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As the incidence of senile dementia continues to increase, researches on Alzheimer’s disease (AD) have become more and more
important. Several studies have reported that there is a close relationship betweenAD and aging. Some researchers even pointed out
that if we wanted to understand AD in depth, mechanisms of AD based on accelerated aging must be studied. Nowadays, machine
learning techniques have been utilized to deal with large and complex profiles, thus playing an important role in disease researches
(i.e., modelling biological systems, identifying key modules based on biological networks, and so on). Here, we developed an aging
predictor and an AD predictor using machine learning techniques, respectively. Both aging and AD biomarkers were identified to
provide insights into genes associatedwithAD. Besides, aging scores were calculated to reflect the aging process of brain tissues. As a
result, the aging acceleration network and the aging-AD bipartite graph were constructed to delve into the relationship between AD
and aging. Finally, a series of network and enrichment analyses were also conducted to gain further insights into the mechanisms
of AD based on accelerated aging. In a word, our results indicated that aging may contribute to the development of AD by affecting
the function of the immune system and the energy metabolism process, where the immune systemmay play a more prominent role
in AD.

1. Introduction

It has been reported that the number of people who develop
dementia is increasing rapidly—one case every 3 seconds [1].
In 2018, there were about 50 million people in the world
affected by dementia, and the main form was Alzheimer’s
disease (AD). Actually, AD is a very common neurode-
generative disease characterized by the abnormal level of
amyloid 𝛽-peptide (A𝛽) and tau protein [2]. Alzheimer’s
disease can affect the patients’ normal life and reduce the life
quality. Moreover, the cost of the treatment is very expensive,
resulting in an economic impact on the health care system
[3]. With the growth of elderly people, it is not difficult to
conclude that dementia will become a global problem.

Obviously, AD has its distinct etiology and neuropathol-
ogy. However, it has been proposed that if we wanted
to have a comprehensive understanding of AD, we must
study the relationship between aging and AD [4]. In fact,
aging had a lot to do with AD. According to the Baltimore
Longitudinal Study ofAging (BLSA), the incidence rate ofAD
increased visibly after the age of 60 [5]. That was to say aging
brains were much susceptible to AD compared with young
brains. Second, there was a phenomenon called normalcy-
pathology homology. For example, in the frontotemporal
region, cortical reductions were evident in elderly people,
including those who were nondemented. Interestingly, these
regions were also vulnerable to AD [6]. Third, AD patients
and healthy elderly people had some common symptoms,
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Table 1: The details of the data sets used to construct the aging predictor, the AD predictor, and the network predictor as well as the data set
used to construct the aging acceleration network.

Training data set Test data set

The data set for the aging predictor Age≤50: 275 samples Age≤50: 129 samples
Age>50: 575 samples Age>50: 272 samples

The data set for the AD predictor, the network predictor, and the
aging acceleration network

Normal: 850 samples Normal: 401 samples
AD: 662 samples AD: 312 samples
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Figure 1: The workflow in this work.

such as the episodic memory decline [7, 8], brain atrophy
[9–11], and the deposition of amyloid protein [12]. Moreover,
the accelerated decline of brain volume has already been
observed in mild cognitive impairment (MCI) compared
with the normal aging, which was of great importance in
understanding AD [10]. Therefore, we sought to study the
relationship between aging and AD from the perspective of
aging acceleration.We proposed a hypothesis that accelerated
aging was one of the most important factors to promote the
progression of AD by affecting some molecular mechanisms.

With the generation of large and complex datasets from
biological experiments, methods to analyze these datasets
became diverse.Machine learning is one of themost powerful
tools to cope with the huge and complex datasets. It can
learn the pattern of the given data and make predictions
for new data [13]. More importantly, the strength of this
approach is that it can sift through quantities of data to find
predictive patterns. In addition, network biology can study
the interactions between molecules and provide biological
information based on the machine learning methods [14, 15].

