
INTRODUCTION

Aristolochic acid (AA) and its derivatives, isolated from the 
Aristolochiaceae plant family, are a group of nitrophenan-
threne carboxylic acids (Balachandran et al., 2005; Yang et 
al., 2013). Applications prepared from Aristolochiaceae plants, 
including AA, have been used for the treatment of diverse 
diseases, such as arthritis, gout, rheumatism, hypertension, 
urinary tract infection, and festering wounds (Debelle et al., 

2008; Anger et al., 2020). However, these applications are re-
ported to be nephrotoxic. Aristolochic acid nephropathy (AAN) 
is a common nephropathy caused by AA (Chen et al., 2012; 
Wang et al., 2015). In AAN, most patients rapidly deteriorate 
to end-stage renal disease (ESRD) (Luciano and Perazella, 
2015). Patients with AAN exhibit increased serum creatinine 
(Scr), severe anemia, rapid tubulointerstitial injury, loss of 
renal proximal tubules, and tubule atrophy (Priestap et al., 
2012). Recently, AA has been shown to cause acute kidney 
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Aristolochic acid (AA), extracted from Aristolochiaceae plants, plays an essential role in traditional herbal medicines and is used 
for different diseases. However, AA has been found to be nephrotoxic and is known to cause aristolochic acid nephropathy (AAN). 
AA-induced acute kidney injury (AKI) is a syndrome in AAN with a high morbidity that manifests mitochondrial damage as a key 
part of its pathological progression. Melatonin primarily serves as a mitochondria-targeted antioxidant. However, its mitochondrial 
protective role in AA-induced AKI is barely reported. In this study, mice were administrated 2.5 mg/kg AA to induce AKI. Melato-
nin reduced the increase in Upro and Scr and attenuated the necrosis and atrophy of renal proximal tubules in mice exposed to 
AA. Melatonin suppressed ROS generation, MDA levels and iNOS expression and increased SOD activities in vivo and in vitro. 
Intriguingly, the in vivo study revealed that melatonin decreased mitochondrial fragmentation in renal proximal tubular cells and 
increased ATP levels in kidney tissues in response to AA. In vitro, melatonin restored the mitochondrial membrane potential 
(MMP) in NRK-52E and HK-2 cells and led to an elevation in ATP levels. Confocal immunofluorescence data showed that puncta 
containing Mito-tracker and GFP-LC3A/B were reduced, thereby impeding the mitophagy of tubular epithelial cells. Furthermore, 
melatonin decreased LC3A/B-II expression and increased p62 expression. The apoptosis of tubular epithelial cells induced by AA 
was decreased. Therefore, our findings revealed that melatonin could prevent AA-induced AKI by attenuating mitochondrial dam-
age, which may provide a potential therapeutic method for renal AA toxicity.
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injury (AKI) and chronic kidney disease (CKD), which are often 
used for research on the transition from AKI to CKD (Wang et 
al., 2020). Interstitial fibrosis is the chronic pathological sign of 
CKD (Fu et al., 2018). AKI is a syndrome characterized by a 
sudden decline in renal function. Despite the fact that AKI is a 
reversible illness, patients who recover from AKI have a higher 
tendency for developing CKD (Jones et al., 2012). Thus, the 
investigation of AA-induced AKI has important clinical signifi-
cance. 

Proximal tubular epithelial cells are considered the primary 
target of AA (Chevalier, 2016). Researches have implicated 
AA causes mitochondrial damage, resulting in the apoptosis 
and necrosis of tubular epithelial cells (Romanov et al., 2015; 
Anger et al., 2020). Reactive oxygen species (ROS) play criti-
cal roles in this pathological progression. Damaged mitochon-
dria increase ROS generation, contributing to oxidative stress, 
which in turn causes further damage to mitochondria (Tang 
et al., 2015). Mitochondrial damage promotes the release of 
proapoptotic factors, such as cytochrome c, to activate the 
cell apoptosis pathway (Szeto et al., 2017). Recently, the 
prevention of AAN has been limited to glucocorticoids. More-
over, most patients with ESRD still require renal replacement 
therapy, such as dialysis or kidney transplantation (Luciano 
and Perazella, 2015). Therefore, finding protective agents to 
prevent AA-induced AKI has become an urgent problem to be 
solved. 

