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Simple Summary: Glioblastoma is the most prevalent and lethal brain tumor type, often treated
with the DNA alkylating agent temozolomide (TMZ). The cytotoxic DNA lesion O6-methylguanine
only accounts for about 9% of the DNA lesions induced by TMZ. The other DNA lesions (>80%) are
quickly repaired by the base excision repair (BER) pathway. However, resistance to cytotoxicity of
the O6-methylguanine lesion is common in cancer due to defects in the mismatch repair pathway or
overexpression of the MGMT repair protein. Therefore, the aim of this study was to find approaches
to inhibit the BER pathway to overcome TMZ resistance. We found that combining TMZ with an
NAD+ precursor (dihydronicotinamide riboside) and a PARG inhibitor strongly inhibited BER and
overcame TMZ resistance. This combination treatment regimen provides a novel approach to consider
for glioblastoma.

Abstract: Glioblastoma multiforme (GBM) is an incurable brain cancer with an average survival of
approximately 15 months. Temozolomide (TMZ) is a DNA alkylating agent for the treatment of
GBM. However, at least 50% of the patients treated with TMZ show poor response, primarily due
to elevated expression of the repair protein O6-methylguanine-DNA methyltransferase (MGMT)
or due to defects in the mismatch repair (MMR) pathway. These resistance mechanisms are either
somatic or arise in response to treatment, highlighting the need to uncover treatments to overcome
resistance. We found that administration of the NAD+ precursor dihydronicotinamide riboside (NRH)
to raise cellular NAD+ levels combined with PARG inhibition (PARGi) triggers hyperaccumulation of
poly(ADP-ribose) (PAR), resulting from both DNA damage-induced and replication-stress-induced
PARP1 activation. Here, we show that the NRH/PARGi combination enhances the cytotoxicity of
TMZ. Specifically, NRH rapidly increases NAD+ levels in both TMZ-sensitive and TMZ-resistant
GBM-derived cells and enhances the accumulation of PAR following TMZ treatment. Furthermore,
NRH promotes hyperaccumulation of PAR in the presence of TMZ and PARGi. This combination
strongly suppresses the cell growth of GBM cells depleted of MSH6 or cells expressing MGMT,
suggesting that this regimen may improve the efficacy of TMZ to overcome treatment resistance
in GBM.

Keywords: glioblastoma; NAD+; PARG inhibition; PARP activation; temozolomide; MSH6; MGMT;
BER; MMR; TMZ resistance
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1. Introduction

Standard of care in the treatment of glioblastoma multiforme (GBM) includes maxi-
mum tumor resection followed by radiotherapy and multiple cycles of adjuvant temozolo-
mide (TMZ, Temodar) [1,2]. However, somatic or acquired resistance to TMZ compromises
its efficacy, with a median survival of GBM patients between 12 and 15 months [3,4]. TMZ
is a DNA alkylating agent generating multiple DNA lesions, including N7-methylguanine
(N7-MeG, >70%), N3-methyladenine (N3-MeA, ~10%), and O6-methylguanine (O6-MeG,
~9%) [5,6]. The cytotoxicity of TMZ is mainly derived from the O6-MeG lesion and a
functional MMR pathway [7–9]. However, TMZ resistance is seen in tumor cells express-
ing the direct repair protein O6-methylguanine-DNA methyltransferase (MGMT) [10,11].
At least 50% of those treated with TMZ do not respond due to elevated expression of
MGMT [6,12,13]. Another important factor that leads to TMZ resistance is a deficiency
or mutation in one or more of the proteins of the mismatch repair pathway (MMR) since
a functional MMR pathway is needed for the cytotoxicity of O6-MeG [14–16]. Current
clinical- or pre-clinical-based studies point out that acquired resistance to TMZ primarily
arises from the loss of MMR proteins such as MutS Homolog 6 (MSH6) or by gaining
expression of MGMT [11,17,18].

Strategies that promote MGMT inhibition or BER inhibition are promising approaches
to overcoming TMZ resistance [6,19]. However, a clinical trial testing a combination of
Lomeguatrib, an MGMT inhibitor, with TMZ did not show any benefit from MGMT
inhibition [20]. Combining a BER inhibitor (PARP inhibitor) with TMZ was found to induce
G2/M arrest, an increase in double-strand DNA breaks, and elevated apoptosis in MSH6-
deficient, TMZ-resistant glioblastoma cells [21]. However, a PARP1/2 inhibitor, CEP-9722,
combined with TMZ only reported limited clinical efficacy [22]. A recent clinical trial with
the addition of veliparib (ABT-888) to radiation followed by TMZ concluded that veliparib
was tolerated but did not improve survival for patients with newly diagnosed diffuse
intrinsic pontine glioma (DIPG) [23]. Therefore, new targets are needed for the potentiation
of TMZ cytotoxicity. One promising target is poly(ADP-ribose) glycohydrolase (PARG), an
important component of the BER pathway as the primary hydrolase responsible for the
degradation of poly(ADP-ribose) (PAR) after the recruitment of DNA repair factors [24].
Genetic depletion of PARG or inhibition of PARG strongly increased the level of DNA
damage induced by TMZ, methyl methanesulfonate (MMS), ionizing radiation (IR), or
cisplatin and significantly reduced cell survival in different types of cancer cells [6,25–29].
We recently reported that supplementation with the NAD+ precursor dihydronicotinamide
riboside (NRH) rapidly increased NAD+ levels in glioma stem cells (GSCs) and GBM cells,
enhancing PARP1 activation. Further, we found that co-administration of NRH and a PARG
inhibitor (PARGi) triggers hyperaccumulation of PAR, intra S-phase arrest, and apoptosis
in GSCs but minimal PAR induction or cytotoxicity in normal astrocytes [25]. Therefore,
in this study, we hypothesized that co-treatment of TMZ with NRH + PARGi (T + N + P)
would enhance the cytotoxicity of TMZ in TMZ-resistant GBM cells.

In the present report, we demonstrated that the administration of NRH together with
TMZ and PARGi markedly potentiated the cytotoxicity of TMZ or TMZ + PARGi in TMZ-
resistant cell lines such as those with a deficiency in MSH6 or due to elevated expression of
MGMT. NRH treatment increased cellular NAD+ levels and promoted the accumulation of
PAR from TMZ + PARGi treatment. Further, this treatment inhibited the activity of AKT
(AKT serine/threonine kinase 1), an important survival factor for GBM. As a result, the
growth of TMZ-resistant cells was strongly inhibited.

