correc-
tion, the contact profile fluctuates around a genome-wide
constant value.

In what follows, we benchmarked OneD and OneD with
copy number correction (OneD+CN) against vanilla, ICE
(16), the KR algorithm (41), caICB (18) and the Local Ge-
nomic Features method (HiCNorm, 15,35). The first four
methods correct biases implicitly, whereas the fifth method
does it explicitly.

We used four metrics to compare Hi-C matrices (see Ma-
terials and Methods). For consistency and concision, the re-
sults based on the reproducibility score of (36) are shown in
the main figures, and the results based on the other metrics
are shown in the Supplementary Material.

Aberrant karyotypes

We first benchmarked the performance of our approach
on biological samples with an aberrant karyotype. A good
normalization method should increase the similarity be-
tween biological replicates by reducing irrelevant experi-
mental variance, such as batch effects, laboratory of ori-
gin and protocol variations. Likewise, a good normalization
should increase the contrast between different samples to
enhance the biological differences.

We collected multiple Hi-C data sets obtained from T47D
and K562 cells, both with aberrant karyotypes. The first
pool, referred to as the T47D data set contained six T47D
samples and two K562 samples, the second, referred to as
the K562 data set contained eight K562 samples and two
T47D samples. We compared matrices before and after nor-
malization by different methods (see Materials and Meth-
ods, distributions shown in Supplementary Figures S2 and
S3). This gave an indication of the impact of a given nor-
malization method on the biological variation (differences
between samples from T47D and K562) and on the techni-
cal variation (differences among samples from the same cell
type). The results are summarized in Figure 2 and Supple-
mentary Table S3.

On the T47D data set, the methods that increased the re-
producibility between identical cell types also increased it
between different cell types (Figure 2A), meaning that none
of them enhanced exclusively the biological signal. How-
ever, the difference was most marked for OneD and caICB.
On the K562 data set (Figure 2B), both methods increased
the reproducibility between identical cell types but not be-
tween different cell types, which is the desired behavior of a
correction method. On both data sets, OneD+CN, ICE and
KR gave inferior results, while raw+CN (copy number cor-
rection alone), HiCNorm and vanilla were not competitive.
The conclusions were unchanged when using other metrics
to compare Hi-C matrices (Supplementary Figures S4–S6).
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Figure 2. Removing biases from Hi-C on aberrant karyotypes. (A and B) Average changes compared to the raw data on the T47D and K562 data sets. The
bars represent 95% confidence intervals centered on the mean difference of the reproducibility score between a given correction method and the raw data.
Upper left panels: Different cell type samples processed using different protocols. Upper right panels: Same cell type samples processed using different
protocols. Lower left panels: Same cell type samples processed using the same protocol. (C and D) ROC curves on the T47D and K562 sets. The areas
under the curve are indicated in the bottom right corner. The color code is the same as in panels A and B.

An important application of normalization methods in
experimental setups is to identify outliers. We thus investi-
gated the capacity of the different methods to help identify
the samples from the other cell type spiked in the data set.
We interpreted the pairwise comparison scores as classifier
scores and summarized the results with a ROC curve (Fig-
ure 2C and D). OneD had the largest area under the curve
in both tests, and the corresponding ROC curve was above
the others throughout. Using other metrics to compare Hi-
C matrices yielded similar results (Supplementary Figures
S4–S6).

Taken together, these results show that OneD enhances
the biological variation and reduces the noise on samples
with an aberrant karyotype.

Normal karyotypes

Does the performance of OneD on aberrant karyotypes
come at the cost of decreased performance on normal kary-
otypes? To address this question, we collected data from
mouse B cells and embryonic stem (ES) cells, both with

a normal karyotype. The cell types were pooled in almost
equal proportions (see Supplementary Table S1) and we
performed the same tests as above using the same metrics
(distributions shown in Supplementary Figure S7)

In this test, the reproducibility between different cell
types was barely affected (Figure 3A). All the methods
increased the reproducibility between identical cell types
(except one, see below), but only when the experimental
conditions were different. This means that all the meth-
ods were able to remove some technical biases. ICE and
KR showed the strongest increase in reproducibility, but
OneD, OneD+CN, and caICB had competitive perfor-
mance. vanilla and HiCNorm were less competitive, and
raw+CN (copy number correction alone) performed poorly,
because it is equivalent to no normalization on diploid cells.
Other metrics gave similar results (Supplementary Figures
S8–S10, Supplementary Table S3).