In this paper, we utilized machine learning techniques to
analyze the relationship between aging and AD and studied
the mechanisms underlying them. First, we identified aging
and AD related risk biomarkers, respectively. Second, we
established an aging score comprising the aging biomarkers.
Then the aging acceleration network was constructed based
on the correlation between each pair of genes and aging
scores. Finally, network analyses and enrichment analyses
were also conducted to understand the relevant biologi-
cal mechanisms. The workflow was shown in Figure 1. In

summary, the association between aging and AD biomarkers
was investigated by our computational pipeline.

2. Results and Discussion

2.1. Identification of Aging and AD Related Risk Biomarkers.
We analyzed the gene expression data, including 11,333 genes
based on 1,251 normal samples from 22 tissues and 974 AD
samples from 20 tissues (Table S1). The details of samples in
the training dataset and the independent test dataset were
shown in Table 1. We applied the reliefF algorithm to rank
the 11,333 genes and the nearest neighbor algorithm (NNA)
to construct the aging and AD predictors, respectively. Then,
the 5-fold cross-validation was used to evaluate the predictive
accuracies and select proper number of key markers. The
learning curves in the training datasets were shown in Figures
2(a) and 2(b).We considered the top 44 genes as aging related
risk biomarkers and the top 98 genes as AD related risk
biomarkers (Table S2), based on the cross-validation. Next,
the two predictors were validated in the independent test
datasets. The receiver operating characteristic (ROC) curves
were shown in Figures 3(a) and 3(b).The area under the ROC
curve (AUC) for the aging predictor was 0.8169 and the AD
predictor was 0.6850. Furthermore, the accuracy of the aging
predictor was 0.8806 and the AD predictor was 0.7359. In
summary, these results showed that the predictors were with
both high accuracy and efficiency.

The selected biomarkers were with critical functions. For
example, among the 44 aging biomarkers, the gene with
the highest ranking was USMG5 (DAPIT). As Ohsakaya
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Figure 2:The learning curves of the three predictors. (a)The learning curve of the aging predictor; (b) the learning curve of the AD predictor;
and (c) the learning curve of the network predictor.

S and his colleagues reported, DAPIT was associated with
mitochondrial ATP synthase [16]. It played an active role
in the energy metabolism of cells by maintaining the ATP
synthase population in mitochondria. Further, changes in
energy metabolism with age were a decisive factor of aging
[17]. As we grew older, the function and integrity of the
cells were gradually lost, resulting in a decrease in the total
amount and efficiency of energy production. This metabolic
shift would further lead to a decrease in cell function and
promote the progression of aging.

In addition, among the 98 AD biomarkers, the RPUSD3
gene ranked first.The protein it encodes affected the assembly
of mitochondrial ribosomes by adding a pseudouridine
group to 16S rRNA [18]. Thus, the loss of RPUSD3 can result
in defects in mitochondrial protein production. Cai Q et al.
revealed that mitochondrial disturbance was a key factor in
synaptic failure and degeneration in AD [19]. Mitochondria,
an important factor for synaptic function, can buffer Ca2+
and maintain neurotransmitter release by providing ATP.
Accordingly, the perturbation of mitochondria may lead to
synaptic function change and thus contribute to AD.

Interestingly, these discoveries suggested that mitochon-
dria seemed to act as a key bridge connecting aging and

AD. As aging progressed, most metabolic activities within
the cell gradually declined, including the dysfunction of
mitochondria. When these changes affected the normal
function of neurons in the brain, they may contribute to the
pathology associated with AD.