2. Materials and Methods
2.1. Cells and Cell Culture Conditions

LN428 and LNZ308 GBM cells were generous gifts from Dr. Ian Pollack (University
of Pittsburgh). Gli60, an MSH6 mutant GBM cell line, was a gift from Dr. Daniel P. Cahill
(Dana-Farber/Harvard Cancer Center, Massachusetts General Hospital). U87MG cells
(Cat# HTB-14, ATCC), U2OS cells (Cat# HTB-96, ATCC), and T98G cells (Cat# CRL-1690,
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ATCC) were purchased from ATCC. 293-FT cells were purchased from Thermo Fisher
Scientific (Cat# R70007, Waltham, MA, USA). LN428, LNZ308, U87MG, and T98G cells
were cultured in MEM alpha (Cat#12571063, Thermo Fisher Scientific, Waltham, MA, USA)
with 10% FBS(HI) and antibiotic/antimycotic (Cat#15240062, Thermo Fisher Scientific,
Waltham, MA, USA). U2OS and Gli60 cells were cultured in DMEM (15-013-CV, Corning,
Corning, NY, USA) with 10% FBS(HI), L-glutamine, and antibiotic/antimycotic. 293-FT
cells were cultured in DMEM (Cat# 45000-304, VWR) with 10% FBS(HI), glutamine (2 mM)
(Cat# 25030081, Thermo Fisher Scientific, Waltham, MA, USA), and antibiotic/antimycotic
(Cat# 15240062, Thermo Fisher Scientific, Waltham, MA, USA). All cells were cultured
at 37 ◦C with 5% CO2. The growth medium was changed every 3 or 4 days. Cells were
treated with the following chemicals as described below and in the legends: PARG inhibitor
(PDD00017273; Cat# SML1781, Sigma-Aldrich, St. Louis, MO, USA), TMZ (Cat# T2577,
Sigma-Aldrich, St. Louis, MO, USA), or dihydronicotinamide riboside (NRH) [30].

2.2. Cell Extract for Immunoblot Analysis

Cells (1 × 106) were seeded in a 100-mm dish and treated in 10 mL growth medium
with different treatments for 24 h. Then, cells were collected and were lysed using 2× clear
Laemmli buffer at a ratio of 100 µL Laemmli buffer per 106 cells. Whole cell lysate (15 µL,
~30 µg) was used for immunoblotting analyses. The primary and secondary antibodies
used are listed in Table 1. The intensity of each band was quantified using Image J [31].

Table 1. Primary and secondary antibodies used in this study.

Target Antigen Company Catalogue # Dilution

γ-H2AX Cell Signaling Technology
(Danvers, MA, USA) 9718s 1:1000

Phosphorylated Akt (Ser473) Cell Signaling Technology
(Danvers, MA, USA) 9271S 1:1000

β-Actin Cell Signaling Technology
(Danvers, MA, USA) 8457S 1:2000

MGMT Cell Signaling Technology
(Danvers, MA, USA) 58121S 1:1000

MSH6 Cell Signaling Technology
(Danvers, MA, USA) 3995S 1:1000

Tubulin Thermo Fisher Scientific (Waltham,
MA, USA) 62204 1:1000

PAR
Gift from Mathias
Ziegler(University of Bergen,
Bergen, Norway)

N/A 1:1000

Cleaved Caspase 3 Cell Signaling Technology
(Danvers, MA, USA) 9661S 1:1000

Immun-Star Goat
anti-mouse-HRP conjugate Bio-Rad (Hercules, CA, USA) 170-5047 1:5000

Immun-Star Goat
anti-rabbit-HRP conjugate Bio-Rad (Hercules, CA, USA) 170-5046 1:5000

2.3. Lentivirus Production and Cell Transduction

Four plasmids, including the packaging vectors (pMD2.g(VSVG), pVSV-REV and
pMDLg/pRRE), and a shuttle vector (as indicated below) were transfected into 293-FT cells
using the TransIT-X2 Transfection reagent (Cat# MIR6005, Mirus, Madison, WI, USA) to de-
velop the corresponding lentiviral particles. The shuttle vector pLenti-U6-sgRNA(MSH6)-
SFFV-Cas9-2A-Puro was used to generate lentivirus for the expression of Cas9 and gRNA
specific to the human MSH6 gene, pLenti-CRISPR-cas9-Scramble for the expression of
the Cas9/gRNA control (SCR-gRNA), pLV-CMV-XRCC1-EGFP-Hygro for the expression
of XRCC1-EGFP, pLKO.1-puro-shSCR for the expression of the scrambled shRNA, or
pLKO.1-puro-shMSH6.1 for the expression of MSH6-specific shRNA (see plasmid details
in Supplementary Table S1). Viral particles were then isolated 48 h after transfection by
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filtering the supernatant through 0.45-µM filters, as described previously [25,32]. A Lenti-X
Concentrator (Takara Bio, Cat# 631231, Kusatsu, Japan) was then used to concentrate the
lentivirus particles, according to the manufacturer’s instructions.

2.4. MSH6 Knockdown by Expression of shRNA

The protein levels of MSH6 in LN428 cells were suppressed by stable expression
of MSH6-specific shRNA (see the plasmid details in Supplementary Table S1). Briefly,
LN428 cells were transduced with lentivirus expressing either a control (Scrambled, shSCR)
shRNA or an MSH6-specific shRNA and selected in puromycin (1.0 µg/mL) for 2 weeks.
Loss of MSH6 expression was then validated by immunoblot (see plasmid details in
Supplementary Table S1).

2.5. MSH6 Knockout by CRISPR/Cas9

A set of three plasmids, with each gRNA targeting a different sequence of the MSH6
gene, was purchased from ABM (Cat# 3073611, Applied Biological Materials Inc., Rich-
mond, VA, Canada). The gRNA targeting sequences are AAGGCGAAGAACCTCAACGG,
GGGTGGTTGTAAACCAGACA, or ACAGTAGTCGCCCTACTGTT, specific for MSH6
(see the plasmid details in Supplementary Table S1). After the collection and concentration
of the individual lentivirus particles, the three concentrated lentivirus particles were com-
bined and then used to transduce the cells with the mixed lentivirus. This concentrated,
high-titer virus mixture was able to completely deplete the expression of MSH6 in different
cell lines without the need for the selection of single cell clones. The depletion of MSH6
was confirmed by immunoblot analysis of whole cell lysates and resistance to TMZ in a cell
growth assay.

2.6. LN428 Cells Modified to Express MGMT

LN428 cells do not express MGMT due to promoter silencing [6]. We, therefore, modi-
fied LN428 cells to express MGMT by transfection with pIRES-Puro-MGMT and selection in
puromycin, as previously described [6] (see the plasmid details in Supplementary Table S1).

2.7. Cell Growth Analysis

Cells (800) in growth medium (100 µL) were seeded in each well of a 96-well plate.
The cells were then cultured overnight. On the second day, 200 µL of the treatment medium
was added to each well after the removal of the overnight growth medium. Cells were
then continuously cultured for 6–7 days. Subsequently, the total cell number following
each treatment was determined using a Celigo Image Cytometer (Nexcelom Bioscience,
Lawrence, MA, USA).