Melatonin (N-acetyl-5-methoxytryptamine), a circadian hor-
mone, is mainly secreted by the pineal gland during the night 
(Singh and Jadhav, 2014). It has acquired a variety of activities 
at different stages of evolution in mammals, such as immuno-
modulatory, antiproliferative, antioxidative, anti-inflammatory, 
and mitochondrial protective activities (El-Sokkary et al., 2002; 
Tan et al., 2010; Han et al., 2019). Abnormalities in melato-
nin are associated with cancer, hypertension, diabetes, and 
neurodegenerative disease (Cardinali et al., 2008; Ganguly 
et al., 2010; Hardeland, 2012). We previously reported that 
melatonin attenuated pulmonary hypertension in rats and in-
hibited the proliferation of breast cancer cells (Jin et al., 2014; 
Wang et al., 2018; Wang et al., 2022). Mitochondria are the 
major organelles of melatonin synthesis (Tan and Hardeland, 
2021). It is worth noting that melatonin, a potent protector of 
mitochondria, decreases ROS production, maintains the mito-
chondrial membrane potential (MMP), and elevates mitochon-
drial fusion, thereby protecting mitochondria (Tan et al., 2016). 
Studies have revealed that melatonin-pretreated mitochondria 
inhibit oxidative stress, inflammation, cellular stress and mito-
chondrial damage in acute liver ischemia‒reperfusion injury 
(Ko et al., 2020). Even though previous work has reported that 
melatonin exhibites a protective effect against AAN in a CKD 
mouse model via inhibiting oxidative stress and inflammation, 
its mechanisms in AA- induced AKI were not clarified (Kim et 
al., 2019). In the present study, we aimed to explore whether 
melatonin can prevent AA-induced AKI via attenuating mito-
chondrial damage in vivo and in vitro. 

MATERIALS AND METHODS

Materials
Aristolochic acid I (A5512) was purchased from YUAN YE 

(Shanghai, China). Melatonin (M5250) was purchased from 
Sigma Aldrich (Shanghai, China). The human kidney proximal 

tubular epithelial cell line HK-2 (CRL-2190) and rat kidney 
proximal tubular epithelial cell line NRK-52E (CRL-1571) were 
kindly provided by Dr. Feng Zheng (Dalian Medical University, 
Dalian, China). Antibodies against LC3A/B (12741) caspase-3 
(9662), and cleaved caspase-3 (9664) were obtained from 
Cell Signaling Technology (MA, USA). An antibody against 
iNOS (18985-1-AP) was purchased from Proteintech (Wuhan, 
China). An antibody against SQSTM1/p62 (WL02385) was 
purchased from Wanleibio (Shenyang, China). The ROS as-
say kit (DCFH-DA, S0033), superoxide dismutase (SOD) as-
say kit (S0101), malondialdehyde (MDA) assay kit (S0131), 
adenosine triphosphate (ATP) assay kit (S0026), BCA protein 
assay kit (P0012) and TUNEL assay kit (C1088) were pur-
chased from Beyotime (Shanghai, China). A tissue ROS assay 
kit (BB470512) was purchased from Bestbio (Shanghai, Chi-
na). Mito-tracker (40741ES50) and JC-1 probes (40705ES03) 
were purchased from YESEN (Shanghai, China). A periodic 
acid Schiff (PAS) kit (G1280) and Hoechst 33342 (C0030) 
were purchased from Solarbio (Beijing, China). A creatinine 
assay kit (C011-2) and urine protein (Upr) assay kit (C035-2) 
were purchased from Nanjing Jiancheng Bioengineering Insti-
tute (Nanjing, China).