2.2. The Comparison of Aging Scores between Normal Samples
and AD Samples. To study the aging of brain tissues, we
calculated aging scores comprising the 44 aging related risk
biomarkers. As mentioned in Materials and Methods, for
each sample, the aging score was defined as the Euclidean
distance from its nearest young normal sample minus the
Euclidean distance from its nearest old normal sample. The
median and mean of aging score as well as the chronological
age for different age groups were shown in Tables 2 and
3, respectively. Both in the AD samples and in the normal
samples, the aging score increased roughly with the chrono-
logical age. More importantly, when the age was ≥85 years
old, although the average age of AD samples was lower than
that of normal samples, the aging score of AD samples was
still higher than that of normal samples.The results indicated
that the aging rate of brain tissues in AD patients was higher
than that of normal people, consistent with the previous study
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Figure 3:The ROC curves of the three predictors. (a)The ROC curve of the aging predictor; (b) the ROC curve of the AD predictor; and (c)
the ROC curve of the network predictor.

Table 2: The mean and median aging scores of AD and normal samples from different age groups.

Age The median aging score of
AD samples

The median aging score of
normal samples

The mean aging score of
AD samples

The mean aging score of
normal samples

≥58 0.7764 0.7497 0.7724 0.7209
≥60 0.7778 0.7468 0.7728 0.7217
≥65 0.7700 0.7465 0.7702 0.7219
≥70 0.7823 0.7461 0.7772 0.7144
≥75 0.7978 0.7640 0.7867 0.7302
≥80 0.8415 0.8246 0.8159 0.7791
≥85 0.8924 0.8426 0.8504 0.7783

about AD [10]. Additionally, we were surprised to find that,
compared to the chronological age, the aging scores were
more informative.

Then, the Kruskal-Wallis test was performed to validate
whether the aging scores reflected the difference between AD
and normal samples.The test was carried out on different age
groups in order to offset the effects of age, respectively. The
results were shown in Figure 4. It indicated that most of the
aging scores ofAD sampleswere indeed significantly different

from the normal samples (p<0.05), which implied the validity
of the aging scores.

2.3. The Aging Acceleration Network Can Provide Insights
into Key Biological Functions of AD. To better study the
potential molecular mechanisms between AD and aging, we
constructed an aging acceleration network using network
methods (see Materials and Methods). We required p<0.05
and FDR<0.2 to ensure reliable correlation. Furthermore,
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Table 3: The mean and median age of AD and normal samples from different age groups.

Age The median age of AD
samples

The median age of normal
samples

The mean age of AD
samples

The mean age of normal
samples

≥58 85 79 83.9928 79.3276
≥60 85 80 84.0979 79.6969
≥65 86 82 84.9914 80.7447
≥70 87 84 85.4547 83.7255
≥75 87 86 86.9070 86.9046
≥80 87 87 88.0232 88.9252
≥85 89 89 90.2199 91.1400

the opposite sign of the correlation coefficient was also
required to reflect the difference between the AD samples
and the normal samples. The aging acceleration networks
were constructed based on the training dataset and the test
dataset (Table 1), respectively. As a result, the Fisher’s exact
test was carried out to verify the reliability of the aging
acceleration network (p<0.05). The result showed that the
two networks established with different samples were with
enough similarity. Thus, it can be utilized to further analyze
the relationship between aging and AD.

The scale-free is one of the most important topological
properties for a biological network. To verify if the network
was in accordance with the scale-free characteristic, the curve
of node degree distribution was drawn (Figure 5). The node
degree and its corresponding probability were both logarith-
mically transformed.ThePearson’s correlation coefficientwas
-0.9315 (p<0.05). It indicated that the node degree distribu-
tion was consistent with the power-law distribution. As a
result, the aging acceleration network was with the important
characteristic of the biological network (scale-free).

Since the nodes (genes)with higher degrees played amore
dominant role in a scale-free network, we further studied
genes with high degrees in the network. First, we sorted 11,333
genes by degrees in descending order. As the method of the
ADpredictor,NNAwas used to train themodel to distinguish
AD samples from normal samples, and the fivefold cross-
validation selected the optimalmodel.The learning curvewas
shown in Figure 2(c). The top 98 genes with high degrees
can also serve as a predictor to well classify normal and
AD samples (Table S2). Furthermore, it also performed very
well in the independent test set——the AUC was 0.6222
and the accuracy was 0.7037. The ROC curve was shown
in Figure 3(c). In addition, through the aging acceleration
network, we can also understand the connections of these
98 network biomarkers. The subnetwork they formed was
shown in Figure S1. Above all, it was not difficult to draw the
conclusion that the network we established can indeed reflect
the difference underlying AD and normal aging.