2.8. NAD+ Measurements

LN428/SCR or LN428/MSH6-KO cells (1.0 × 105/well) were seeded in each well of
a 96-well plate with 100 µL growth medium and cultured overnight. Then, the growth
medium was removed and 100 µL NRH (100 µM)-containing medium was added at set time
points. After a treatment of 1, 2, 4, 6, or 8 h with NRH, the medium was removed, and cells
were kept at −80 ◦C until the subsequent NAD+ analysis experiment was performed. For
the NAD+ assay, the cells in each well were washed with 1X PBS and then lysed for 5 min
at room temperature with a 0.2 N NaOH (100 µL) solution supplemented with 1% dodecyl
trimethylammonium bromide (DTAB), which preserves the stability of the dinucleotides.
A Nanodrop Spectrophotometer (Thermo Fisher Scientific, Waltham, MA, USA) was used
to determine the protein concentration for each sample (280 nm). Subsequently, the NAD+

concentration for each cell line was measured using the Promega NAD+/NADH-Glo Assay
kit (Cat# G9071, Promega, Madison, WI, USA), as per the manufacturer’s instructions. For
each sample, the lysate was diluted 1:50 in dilution buffer (equal volume of 0.2 N NaOH
and 1X PBS). Subsequently, 50 µL of each sample was added in duplicate to the wells of a
clear-bottom, white 96-well plate. HCl (0.4 N, 25 µL) was added to each well for the NAD+
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measurements. Then, the plate was incubated at 60 ◦C for 15 min, followed by incubation at
room temperature for 10 min. Tris-Cl, pH 10.7 (25 µL) was added to each well to neutralize
the samples. The luminescence was recorded using a luminometer after adding 100 µL of
the detection reagent to each well. For the generation of the NAD+ standard curve, NAD+

was diluted in dilution solution (1:1 volume of 0.2 N NaOH and 1× PBS or 1:1 volume
of 0.4 N HCl and 1× PBS). The NAD+ concentration was calculated using the protein
concentration of each sample for normalization.

2.9. Laser Micro-Irradiation

Laser micro-irradiation experiments were performed as we described previously [33],
with slight modifications. First, LN248/MSH6-KD cells (5 × 104 per well) were seeded into
each well of an 8-chamber glass-bottom vessel (Thermo Fisher Scientific, Waltham, MA,
USA, #155409) and cultured overnight. They were then modified to express EGFP-tagged
XRCC1 (pLV-CMV-XRCC1-EGFP-Hygro; see Supplementary Table S1) by transfection
using TransIT X2 according to the manufacturer’s instructions and cultured for 48 h. Next,
a Nikon A1rsi confocal microscope was used for laser micro-irradiation. Cells were then
imaged with a Nikon A1rsi laser scanning confocal microscope, which is equipped with
a live-cell incubation chamber (Tokai Hit, Fujinomiya, Japan) maintained at 5% CO2 and
37 ◦C. A 20× (NA = 0.8) non-immersion objective was used for imaging. Micro-irradiation
was performed using a 405-nm laser and the stimulation time was 0.125 s at the 100%
power per site. Time lapse images were collected every 15 s during a 20-min interval.
MIDAS software was used for the quantitation of the focal recruitment images and the
statistical analysis of focal recruitment [33]. Recruitment profiles and kinetic parameters
were generated from the analysis of at least 35 individual cells.

2.10. CometChip Analysis

DNA damage analysis by CometChip was performed as we described previously [34].
The 96-well CometChips, a well-former for the assembly, the CometChip Electrophore-
sis equipment (CES), and the Comet Analysis Software (CAS) were all purchased from
BioTechne (Minneapolis, MN, USA). For acute DNA damage analysis by CometChip, cells
were seeded into a 96-well plate (1 × 105/well) and cultured overnight and then were
pre-treated with DMSO, NRH, PARGi, or NRH plus PARGi for 4 h (doses indicated in
the legends). Subsequently, the pre-treated cells were treated with TMZ or DMSO for an
additional 1 h. Then, the cells were trypsinized and 150 µL cell-containing medium was
transferred into each well of a CometChip. The CometChip assembly was kept at 4 ◦C
for 30 min. Next, the CometChip was taken out from the CometChip assembly, washed
twice with 30 mL 1× PBS, and sealed with 7 mL 0.75% low-melting-point agarose in
1× PBS (LMPA; Topvision; Thermo Fisher Scientific, Waltham, MA, USA). The cells in
the CometChip were then lysed in lysis solution with detergent (BioTechne, Minneapolis,
MN, USA) overnight at 4 ◦C. The CometChip was then electrophoresed in an alkaline
solution (pH > 13; 200 mM NaOH, 1 mM EDTA, 0.1% Triton X-100) at 22 V for 50 min at
4 ◦C. Subsequently, the CometChip was neutralized to pH 7.4 by two washing steps with
Tris buffer (0.4 M Tris·Cl, pH 7.4 and 20 mM Tris·Cl, pH 7.4). The DNA was then stained
with 1× SYBR Gold dye (Thermo Fisher Scientific, Waltham, MA, USA) diluted in Tris
buffer (20 mM Tris·Cl, pH 7.4) for 30 min. After the de-staining step (1 h) in Tris buffer
(20 mM Tris·Cl, pH 7.4), the comet images were collected using a Celigo imaging cytometer
(Nexcelom Bioscience; Lawrence, MA, USA) at a 1-µm/pixel resolution. The DNA damage
(%Tail DNA) was quantified using the dedicated comet analysis software (CAS). The plots
and statistical analyses were generated using Prism 9 (GraphPad Prism, San Diego, CA,
USA). DNA damage is represented as % Tail DNA.

2.11. Statistical Analysis

For most analyses, data are shown as the mean ± standard deviation from 2 to
4 independent experiments. Student’s t-test was used when two groups were compared.
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One-way or two-way ANOVA was used for multiple comparisons. Statistical analysis was
performed using Prism 9 (GraphPad Prism, San Diego, CA, USA).

3. Results
3.1. Loss of MSH6 in GBM Cells Results in TMZ Resistance That Can Be Overcome by
Co-Treatment with NRH and PARGi

Loss of MSH6 expression in glioblastoma post treatment is one mechanism for acquired
resistance to TMZ [18,35]. To evaluate the cellular phenotype of MSH6 loss and the
resulting TMZ resistance in GBM cells, we reduced the expression of MSH6 (knockdown,
KD) using shRNA (Figure 1A) or mutated the MSH6 gene (knockout, KO) using the
CRISPR/Cas9 system (Figure 1C) in LN428 glioblastoma cells. As expected, both the
resulting LN428/MSH6-KD and LN428/MSH6-KO cells were highly resistant to TMZ, with
cell growth decreased by less than 10% at the highest TMZ concentration (250 µM), which
is more than 2.5-fold higher than the clinical peak plasma concentration of TMZ (normally
maximal at 100 µM) [36,37]. In contrast, MSH6-proficient control cells were highly sensitive
to TMZ (Figure 1B,D). We previously reported that NRH treatment strongly potentiated the
cytotoxicity of PARGi against glioma stem cells (GSCs) [25]. Therefore, we reasoned that
the addition of both NRH (N) and PARGi (P) to the TMZ (T)-treated cells may overcome
the resistance seen in the LN428/MSH6-KD and LN428/MSH6-KO cells [25]. As predicted,
pre-treatment of the cells with NRH and PARGi, followed by TMZ treatment (T + N + P),
restored the sensitivity to TMZ in both the LN428/MSH6-KD and LN428/MSH6-KO cells
to that seen in the MSH6-proficient control cells (Figure 1B,D).