As above, we used the reproducibility score for classifica-
tion and compared the tools with a ROC curve (Figure 3B).
The performance of all the tools were high and less variable
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Figure 3. Removing biases from Hi-C on normal karyotypes. (A) Average changes compared to the raw data on the mouse data set. Upper left panel:
Different cell type samples processed using different protocols. Upper right panel: Same cell type samples processed using different protocols. Lower left
panel: Same cell type samples processed using the same protocol. Lower right panel: Different cell type samples processed using the same protocol. (B)
ROC curves on the mouse data set. The legend and color code are as in Figure 2.

than for aneuploid cell lines. OneD achieved the highest area
under the curve on this problem, but with a small margin
over KR and ICE. The performance of OneD+CN was the
same as that of OneD because copy number correction has
no effect on diploid cell lines. Using other metrics to com-
pare matrices gave similar results (Supplementary Figures
S8–S10).

We took advantage of the wide range of protocols used
in the GM12878 set to further investigate the performance
of each method. The differences between methods were mi-
nor and OneD showed the greatest improvement in repro-
ducibility (Supplementary Figure S11).

Taken together, these results indicate that OneD performs
as well as the best normalization methods, even with normal
karyotypes.

Copy number correction

The results so far suggest that the copy number correc-
tion lowers the performance of OneD. A possible limita-
tion in Hi-C is the absence of ground truth. We thus used
simulations to generate matrices with defined karyotypic
aberrations (see Materials and Methods) and tested the ca-
pacity of the correction methods to distinguish different
cell types (Supplementary Figures S12 and S13). On this
test, HiCNorm and OneD performed best. In comparison,
OneD+CN performed less well, suggesting that correcting
the copy number attenuates the biological signal. This is
corroborated by the fact that the copy number correction
alone has a lower performance than no correction at all.
Thus, copy number correction can indeed have side effects
that lower the biological signal.

However, those conclusions are based on data sets where
the karyotype is uniform. One sometimes needs to compare
samples from cells with different karyotype, for instance in
cancer samples where the karyotypes may change through
time. In such conditions, copy number correction can re-

move a feature that is considered irrelevant in order to high-
light other biological differences.

To test this idea, we collected a Hi-C data set from breast
cancer cell lines and measured the reproducibility score be-
tween identical cell types after normalization with the dif-
ferent tools. In this case, we found that OneD+CN out-
performed OneD and gave the highest overall reproducibil-
ity (Figure 4A). Even though the variability is high in this
case, this suggests that the karyotypes of these cells have di-
verged, so that the copy number correction performed by
OneD+CN increased the reproducibility between samples
from the same cell type.

Copy number correction is also useful to give euploid-
equivalent representations of samples from aberrant kary-
otypes. Figure 4B shows an example where a region at the
center of the matrix is duplicated. ICE overcompensated the
original bias and faded the signal almost entirely. Concomi-
tantly, the signal at the bottom left of the matrix was en-
hanced and showed a structure that was not visible in the
raw data. On the contrary, HiCNorm strengthened the cen-
tral region and the diagonal. OneD+CN reduced the level
of the central portion by a factor 2 approximately, but did
not otherwise distort the main features of the region.

Besides matrix correction, copy number estimation could
have a potential stand-alone utility. For instance, we ap-
plied OneD+CN to a T47D sample (dc3a1e069 51720e9cf)
at 10 kb and compared the correlation with the array-based
copy number. The correlation increased from 0.80 for the
raw totals, to 0.88 for the OneD corrected totals to 0.92
for the estimated CN. We provide the table of the estimated
start and end points as Supplementary Table S2.

In summary, OneD+CN can improve the reproducibility
of samples with unstable karyotypes, and it can be used to
obtain an euploid-equivalent normalized matrix.
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Figure 4. Copy number correction. (A) Removing biases from Hi-C on breast cancer cells. The reproducibility score between samples from the same breast
cancer cell type was computed after normalization. The vertical bar shows the reproducibility score of the raw data. Shown are comparisons for different
(top) or identical (bottom) experimental conditions. (B) Detail of a Hi-C matrix normalized with different methods. The central portion has an increased
copy number, which affects normalization. ICE fades it away, HiCNorm enhances it and OneD reduces the signal by about half.