The enrichment analysis was performed on the 98 net-
work markers to gain insights about the key biological func-
tions of AD. The enriched KEGG pathway was neurotrophin
signaling pathway (p=6.6516e-05, FDR=0.0124, shown in
Figure S1). The enriched Gene Ontology (GO) Biologi-
cal Processes (BP) were vacuolar transport (GO:0007034,
p=4.0923e-05; FDR=0.1815).

To our knowledge, neurotrophins (NTs) belong to a fam-
ily of trophic factors, including nerve growth factor (NGF),
brain-derived neurotrophic factor (BDNF), neurotrophin-
3 (NT-3), and neurotrophin-4/5 (NT-4/5) [20]. It played a
critical role in the nervous system. NTs can support the
growth and survival of neurons in healthy brains and regulate
neurological functions, such as axon and dendritic growth,
synapse development, and synaptic plasticity [21, 22]. Further,
the entorhinal cortex (EC) was of importance to the normal
cognitive function [23], which was vulnerable to AD. In the
early stages of AD, the EC showed a reduction in volume [24,
25], but neurotrophins such as brain-derived neurotrophic
factor (BDNF) can maintain the cortical neurons in the EC
[26]. Accordingly, the dysfunction of neurotrophin signaling
pathway might conduce to the development of AD.

The accumulation of toxic substances in the brain is
a feature of AD. Through autophagy, cells can eliminate
protein aggregates and damaged organelles to maintain their
own functions. However, autophagic vacuoles (AVs) were
observed to accumulate in dystrophic neurites in the AD
brain [27]. This suggested that autophagy and vacuolar
transport in AD patients were abnormal compared with
normal brains. In a word, our results could identify critical
functions of AD based on aging acceleration.

2.4. The Network Analysis of the Aging-AD Bipartite Graph
Reflected the Relationship between Aging and AD. In order
to dissect the relationship between AD and aging, the
shortest paths between aging and AD related risk biomark-
ers were identified in the aging acceleration network. The
enrichment analysis was then carried out on each short-
est path (from each aging marker to AD marker). The
most significant KEGG pathway was Alzheimer’s disease
(three enriched shortest paths: p=1.2891e-05, FDR=0.0024;
p=7.1372e-04, FDR=0.1328; p=3.5946e-04, FDR=0.0669), the
most significant GO BP term was protein dealkylation
(GO:0008214, p=5.1337e-06, FDR=0.0228), and the most
enriched cell signaling pathway was chemokine signaling
pathway (p=9.9905e-04, FDR=0.1858). The corresponding
shortest paths were shown in Figure 6.

A total of three shortest paths were enriched on the
KEGG pathway of Alzheimer’s disease (Figure 6(a)), and the
most significant one was the pathway from USMG5 (aging
marker) to PREB (disease marker). USMG5 was also the
highest ranked gene in the aging predictor. As described
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Figure 4: The results of the Kruskal-Wallis test for aging scores of AD samples and normal samples in different age groups. (a) Age≥58; (b)
age≥60; (c) age≥65; (d) age≥70; (e) age≥75; (f) age≥80; and (g) age≥85.
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above, USMG5 (DAPIT) affected the energy metabolism of
cells by maintaining ATP synthase in mitochondria [16].
More importantly, energymetabolismwas also related to AD.
The brain is the most complex organ of the human body,
and it requires a lot of energy to maintain its work. When
energy metabolism declines, the brain is greatly affected. It
has been reported that defects in glucose availability and
mitochondrial function were exacerbated in AD [28]. This
suggested that energy metabolism might be a factor for the
progression of AD.