Then, we treated the MSH6-proficient or -deficient cells with TMZ at a lower dose,
(closer to that used clinically, 125 µM) together with NRH (100 µM) or PARGi (10 µM),
either alone or with different combinations. As shown (Figure 1E,F), MSH6-proficient
control cells were sensitive to TMZ treatment alone or with any combined treatment with
TMZ while MSH6-deficient cells were resistant to TMZ treatment alone. NRH treatment
alone showed no inhibition of cell growth for either MSH6-proficient or -deficient LN428
cells. PARGi alone only induced minimal inhibition of cell growth in the LN428/MSH6-KD
or LN428/MSH6-KO cells. However, for the combined treatments, TMZ plus NRH (T + N)
treatment showed almost no inhibition of cell growth. The N + P treatment inhibited
cell growth by less than 40% while TMZ plus PARGi (T + P) treatment only reduced cell
growth by less than 50% when treating the LN428/MSH6-KD or LN428/MSH6-KO cells.
Only the co-treatment of T + N + P strongly inhibited the growth of LN428/MSH6-KD or
LN428/MSH6-KO cells (Figure 1E,F).

To confirm that these results are applicable to different GBM cell lines, we mutated the
MSH6 gene (knockout, KO) in U87MG and LNZ308 GBM cells using CRISPR/Cas9 and
applied the same treatments to the control and resulting MSH6-KO cells. As seen in the
LN428 cell line, the loss of MSH6 promoted TMZ resistance in both the U87MG and LNZ308
cell lines. TMZ resistance in both cell lines was only reversed by the T + N + P treatment
regimen (Figure 1G,H). We next applied this treatment regimen to Gli60 cells, a GBM cell
line encoding a null mutation in the MSH6 gene [18], and to A172 cells, a TMZ-resistant
GBM cell line [38]. Both the Gli60 and A172 cells demonstrated a decrease in cell growth
of less than 10% in response to TMZ treatment (125 µM) while the T + N + P treatment
regimen strongly inhibited the cell growth of Gli60 cells (>80%) and fully inhibited the
growth of A172 cells (Figure 1I,J). Altogether, our results demonstrate that the T + N + P
treatment regimen overcomes TMZ resistance resulting from the loss of MSH6.
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Figure 1. Loss of MSH6 in GBM cells resulted in TMZ resistance that was overcome by co-treatment 
with TMZ, NRH, and PARGi. (A) Immunoblot analysis of the MSH6 levels in LN428 cells trans-
duced with lentivirus expressing shRNA-targeting MSH6 (KD) or a non-targeting scrambled 
shRNA (SCR). β-Actin was used as the loading control. (B) LN428/SCR or LN428/MSH6-KD cells 
after treatment with TMZ alone or TMZ supplemented with NRH (100 μM) + PARGi (10 μM) for 7 
days (TMZ doses as indicated), normalized to DMSO. (C) Immunoblot analysis of the MSH6 levels 
in LN428 cells after MSH6 gene mutation (knockout, KO) by CRISPR/Cas9 with a pool of three 
gRNAs compared to a non-targeting scrambled gRNA (SCR-gRNA). β-Actin was used as the load-
ing control. (D) LN428/SCR-gRNA or LN428/MSH6-KO cells after treatment with TMZ alone or 
TMZ supplemented with NRH (100 μM) + PARGi (10 μM) plus TMZ for 7 days (TMZ doses as 
indicated), normalized to DMSO. (E) LN428/SCR or LN428/MSH6-KD cells treated with DMSO, 
NRH (10 μM), PARGi (10 μM), N + P, TMZ (125 μM), T + N, T + P, or T + N + P for 7 days, normalized 
to DMSO: (**** p < 0.0001, two-way ANOVA). (F) LN428/SCR-gRNA or LN428/MSH6-KO cells 
treated with DMSO, NRH (100 μM), PARGi (10 μM), N + P, TMZ (125 μM), T + N, T + P, or T + N + 
P for 7 days, normalized to DMSO: (**** p < 0.0001, two-way ANOVA). (G) U87MG/SCR-gRNA or 
U87MG/MSH6-KO cells treated with DMSO, NRH (100 μM), PARGi (10 μM), N + P, TMZ (125 μM), 
T + N, T + P, or T + N + P for 7 days, normalized to DMSO: (**** p < 0.0001, two-way ANOVA). (H) 
LNZ308/SCR-gRNA or LNZ308/MSH6-KO cells treated with DMSO, NRH (100 μM), PARGi (10 
μM), N + P, TMZ (125 μM), T + N, T + P, or T + N + P for 7 days, normalized to DMSO: (**** p < 

Figure 1. Loss of MSH6 in GBM cells resulted in TMZ resistance that was overcome by co-treatment
with TMZ, NRH, and PARGi. (A) Immunoblot analysis of the MSH6 levels in LN428 cells trans-
duced with lentivirus expressing shRNA-targeting MSH6 (KD) or a non-targeting scrambled shRNA
(SCR). β-Actin was used as the loading control. (B) LN428/SCR or LN428/MSH6-KD cells after
treatment with TMZ alone or TMZ supplemented with NRH (100 µM) + PARGi (10 µM) for 7 days
(TMZ doses as indicated), normalized to DMSO. (C) Immunoblot analysis of the MSH6 levels in
LN428 cells after MSH6 gene mutation (knockout, KO) by CRISPR/Cas9 with a pool of three gR-
NAs compared to a non-targeting scrambled gRNA (SCR-gRNA). β-Actin was used as the loading
control. (D) LN428/SCR-gRNA or LN428/MSH6-KO cells after treatment with TMZ alone or TMZ
supplemented with NRH (100 µM) + PARGi (10 µM) plus TMZ for 7 days (TMZ doses as indicated),
normalized to DMSO. (E) LN428/SCR or LN428/MSH6-KD cells treated with DMSO, NRH (10 µM),
PARGi (10 µM), N + P, TMZ (125 µM), T + N, T + P, or T + N + P for 7 days, normalized to DMSO:
(**** p < 0.0001, two-way ANOVA). (F) LN428/SCR-gRNA or LN428/MSH6-KO cells treated with
DMSO, NRH (100 µM), PARGi (10 µM), N + P, TMZ (125 µM), T + N, T + P, or T + N + P for 7 days,
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normalized to DMSO: (**** p < 0.0001, two-way ANOVA). (G) U87MG/SCR-gRNA or
U87MG/MSH6-KO cells treated with DMSO, NRH (100 µM), PARGi (10 µM), N + P, TMZ
(125 µM), T + N, T + P, or T + N + P for 7 days, normalized to DMSO: (**** p < 0.0001, two-way
ANOVA). (H) LNZ308/SCR-gRNA or LNZ308/MSH6-KO cells treated with DMSO, NRH (100 µM),
PARGi (10 µM), N + P, TMZ (125 µM), T + N, T + P, or T + N + P for 7 days, normalized to DMSO:
(**** p < 0.0001, two-way ANOVA). (I) Gli60 cells (MSH6 mutant) treated with DMSO, NRH (100 µM),
PARGi (10 µM), N + P, TMZ (125 µM), T + N, T + P, or T + N + P for 7 days, normalized to DMSO:
(**** p < 0.0001, one-way ANOVA). (J) A172 cells treated with DMSO, NRH (100 µM), PARGi (10 µM),
N + P, TMZ (125 µM), T + N, T + P, or T + N + P for 7 days, normalized to DMSO: (**** p < 0.0001,
one-way ANOVA).