Capture Hi-C

Matrix-balancing methods (here ICE, vanilla and KR) are
specifically tailored for Hi-C because it is the dominant 3C-
derived technology. As a consequence, their performance is
typically lower when they are used for variants such as Cap-
ture Hi-C (42). In this case, the contacts with one or more
regions of interest are enriched through direct purification,
essentially erasing all the other contacts from the Hi-C ma-
trix. The lack of homogeneity of the signal in such technolo-
gies makes normalization particularly challenging.

We reasoned that OneD should handle such cases grace-
fully, because the signal is formally equivalent to an aber-
rant karyotype where most of the genome is present in zero
copy. We thus evaluated the performance of OneD on a Cap-
ture Hi-C data set at 5 kb resolution centered on a 6 Mb do-
main of chromosome 6 in T47D cells. We found that the re-
producibility score between replicates was higher after nor-
malization with OneD than with matrix-balancing methods
(Figure 5A and Supplementary Figure S14). The perfor-
mance of OneD was only slightly lower than the raw data,
suggesting that it barely disturbs the biological signal. Other
tools were not included because they had prohibitive run
time.

To gain additional insight, we also set up a ‘virtual Cap-
ture Hi-C’ data set by removing the signal outside the same
region of chromosome 6 from Hi-C experiments performed
in the same cell type. In this setup, we could restrict the data
and then normalize, or normalize and then restrict the data.
This allowed us to probe how sensitive the methods are to
the shape of the input data. Here we found that OneD sig-
nificantly outperformed the other methods: it featured the
highest reproducibility score between replicates with prac-
tically no influence from the shape of the data (Figure 5B).
Also, in this case, OneD enhanced the reproducibility be-
tween replicates compared to the raw data. This confirms
the view that capture methods are a natural framework
for the statistical model underlying OneD. In comparison,

matrix-balancing methods showed lower reproducibility be-
tween replicates, together with more variability due to the
shape of the data.

In conclusion, OneD is suitable for removing experimen-
tal biases from data acquired with Capture Hi-C.

Speed

Finally, we compared the computational speed of the dif-
ferent normalization methods. vanilla and ICE are broadly
used because of their conceptual simplicity, ease of use and
speed (16). This is even more significant as current explicit
methods (35) are much slower in comparison.

OneD corrects a single variable instead of the whole ma-
trix, and thus estimates the model parameters much faster
than previous explicit methods. We measured the running
time of the different tools on a 3.3 GHz machine with
62GB RAM, always using the default parameters. Fig-
ure 6A shows the running times of the different methods on
all the samples shown in Supplementary Table S1 at 100 kb
resolution. The fastest method was vanilla and the slowest
HiCNorm, with an over 100-fold span between the two.

On average, OneD was the second fastest method and it
always ran in <1 min in the conditions of the benchmark.
The copy number correction increased the running time, but
it remained under 1 min in general. Throughout this bench-
mark, the memory footprint of OneD was less than 300MB.
Interestingly, the running time of OneD was much more ho-
mogeneous than that of the other methods. The reason is
that the size of the regression problem to be solved by the
mgcv package is always the same at fixed resolution.

To better understand these results, we also investigated
the influence of bin size and sequencing depth on the run-
ning time. We performed a benchmark on the sample with
highest sequencing depth in the data set (HIC070, see Sup-
plementary Table S1) at different bin sizes while downsam-
pling the contact matrices to mimic lower depths. On this
test, we included only the methods competing with OneD
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Figure 5. Bias removal on capture Hi-C data. (A) Performance on the Capture Hi-C data. Two replicates centered on a 6 Mb domain on chromosome 6
in T47D cells were normalized by the indicated tools and their reproducibility score was computed. (B) Performance on virtual Capture Hi-C data. Two
Hi-C experiments were post-processed to produce an output similar to the Capture Hi-C experiment depicted in panel A. The signal outside the domain
on chromosome 6 was removed and the data were normalized (capt), or the data were normalized before removing the signal outside the domain on
chromosome 6 (full). Four matrices per method were generated and the reproducibility score between the pairs from different replicates were computed.
Note that the scores are identical for the raw data because in this case the matrices of the same replicate are identical.
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Figure 6. Computing time of the bias correction methods. (A) Total time to process samples listed in Supplementary Table S1 at 100 kb resolution. Each
dot corresponds to a sample. (B) Total time to process sample HIC070 at the indicated bin size and sequencing depths. Note the logarithmic scale on the
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in terms of speed, i.e. the matrix-balancing methods. Fig-
ure 6B shows that the running time of OneD does not de-
pend on the sequencing depth. Strikingly, OneD also gives
nearly identical results at very different sequencing depths
(Supplementary Figure S15). vanilla was the overall fastest
method and OneD was usually faster than ICE and KR at
high but not at low sequencing depth. At low resolution
(100 kb) the speed advantage of OneD appeared from low
sequencing depth, but at high resolution resolution (5 kb) it
appeared only at high sequencing depth.