In addition, the most enriched GO BP term was protein
dealkylation (GO:0008214). Protein dealkylation referred to
the removal of an alkyl group from a protein amino acid.
It has been reported that microcystin-leucine-arginine (MC-
LR)-mediated demethylation of PP2Ac was associated with
GSK-3𝛽 phosphorylation in Ser9 and contributed to the
dissociation of B𝛼 from PP2Ac [29]. This would result in
the degradation of B𝛼 and the disruption of the PP2A/B𝛼-
tau interaction, which in turn promoted tau hyperphos-
phorylation and paired helical filament-tau accumulation.
Ultimately, these changes can lead to axonal degeneration
and cell death. This indicated that protein dealkylation was
associated with AD.

Furthermore, the most enriched cell signaling pathway
was chemokine signaling pathway. At present,more andmore
studies have shown that AD can be considered as a chronic
inflammation of the central nervous system (CNS) [30]. In
other words, inflammatory cytokines and chemokines may
play an important role in the occurrence and development
of AD. It was well known that the deposition of toxic
substances was one of the most prominent pathological
features of AD. It was worth noting that the immunogens
formed by abnormal deposition of A𝛽 in AD patients can
lead to the activation of microglia and astrocytes (AC), which
in turn led to the recruitment and release of inflamma-
tory cytokines. Thereby, neuronal damage may be caused
by direct or indirect toxic effects of the chronic immune
response.

By identifying the shortest paths between aging and AD
biomarkers, we can understand the connection of the two

biomarker sets in the network, resulting in the formation
of the aging-AD bipartite graph. Considering that biomark-
ers with more edges may have a more significant effect,
we deeply analyzed the aging biomarker (ZNF740, SNX12,
GANAB) that linked the most AD biomarkers and the AD
biomarker that linked the most aging biomarkers. Of the 31
AD biomarkers with the most connections, we selected the
top one, RPUSD3, for reliefF. It was also the top gene in the
98ADbiomarkers, which illustrated that it was very essential.
As described above, it affected the assembly of mitochondrial
ribosomes. More importantly, it has been reported that
mitochondria were closely related to the function of synapses
in AD [19].

Sorting nexin 12 (SNX12) is one of the PX domain-
containing sorting nexin [31]. In the fetal brain, SNX12
expression increased during the embryonic stage but gradu-
ally decreased after birth [32]. One of its important functions
was to inhibit the production of 𝛽-amyloid (A𝛽) by interact-
ing with 𝛽-site APP-cleaving enzyme 1 (BACE1) [33]. Zinc
Finger Protein 740 (ZNF740), a protein-coding gene, was
involved in transcriptional regulation [34]. Glucosidase II
alpha subunit (GANAB), a protein-coding gene, can regulate
hydrolase activity [34]. It was known that the deposition
of A𝛽 was the chief culprit in AD. Acyl-peptide hydrolase
(APEH) could remove excess A𝛽 peptide and its expression
in AD brain regions rich in A𝛽 plaques was increased [35]. In
summary, our result found the important aging biomarkers
which possibly regulate AD.

To further understand the correlation between aging
and AD biomarkers, we also used the AD sample data in
the training set for constructing network to calculate the
correlation coefficients between them (Figure 7), based on
the aging-ADbipartite graph.The pair of biomarkers with the
highest correlation coefficient was IRF8 and HLA-DMA.