3.2. NRH Increased Cellular NAD+ Levels and Enhanced PARP1 Activity upon TMZ Treatment

To understand how the T + N + P treatment regimen overcomes TMZ resistance due
to the loss of MSH6 expression, we first investigated how the increased bioavailability
of NAD+ induced by NRH treatment impacts the BER pathway. NAD+ is a substrate for
PARP1/PARP2, required for the generation of poly(ADP-ribose) (PAR) and is a regulatory
factor for BER capacity [33,39,40]. Building on this BER regulatory role for NAD+, we
reported that among a series of NAD-precursor molecules, nicotinomide riboside (NR),
nicotinic acid riboside (NAR), dihydronicotinamide riboside (NRH), and dihydronicotinic
acid riboside (NARH), only NRH was able to significantly increase the total cellular levels of
NAD+ in non-stressed cells [25]. We then evaluated the cellular NAD+ levels of LN428/SCR-
gRNA and LN428/MSH6-KO cells after NRH (100 µM) treatment. The total cellular NAD+

levels in both LN428/SCR-gRNA or LN428/MSH6-KO cells acutely increased after the
addition of NRH (100 µM), reaching peak levels from 4 to 8 h (Figure 2A). There was no
difference in the NAD+ level between LN428/SCR-gRNA and LN428/MSH6-KO cells,
indicating MSH6 is not involved in this biosynthetic process, as expected [30]. Next, we
evaluated the impact of increased cellular NAD+ levels on the activity of PARP1/PARP2
by immunoblotting analysis of PAR. Coincident with the increased NAD+ levels following
NRH treatment, there was a significant increase in the level of PAR following TMZ treatment
(Figure 2B). Further, we observed hyperaccumulation of PAR in both LN428/SCR and
LN428/MSH6-KD cells following the T + N + P treatment regimen (Figure 2C).

3.3. NAD+ Bioavailability Modulated by NRH Together with PARGi Interferes with the Dynamics
of BER Protein Complex Assembly/Disassembly and Inhibits the Repair of DNA Lesions from TMZ
Treatment, Suppresses Survival Signaling, and Induces Apoptosis Signaling

We next investigated how NRH + PARGi (N + P) treatment impacted the dynamics of
BER protein complex assembly and disassembly. We used laser-induced micro-irradiation
to induce DNA damage in cells and followed a fluorescently tagged XRCC1 transgene,
a critical BER scaffold protein, as a biomarker for evaluating the dynamics of the BER
complex [33]. LN428/SCR and LN428/MSH6-KD cells expressing XRCC1-EGFP were
pre-treated with DMSO, NRH, PARGi, or NRH + PARGi for 4 h. The cells were then micro-
irradiated (405-nm laser) and the recruitment of XRCC1-EGFP to the laser-induced DNA
damage site was analyzed. XRCC1-EGFP was rapidly recruited to laser-induced DNA
damage sites in both LN428/SCR and LN428/MSH6-KD cells when treated with DMSO
(Figure 3). There was no significant difference in the recruitment dynamics (time to peak
intensity) of XRCC1-EGFP between the LN428/SCR and LN428/MSH6-KD cells, indicating
that MSH6 does not directly play a role in the BER pathway (Figure 3A–C). NRH treatment
did not change the recruitment kinetics (the time to peak intensity) compared to the DMSO
control while PARGi significantly increased the time to peak intensity. N + P treatment
further increased the time to peak intensity (Figure 3B,C). Since XRCC1 recruitment is
dependent on PAR [33], we reasoned that the delayed XRCC1-EGFP recruitment may
relate to the change in the overall cellular PAR level after DNA damage in cells pre-treated
with PARGi or N + P (Figures 2C and 4A). Our previous report indicated that PARG
inhibition resulted in elevated and persistent PAR at sites of laser-induced DNA damage
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that also delayed XRCC1 disassembly [33]. Similarly, there was a strong delay in the
disassembly of XRCC1-EGFP from the laser-induced damage site after PARGi and almost
no disassembly after N + P treatment (Figure 3A,B), indicating that PAR that accumulated
at the laser-induced DNA damage site could not be degraded.

Cancers 2022, 14, x  9 of 21 
 

 

 
Figure 2. NRH treatment increased cellular NAD+ levels and promoted PARP1 activity upon TMZ 
treatment. (A) Total cellular NAD+ levels in LN428/SCR-gRNA or LN428/MSH6-KO cells after treat-
ment with NRH (100 μM) for the time periods indicated; (** p < 0.01, one-way ANOVA; NS = not 
significant). (B) PAR (poly-ADP-ribose) immunoblot analysis of total cell lysates (LN428/SCR cells, 
top panel; LN428/MSH6-KD, bottom panel) after treatment with NRH (100 μM) for 4 h and then 
TMZ at the indicated doses for an additional 1 h, as compared to cells treated with DMSO. β-Actin 
was used as the loading control. (C) PAR (poly-ADP-ribose) immunoblot analysis of total cell lysates 
(LN428/SCR cells, left panel; LN428/MSH6-KD, right panel) after treatment with PARGi (100 μM) 
or N + P for 4 h and then TMZ at the indicated doses for an additional 1 h, as compared to cells 
treated with PARGi. β-Actin was used as the loading control. 

3.3. NAD+ Bioavailability Modulated by NRH Together with PARGi Interferes with the Dynam-
ics of BER Protein Complex Assembly/Disassembly and Inhibits the Repair of DNA Lesions from 
TMZ Treatment, Suppresses Survival Signaling, and Induces Apoptosis Signaling 

We next investigated how NRH + PARGi (N + P) treatment impacted the dynamics 
of BER protein complex assembly and disassembly. We used laser-induced micro-irradi-
ation to induce DNA damage in cells and followed a fluorescently tagged XRCC1 
transgene, a critical BER scaffold protein, as a biomarker for evaluating the dynamics of 
the BER complex [33]. LN428/SCR and LN428/MSH6-KD cells expressing XRCC1-EGFP 
were pre-treated with DMSO, NRH, PARGi, or NRH + PARGi for 4 h. The cells were then 
micro-irradiated (405-nm laser) and the recruitment of XRCC1-EGFP to the laser-induced 
DNA damage site was analyzed. XRCC1-EGFP was rapidly recruited to laser-induced 
DNA damage sites in both LN428/SCR and LN428/MSH6-KD cells when treated with 
DMSO (Figure 3). There was no significant difference in the recruitment dynamics (time 
to peak intensity) of XRCC1-EGFP between the LN428/SCR and LN428/MSH6-KD cells, 
indicating that MSH6 does not directly play a role in the BER pathway (Figure 3A–C). 
NRH treatment did not change the recruitment kinetics (the time to peak intensity) 