Taken together, these results show that OneD is compet-
itive in terms of speed. It is particularly adapted to projects
where the sequencing depth is high, as the running time is
essentially not affected.

DISCUSSION

Here we introduced OneD, a fast computational method to
normalize Hi-C matrices. OneD was developed ground up
to address the need to normalize data from biological sam-
ples with aberrant karyotypes, but it applies seamlessly to
the case of normal karyotypes. We showed that OneD per-
forms significantly better than other methods when the cells
present karyotypic aberrations (Figure 2), and that it per-
forms equally well as the best methods on euploid genomes
(Figure 3). We also showed that OneD is approximately as
fast as ICE (Figure 6), which makes it competitive from the
point of view of computational speed.

The originality of OneD lies in the estimation from a sin-
gle variable of the explicit biases with a Negative Binomial
model and of the copy number. This allows greater run-
ning speed, while preserving a good performance on sam-
ples with karyotypic aberrations. One of the reasons why
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OneD is able to better highlight the biological distinctions
between samples is that it only corrects the copy number if
specifically requested by the user. The impact of copy num-
ber variations on normalization is rather opaque, especially
if they are treated as implicit biases (Figure 4B). Treating
them as explicit biases with optional removal seems to be an
overall safer strategy. In homogeneous data sets, correcting
for the copy number can blur the biological signal, but when
karyotypes are variable or unstable, it may increase the re-
producibility (Figure 4A). If the purpose is to remove the
effect of copy number, then OneD+CN outperforms a kary-
otype correction method such as caICB because it allows for
more flexible types of aberrations. On the other hand, if the
purpose is to improve the reproducibility among samples of
the same type, correcting the copy number removes part of
the signal, and therefore blurs the distinction between ex-
periments (Figures 2 and 3).

This raises the question whether variations of the copy
number constitute a biological signal or an artifact. If the
biological sample contains karytoypic aberrations, then its
genome is grossly different from the reference genome,
which makes signal correction very challenging. The proper
approach would be to use the actual genome of the bio-
logical sample as a reference to construct the contact map.
However, this strategy is presently unfeasible because as-
sembling mammalian genomes is still a hard problem.

Depending on the intention of the user, the effect of the
copy number should either be kept or removed. This is why
OneD does not perform the correction by default, but al-
lows the user to obtain a euploid-equivalent Hi-C map com-
puted from a hidden Markov model. The resulting matrices
have a near constant amount of contacts per bin, but the ar-
tifacts caused by the mismatch between the genome of the
sample and the reference genome are still present (for in-
stance, the artifacts caused by large scale inversions are not
changed in any way).

CONCLUSION

Overall, OneD constitutes a novel computational approach
to normalize Hi-C matrices. If the karyotype of the sample
is aberrant, it enhances the biological variation. If not, it
performs at least equally well as other methods in terms of
quality and of computational speed.
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39. Bates,D., Mächler,M., Bolker,B. and Walker,S. (2015) Fitting linear
mixed-effects models using lme4. J. Stat. Softw., 67, 1–48.

40. Sing,T., Sander,O., Beerenwinkel,N. and Lengauer,T. (2005) ROCR:
visualizing classifier performance in R. Bioinformatics, 21, 7881.

41. Knight,P.A. and Ruiz,D. (2013) A fast algorithm for matrix
balancing. IMA J. Numer. Anal., 33, 1029–1047.
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