Interferon regulatory factor 8 (IRF8) was a gene with age-
related expression changes, the expression ofwhich decreased
with aging [36]. In addition, IRF8 was also involved in
microglial activation and neuroinflammation in AD [37].
Major histocompatibility complex, class II, DM𝛼 (HLA-
DMA) was closely related to immunity, and its related
functions included immune response NFAT and MHC class
II protein complex binding [34]. Perhaps, in the accelerated
aging of AD, HLA-DMAmight be regulated by IRF8

Therefore, the results indicated that aging may contribute
to the development of AD by affecting the function of the
immune system and the energy metabolism process, where
the energy metabolism may affect AD by having an impact
on the immune system. Aging is a complex process involving
multiple system functions. In fact, it is widely acknowledged
that almost all physiological functions change with age,
especially energy production [17]. Obviously, the reduction
in energy production has a nonnegligible effect on the decline
of the body's function. In addition, experiments have shown
that the immune system played a leading role in AD [38].
For example, microglia in the brain can be used as a cleaner
to phagocytose and remove debris and toxic products from
the brain. The accumulation of these products in the brain
was one of the pathologies of AD [39, 40]. Considering that
energy decline was strongly associated with the dysfunction
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of the immune system [41], we believed that the immune
system may be one of the most key factors for AD.

On the one hand, the total amount and efficiency of
energy production gradually decreased with aging, which in
turn caused the disorder of the immune system. Furthermore,
it may affect the normal clearance of the immune system,
leading to the accumulation of harmful substances in the
brain and the occurrence of AD. On the other hand, the
immune response activated by the deposition of toxic sub-
stancesmay cause damage to neurons, thereby promoting the
development of AD.

3. Conclusions

In this paper, we developed an aging predictor and anADpre-
dictor usingmachine learningmethods, respectively. Besides,
the aging score was calculated to reflect the aging state of
brain tissues. It was found that most of the aging scores
of AD samples were significantly higher than that of the
normal samples. Furthermore, an aging acceleration network
was constructed to reflect the difference between normal
aging and AD. It was also confirmed that some of the hub
genes in the network can be used to accurately distinguish
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normal samples from AD samples. In addition, the aging-
AD bipartite graph was constructed to further investigate the
relationship between aging and AD. Finally, through a series
of enrichment analyses and network analyses, we concluded
that the immune system may be one of the most critical
factors for AD. Our findings supported further researches
about potential relationships between AD and aging.

4. Materials and Methods

4.1. Gene Expression Profiles and Data Preprocessing. The
mRNA samples were obtained from Gene Expression
Omnibus (GEO) database, including GSE84422, GSE63063,
and GSE15745 [42]. The sample would be chosen if (i) it was
from a definite AD patient or a normal individual and (ii)
the number of the samples from the same tissue was greater
than or equal to ten. Since these samples were profiled on
different GEO Platforms (GPLs): GPL570, GPL96, GPL97,
GPL10558, GPL6947, and GPL6104, the probes from the six
platforms were merged in the analyses. Then the probe sets
were mapped to their corresponding gene symbols. And the
expression values of the probes corresponding to the same
genewere summarized. Furthermore, to ensure the reliability,
genes with missing values ≥30% were deleted. In this way,
we eventually collected 974 samples of AD patients from 20
different tissues and 1,251 samples of normal controls from
22 different tissues. All the samples contained 11,333 gene
expression values.

For the convenience of calculation, we performed the
following data preprocessing. First, these samples were trans-
formed by the logarithmic transformation method. Then,
in order to assess the sources of intersample variation, the
Singular Value Decomposition (SVD) was used on the pro-
files from the same tissue. Finally, to eliminate the difference
between gene dimensions, these profiles were normalized by
the z-score method.

4.2. The Establishment of an Aging/AD Predictor. In order
to make the model more robust, the data were divided into
training dataset and test dataset. The training data set was
used to train a model, and the test data set was to evaluate the
performance of the model. The criteria for dividing were as
follows: (i) the ratio of training dataset samples to test dataset
samples was close to 2:1 and (ii) the ratio of the number
of young and old samples or the ratio of AD and normal
samples in the two datasets was similar. To exclude irrelevant
features which could lead to overfitting, feature selection
was performed using the reliefF algorithm. Considering it
was time-consuming to analyze the high-dimensional gene
expression data, the balance of the model complexity and
predictive performance and the model efficiency, we only
studied the top 100 models while training the predictor.