Figure 2. NRH treatment increased cellular NAD+ levels and promoted PARP1 activity upon TMZ
treatment. (A) Total cellular NAD+ levels in LN428/SCR-gRNA or LN428/MSH6-KO cells after
treatment with NRH (100 µM) for the time periods indicated; (** p < 0.01, one-way ANOVA; NS = not
significant). (B) PAR (poly-ADP-ribose) immunoblot analysis of total cell lysates (LN428/SCR cells,
top panel; LN428/MSH6-KD, bottom panel) after treatment with NRH (100 µM) for 4 h and then
TMZ at the indicated doses for an additional 1 h, as compared to cells treated with DMSO. β-Actin
was used as the loading control. (C) PAR (poly-ADP-ribose) immunoblot analysis of total cell lysates
(LN428/SCR cells, left panel; LN428/MSH6-KD, right panel) after treatment with PARGi (100 µM) or
N + P for 4 h and then TMZ at the indicated doses for an additional 1 h, as compared to cells treated
with PARGi. β-Actin was used as the loading control.
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Figure 3. An NRH-mediated increase in NAD+ levels combined with PARGi interfered with the
temporal dynamics of BER complex assembly/disassembly and blocked the repair of DNA lesions
induced by TMZ treatment. (A) Representative images of XRCC1-EGFP expressed in LN248/MSH6-
KD cells treated with DMSO, NRH (100 µM), PARGi (10 µM), or N + P for 4 h and then micro-
irradiated. Foci in each image demonstrate XRCC1-EGFP recruitment to the site of laser-induced
DNA damage. (B) Plot representing the recruitment kinetics of XRCC1-EGFP in LN428/SCR cells or
in LN248/MSH6-KD cells treated with DMSO, NRH (100 µM), PARGi (10 µM), or N + P for 4 h and
then micro-irradiated. (C) Time to the peak recruitment intensity of XRCC1-EGFP in LN428/SCR
cells or in LN248/MSH6-KD cells treated with DMSO, NRH (100 µM), PARGi (10 µM), and N + P for
4 h and then micro-irradiated (NS = No significance, ** p < 0.01, **** p < 0.0001; one-way ANOVA).
(D) LN428/SCR-gRNA and LN428/MSH6-KO cells were treated with DMSO, NRH (100 µM), PARGi
(10 µM), or N + P for 4 h and then TMZ (250 µM) for an additional 1 h. DNA damage was evaluated by
the CometChip assay, reported as % Tail DNA (**** p < 0.0001; two-way ANOVA). (E) U87MG/SCR-
gRNA or U87MG/MSH6-KO cells were treated with DMSO, NRH (100 µM), PARGi (10 µM), or
N + P for 4 h and then TMZ (250 µM) for an additional 1 h. DNA damage was evaluated by the
CometChip assay, reported as % Tail DNA (**** p < 0.0001; two-way ANOVA). (F) LNZ308/SCR-
gRNA or LNZ308/MSH6-KO cells were treated with DMSO, NRH (100 µM), PARGi (10 µM), or
N + P for 4 h and then TMZ (250 µM) for an additional 1 h. DNA damage was evaluated by the
CometChip assay, reported as % Tail DNA (**** p < 0.0001; two-way ANOVA).
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Figure 4. PAR accumulation suppresses cell survival signaling and induces apoptosis. (A) Im-
munoblot analysis of total cell lysates for PAR, γ-H2AX, and cleaved caspase 3 at 24 h after treatment
of LN428/MSH6-KD cells with DMSO, NRH (100 µM), PARGi (10 µM), N + P, TMZ (250 µM), T + N,
T + P, or T + N + P. β-Actin was used as the loading control. (B) Relative caspase 3/7 activity
(LN428/MSH6-KD cells) 24 h after treatment with DMSO, NRH (100 µM), PARGi (10 µM), N + P,
TMZ (250 µM), T + N, T + P, or T + N + P; normalized to DMSO (** p < 0.01, **** p < 0.0001, one-
way ANOVA). (C) Total cellular NAD+ levels in LN428/MSH6-KD cells treated with DMSO, NRH
(100 µM), PARGi (10 µM), N + P, TMZ (250 µM), T + N, T + P, or T + N + P for 24 h, normalized to
DMSO (** p < 0.01, **** p < 0.0001, one-way ANOVA). (D) Immunoblot analysis of total cell lysates for
MSH6, PAR, p-AKT, γ-H2AX, and cleaved caspase 3, 24 h after treatment of MSH6-WT or MSH6-KO
from LN428, T98G, or U87MG cells treated with DMSO, TMZ (125 µM), T + P, or T + N + P. β-Actin
was used as the loading control.

PARGi or N + P treatment resulted in a defect in BER protein complex assembly and
disassembly after laser-induced DNA damage. We hypothesized that the repair capacity
of the BER pathway may also be impaired if PARGi or N + P treatment is administrated
together with TMZ. To confirm this hypothesis, we evaluated the levels of DNA damage
generated by treatment of cells with DMSO, NRH, PARGi, N + P, TMZ, T + N, T + P,
or T + N + P using a 96-well CometChip platform [34]. There was a strong and acute
increase in unrepaired DNA damage after T + P or T + N + P treatment when LN428,
U87MG, or LNZ308 cells were exposed, regardless of MSH6 status (Figure 3D–F). There
was no significant difference between the level of DNA damage induced by TMZ in
MSH6-proficient or -deficient cells in all three cell lines (p > 0.9999 for each comparison
of SCR-gRNA vs. MSH6-KO cells), suggesting that MSH6 is not directly involved in the
repair of the TMZ-induced BER substrates N7-meG and N3-MeA, consistent with previous
reports [8,9,14,16]. The increase in the level of unrepaired DNA damage in the T + P-
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or T + N + P-treated cells (24 h treatment) also induced the activation of the apoptosis
pathway, as demonstrated by an increase in the level of cleaved caspase 3 (Figure 4A) and
an increase in caspase 3/7 activity (Figure 4B). When measured 24 h after treatment, there
was no loss in cellular NAD+ levels after TMZ plus PARGi treatment and an increase in
cellular NAD+ levels after T + N + P treatment, compared to the DMSO control (Figure 4C).
This excludes NAD+ depletion as the cause of cell death after PARP1 hyperactivation, as
seen with TMZ treatment alone [32].

To understand what other factors may contribute to the inhibition of cell growth
following the T + N + P treatment regimen, we examined signals for cell survival and
cell death [41]. We next compared the activity of the survival signal AKT after treatment
with TMZ, T + P, or T + N + P since nearly 90% of GBMs harbor activation of the AKT
pathway [42]. As shown in Figure 4D, T + N + P treatment strongly suppressed the
activation of AKT among the LN428, T98G, and U87MG cell lines regardless of MSH6
status. We also compared the death signal after 24 h, as indicated by cleaved caspase 3, from
the same treatments. The level of cleaved caspase 3 induced by the T + N + P co-treatment
regimen was more than that from the treatment of T + P in both the LN428 and T98G cells
while TMZ treatment alone did not induce the cleavage of caspase 3. We did not detect
cleaved caspase 3 in U87MG cells after treatment for 24 h, suggesting a longer treatment
time may be needed (Figure 4A,B,D). Altogether, our results suggest that the T + N + P
treatment regimen inhibits the BER pathway responsible for repairing a significant portion
of TMZ-induced DNA damage, suppressed survival signaling, and induced apoptosis
signaling after DNA damage induced by TMZ. As a result, the growth of the treated GBM
cells was strongly inhibited.