When developing the aging predictor, 1,251 normal sam-
ples were randomly divided (Table 1). First, samples older
than 50 were labeled as 1, and those younger than 50
(including 50 years old) were labeled as 0. Then, the 11,333
genes were sorted using the reliefF algorithm and NNA was
used to construct the aging predictor. The distance metric

was one minus the cosine of the included angle between
observations. The fivefold cross-validation was utilized to
select the optimal model.

When constructing the AD predictor, the 1,251 normal
samples and the 974 AD samples were together randomly
divided. The AD samples were labeled as 1, and the normal
samples were labeled as 0. The following computational
pipeline was the same as above.

4.3. The Calculation of Aging Scores and the Construction of
an Aging Acceleration Network. For each sample, the aging
score was calculated. First, the 1,251 normal samples were
divided into a young group and an old group. All samples in
the young groupwere≤50 years old and the samples in the old
group were >50 years old. Then, for each sample, we scored
the difference of the Euclidean distance from the nearest
young normal sample and from the nearest old normal
sample as its aging score. Finally, for the sake of analysis,
the inverse tangent transformation (atan) was performed on
aging scores.

In order to further dissect the relationship between aging
and AD, we then constructed an aging acceleration network
based on the aging scores. For the convenience of the network
validation, the aging acceleration networks were constructed
based on training dataset and test dataset, respectively. The
pipeline of building the network was as follows. First, the
product of the expression values of any two of the 11,333 genes
was calculated. Then the Pearson’s correlation coefficient
between those products and aging scores was also calculated.
The statistical significance was evaluated by p values and
the Benjamini-Hochberg (BH) FalseDiscovery Rates (FDRs).
The above two steps were performed in the AD samples and
the normal samples, separately. Finally, the edge between the
two genes was retained if (i) p <0.05 in both AD and normal
samples; (ii) FDR<0.2 in both AD and normal samples;
and (iii) the sign of the correlation coefficient in the AD
samples and the normal samples were different. In this way,
we obtained two networks.The Fisher’s exact test was carried
out to verify the reliability of the aging acceleration network.

4.4. The Construction of the Aging-AD Bipartite Graph. In
order to getmore details about the relationship between aging
and AD, the aging-AD bipartite graph was built as follows.

The shortest paths between the 44 aging related risk
biomarkers and the 98 AD related risk biomarkers were
found in the context of the aging acceleration network using
the Dijkstra algorithm. This step was carried out 44∗98
times. If there was an existing shortest path, the connection
between the aging and AD biomarkers was indicated. In
this way, we can understand the connection of aging related
risk biomarkers to AD related risk biomarkers in the aging
acceleration network. Thus, the aging-AD bipartite graph
was constructed, including 29∗63 aging-AD pairs (with the
shortest path in the aging acceleration network).

4.5. Enrichment Analysis. To obtain information about the
biological functions, the enrichment analysis was performed.
Information of GO terms (containing all GO gene sets),



10 BioMed Research International

GO biological processes (BP), and KEGG pathways were
downloaded from Gene Set Enrichment Analysis (GSEA)
(version 6.2) [43, 44].Thehypergeometric test was performed
to estimate the enrichment of these selected genes compared
to known pathways.The formula of the hypergeometric test is

p (X ≥ x) = 1 −
𝑥−1

∑
𝑘=0

𝐶𝑘
𝑀
∗ 𝐶𝑛−𝑘
𝑁−𝑀

𝐶𝑛
𝑁

(1)

where N is the total gene number of the gene expression
profiles, M is the number of known genes (i.e., GO terms
or KEGG pathways), n is the number of the AD/aging
biomarkers or the genes within modules, and k is the
number of common entries between the known genes and
the identified genes. The p value was then corrected by the
FDR using Benjamini-Hochberg method. The threshold for
p value was 0.05 and for FDR was 0.2.
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