3.4. Resistance to TMZ Treatment Due to MGMT Activity Was Overcome by Co-Treatment with
TMZ, NRH, and PARGi

Another mechanism that promotes TMZ resistance is the expression of MGMT that
directly repairs the O6-MeG lesion by transferring the methyl group to internal cysteine
residues, thereby counteracting the cytotoxicity of TMZ [10]. Therefore, we further in-
vestigated the utility of the T + N + P treatment regimen in overcoming endogenous or
acquired resistance to TMZ associated with MGMT activity. We overexpressed MGMT in
LN428 cells (Figure 5A), in which endogenous MGMT expression is silenced by promoter
methylation [6]. The LN428/MGMT cells were treated with TMZ or the T + N + P combi-
nation using different doses of TMZ. As expected, the elevated expression of MGMT in
the LN428/MGMT cells conferred significant resistance to TMZ treatment. Cell growth
of the LN428/MGMT cells was inhibited only by 25% when the cells were treated with
high-dose TMZ (250 µM) while the T + N + P treatment regimen (at the same dose of
TMZ) inhibited cell growth by 96% (Figure 5B). Similar to the MSH6-deficient cells, NRH or
PARGi treatment alone did not show significant toxicity in the LN428/MGMT cells (p > 0.8)
while N + P treatment inhibited cell growth by 44%. Co-treatment with T + P inhibited cell
growth by 78% while co-treatment with T + N + P inhibited cell growth by 92% (Figure 5C).

To further validate our results, we applied this treatment regimen to the TMZ-resistant
GBM cell line T98G, cells with endogenous elevated expression of MGMT, as compared to
the TMZ-sensitive cell line U87MG, as a control (Figure 5D). TMZ (125 µM) treatment alone
inhibited the growth of U87MG cells by 89% yet only inhibited the growth of T98G cells by
1%. However, co-treatment of T98G cells with the T + P regimen inhibited cell growth by
63% while co-treatment of T98G cells with the T + N + P combination inhibited cell growth
by 91% (Figure 5E), using a TMZ dose of 125 µM.
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Figure 5. MGMT-mediated resistance to TMZ is overcome by a co-treatment with NRH and
PARGi. (A) Immunoblot analysis of MGMT in LN428 cells (WT) modified to express human MGMT
(LN428/MGMT). Tubulin was used as the loading control. (B) The relative number of LN428/MGMT
cells after treatment with TMZ or NRH (100 µM) + PARGi (10 µM) plus TMZ for 7 days (TMZ doses
as indicated), normalized to DMSO. (C) The relative number of LN428/MGMT cells after treatment
with DMSO, NRH (100 µM), PARGi (10 µM), N + P, TMZ (125µM), T + N, T + P, or T + N + P for
7 days, normalized to DMSO (**** p < 0.0001, one-way ANOVA). (D) Immunoblot analysis of MGMT
in U87MG, T98G, or U2OS cells. β-Actin was used as the loading control. (E) The relative number
of U87MG, T98G, or U2OS cells after treatment with DMSO, NRH (100 µM), PARGi (10 µM), N + P,
TMZ (125 µM), T + N, T + P, or T + N + P for 7 days, normalized to DMSO (**** p < 0.0001 for
each DMSO control; #### p < 0.0001 referred to TMZ treatment of U87MG cells, two-way ANOVA).
(F) Immunoblot analysis of total cell lysates for PAR, p-AKT, γ-H2AX, and cleaved caspase 3, 24 h
after treatment of LN428/MGMT cells with DMSO, NRH (100 µM), PARGi (10 µM), N + P, TMZ
(250 µM), T + N, T + P, or T + N + P. β-Actin was used as the loading control. (G) Immunoblot
analysis of total cell lysates for PAR, p-AKT, γ-H2AX, and cleaved caspase 3, after 24 h treatment of
U2OS cells with DMSO, NRH (100 µM), PARGi (10 µM), N + P, TMZ (125 µM), T + N, T + P, or T + N
+ P. β-Actin was used as the loading control.
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To expand the utility of this T + N + P combination treatment regimen to other cancer
cell types, we treated U2OS cells that have endogenous expression of MGMT and are
resistant to TMZ treatment [43]. Here, TMZ (125 µM) inhibited the growth of U2OS cells by
only 13%. However, co-treatment of U2OS cells with the T + P regimen inhibited growth by
47% while co-treatment with the T + N + P regimen completely inhibited U2OS cell growth
(Figure 5E). Co-treatment of U2OS cells with T + N + P also resulted in hyperaccumulation
of PAR and induced apoptosis and suppressed p-AKT levels (Figure 5F,G). This measure
of anti-survival and pro-apoptotic signals at 24 h suggests that the cytotoxicity of the co-
treatment of T + N + P is not associated with the O6-MeG lesion and is likely via failed BER-
mediated repair and the onset of PAR-induced checkpoint activation [25]. Altogether, these
results demonstrate that the T + N + P co-treatment regimen overcomes TMZ resistance
from endogenous or acquired expression or function of MGMT.

4. Discussion

Over 80% of the DNA lesions (N7-MeG and N3-MeA) induced by TMZ are quickly
repaired by the BER pathway [44]. Therefore, inhibition of the BER pathway offers a
very promising target to overcome TMZ resistance that results from insensitivity to the
O6MeG lesion (<10%) [45]. In the BER pathway, PARylation is a critical signal for the
recruitment of the PAR-binding DNA repair factors to the proximity of DNA lesions [40,46],
and dePARylation is needed to remove the linear or branched PAR chains for those repair
factors to access DNA lesions [33]. Therefore, PARGi would result in an accumulation
of PAR that will likely retain or trap BER factors at the site of DNA damage, thereby
interrupting downstream repair [47,48]. Consistent with these reports, we demonstrated
here that PARGi plus TMZ treatment induced a strong level of PAR accumulation while
the addition of NRH (that modulated NAD+ bioavailability) further increased PAR hyper-
accumulation (Figures 3–5). Our micro-irradiation data shows that the kinetics of assembly
and disassembly of BER factors (modeled by XRCC1) is interrupted by NRH + PARGi
treatment (Figure 3). This interruption of DNA repair causes a strong increase in the level
of unrepaired DNA damage in cells treated with TMZ plus PARGi or the T + N + P treat-
ment regimen (Figure 3D–F), as compared to TMZ treatment alone. There is no significant
difference in the level of unrepaired DNA damage when comparing cells treated with
TMZ + PARGi vs. TMZ + NRH + PARGi (T + N + P), which may indicate that PARGi in
both treatments fully blocked the capacity of BER to repair TMZ-induced DNA lesions.
There is no difference in the level of DNA damage between the control (SCR-gRNA) and
MSH6-KO cells (LN428, U87MG, or LNZ308 cell lines), indicating MSH6 is not immediately
required to repair DNA lesions that arise following acute TMZ treatment. MMR plays a
role only after the first replication past an unrepaired O6MeG lesion that gives rise to an
O6Me-G/T mismatch [8,9]. TMZ plus PARGi or T + N + P induced apoptosis at 24 h (within
the first cell cycle) after treatment, indicating that the cytotoxicity of the co-treatments is
not related to the cytotoxicity of the O6MeG lesion in MSH6-deficient cells. The apoptosis
signal that results from the cytotoxicity of the O6-MeG lesion only appears after the second
cell cycle, with an intra-S-phase arrest after MNNG or TMZ treatment [9,49]. The apop-
tosis signal appeared at 24 h (first cell cycle) after co-treatment of T + N + P (Figure 5) in
LN428/MGMT, U2OS (Figure 5), and T98G (Figure 4) cells, each harboring acquired or
endogenous expression of MGMT, supporting our conclusion.

We observed that the GBM cells used in this study are not as sensitive to NRH + PARGi
treatment as compared to GSCs [25]. NRH (100 µM) + PARGi (10 µM) treatment inhibited
the cell growth of most of the GBM cell lines by less than 50% while there was more than
90% cytotoxicity of the GSCs with a much lower concentration of PARGi (~1 µM). This may
result from the different molecular characteristics between GBM cells and glioma stem cells
(GSCs). Firstly, GSCs achieved higher cellular NAD+ levels (10-fold) after treatment with
NRH to promote PARP1 activity as compared to LN428 cells (4-fold) [25]. Secondly, GSCs
only account for a small fraction of the total tumor cells with a significant increase in PARP1
expression as compared to the non-stem cell population [25,50]. Because the cytotoxicity of
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PARGi is largely dependent on the activity of PARP1 and higher PARP1 levels in GSCs mean
stronger PARGi effects while NRH modulated NAD+ bioavailability further potentiates the
cytotoxicity of PARGi. Thirdly, our previous report shows that the hyperaccumulation of
PAR from NRH + PARGi-treated GSC cells is dependent on DNA replication and blocks
replication fork progression [25]. It has been reported that CD133+ GSCs exhibited a
reduced DNA replication velocity and a higher frequency of stalled replication forks than
CD133- non-GSC cells [51,52]. Using isogenic model cell lines, McGrail et al. revealed
that cancer stem cells harbor defects in the replication stress response [53]. Therefore, the
different sensitivity to NRH + PARGi treatment between GSCs and GBM cells may also
relate to the replication status difference between the two cell types.

After DNA damage, the fate of cells between cell survival and cell death is decided
by factors that are involved in DNA damage recognition, DNA repair, and DNA damage
tolerance, and factors involved in the activation of apoptosis, necrosis, autophagy, and
senescence [54]. It has been reported that the activity of AKT suppresses TMZ- or radiation-
induced G2 arrest in cancer cells [55,56]. Inhibition of the activity of AKT by the PI3K
inhibitor, LY294002, potentiated the cytotoxicity of TMZ against melanoma cell growth
and invasion [57] and glioma cell growth [58]. However, the combination of TMZ and
RAD001, a PI3K-AKT-mTOR inhibitor, failed in patients with metastatic melanoma in a
phase II clinical trial, which might indicate other resistance mechanisms [59]. Consistent
with this, our results showed even though the levels of p-AKT in TMZ-resistant cells
(LN428/MGMT and U2OS) were strongly reduced when treated with TMZ plus NRH,
the cell growth of both cell lines was only minimally reduced (Figure 4E–G). Even though
there was no significant difference in the level of unrepaired DNA damage after the
TMZ + PARGi or TMZ + NRH + PARGi (T + N + P) treatment regimens, the T + N + P
treatment regimen resulted in a stronger accumulation of PAR, more suppressed survival
signaling (p-AKT), and a higher level of the cell death signal (cleaved caspase 3). Therefore,
the T + N + P treatment regimen inhibited the growth of all TMZ-resistant cells by more
than 80% (Figures 1 and 5). It was reported that PARP inhibition suppresses the PARylation
of ATM, resulting in the translocation of an ATM-NEMO complex to the cytosol and
interaction with mTOR to activate AKT for survival [60]. Therefore, it is conceivable that
the T + N + P treatment regimen may retain PARylated ATM in the nucleus to reduce the
activation of AKT after DNA damage. However, future experimental evidence is needed
to validate this hypothesis. Additionally, the co-treatment of T + N + P strongly inhibited
the cell growth of all TMZ-resistant cells, regardless of p53 status. Both LN428 and T98G
cells express mutant p53 and LNZ308 does not express p53 while U87MG and U2OS
express wild-type p53 [61,62]. Since the p53 pathway (including CDKN2A, MDM2, and
TP53) is deregulated in ~85% of tumors [63], this p53-independent cytotoxicity from the
co-treatment of T + N + P is very encouraging for GBM treatment.

5. Conclusions

As summarized in Figure 6, this report demonstrates that enhancing tumor cell levels
of NAD+ by the addition of NRH strongly increases the cytotoxicity of TMZ + PARGi
co-treatment. Further, we found that the NRH + TMZ + PARGi co-treatment regimen
overcame TMZ resistance due to either a deficiency in MSH6 or the activity of MGMT.
NRH administration rapidly increases NAD+ levels in both TMZ-sensitive and -resistant
GBM cells and enhances the accumulation of PAR following treatment with TMZ. Further-
more, NRH administration triggers hyperaccumulation of PAR following treatment with
TMZ + PARGi. The NRH + PARGi treatment altered BER complex dynamics and impaired
repair of the DNA damage induced by TMZ. The combination of NRH + TMZ + PARGi
suppressed the survival signaling from p-AKT and activated apoptosis signaling. As a
result, this treatment regimen strongly suppressed the cell growth of MSH6-depleted or
MGMT-expressing GBM cells. Considering the lack of toxicity from NRH and the weak
cytostatic effect of PARGi, this combination strongly improves the efficacy of TMZ to
overcome treatment resistance.
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Figure 6. Proposed model of TMZ resistance mechanisms that can be overcome by co-treatment with
NRH and PARGi. (A) TMZ generates multiple DNA lesions, including O6-methylguanine (O6-MeG,
~9%), N7-methylguanine (N7-MeG, >70%), and N3-methyladenine (N3-MeA, ~10%); (B) The O6-MeG
DNA lesion can be directly repaired by MGMT leading to TMZ resistance. If the O6-MeG/T mis-pair
is acted upon by proteins of the MMR pathway, this leads to cell death. However, when the MMR
pathway is defective, due to loss of expression or mutations in genes of the MMR pathway, then the
O6-MeG/T mis-pair is tolerated and leads to TMZ resistance. Finally, the N7-MeG or N3-MeA DNA
lesions are repaired by proteins of the BER pathway; (C) (i) TMZ induces PARP1/PARP2 activation,
inducing the synthesis of PAR; (ii) NRH increases NAD+, which enhances PARP1/PARP2 activation
and promotes an increase in PAR formation; (iii) Inhibition of PARG blocks degradation of PAR;
(iv) Co-treatment of TMZ, NRH, and PARGi results in the hyperaccumulation of PAR, trapping DNA
repair factors and leading to an increase in unrepaired DNA damage, a decrease in cell survival
signaling, and an increase in cell death signaling.
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