Animal models
Twenty-four Kunming male mice (10 weeks old, 25-30 g) 

were purchased from the Animal Laboratory Center of Dalian 
Medical University. Animal experimental protocols and care 
methods were approved by the Animal Care and Use Ethics 
Committee of Dalian Medical University. The mice were ran-
domly divided into four groups (six mice per group): (1) control 
group treated with vehicle; (2) melatonin group treated with 
melatonin; (3) AA group treated with AA; and (4) AA+melatonin 
group treated with AA and melatonin. For groups (3) and (4), 
mice were injected intraperitoneally with AA (2.5 mg/kg/day) 
for 3 days. For groups (2) and (4), mice were injected intra-
peritoneally with melatonin (30 mg/kg/day) from 3 days before 
AA exposure for 10 days, which was performed 30 min prior 
to AA injection. AA was diluted in saline with 5% dimethyl sulf-
oxide (DMSO, #D8370, Solarbio). Melatonin was dissolved in 
phosphate-buffered saline (PBS) with 10% propylene glycol 
(PEG, #3015708, AR, Sinopharm Chemical Reagent, Co., 
Ltd, Shanghai, China). The injection volume was 0.1 mL/10 
g/mouse. All mice were euthanized on Day 11 after melatonin 
treatment. Blood and urine were collected for further inves-
tigations. Kidney tissue was fixed in 4% paraformaldehyde. 
Paraffin-embedded renal sections (4 µm) stained with hema-
toxylin-eosin (HE) and PAS were prepared for histological 
analysis. 

Cell treatment
The NRK-52E or HK-2 cells were incubated overnight at 

37°C with 5% CO2. Then, the cells were subjected to differ-
ent concentrations (0, 0.5, 2.5, 5, 10 µg/mL) of AA for 24, 48, 
and 72 h to assess cytotoxicity. For melatonin treatment, the 
cells were incubated with 2.5 µg/mL AA and 1 mM melatonin 
for 48 h. 

Cell viability measurement
Cell viability was assessed by a 3-(4,5-dimethylthiazol-

2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay (Wang 
et al., 2018). After culturing in 96-well plates (5×103 cells per 
well) at 37°C with 5% CO2 overnight, the cells were incubated 
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with 10 μL MTT (0.5 mg/mL) for 4 h at 37°C. Then, the super-
natant was discarded, 150 µL DMSO was added and the cells 
were shaken evenly. The absorbance was detected at 490 nm 
with a microplate reader (Perkin Elmer, MA, USA).

Colony formation assay
NRK-52E or HK-2 cells (5×102 cells per well) were seeded 

in a 6-well plate and incubated for 10-14 days at 37°C with 5% 
CO2. Then, colonies were fixed with 2% paraformaldehyde, 
stained with a 0.05% crystal violet solution, and counted under 
an inverted microscope (Leica, Solms, Germany).

ROS measurement
For ROS detection in the kidneys, the tissue homogenate 

was centrifuged at 1,000×g for 3 min at 4°C. Then, the precipi-
tate was discarded. 200 μL of homogenate supernatant and 
2 μL of dihydroethidium (DHE) probe were added to the 96-
well plate and incubated at 37°C for 30 min in the dark. The 
fluorescence intensity was measured by a microplate reader 
(Perkin Elmer). For ROS detection in vitro, the cells were in-
cubated with DCFH-DA (10 μM) for 30 min at 37°C. Fluores-
cence images were obtained by a fluorescence microscope 
(Olympus, Tokyo, Japan). 

MDA, SOD and ATP content measurements
The MDA, SOD, and ATP levels were measured by com-

mercial assay kits. A detailed manipulation process was per-

formed according to the instructions of the manufacturer. The 
optical density was determined by a multifunctional enzyme 
marker (Perkin Elmer).

Western blot analysis
The cells were collected and lysed in RIPA buffer. Protein 

concentrations were measured by a BCA kit (Beyotime). The 
proteins were separated by sodium dodecyl sulfate‒polyacryl-
amide gel electrophoresis as previously reported (Wang et al., 
2018). The proteins were transferred to a nitrocellulose mem-
brane for 1.5 h. Then, the membrane was blocked with 5% 
skim milk for 2 h at room temperature. After incubation with the 
primary antibodies against iNOS (1:1,000), LC3A/B (1:1,000), 
p26 (1:1,000), caspase 3 (1:1,000), and cleaved-caspase 
(1:1,000) overnight at 4°C, the membranes were exposed to 
the secondary antibodies for 1.5 h and analyzed by chemilu-
minescence (Amersham Biosciences, Buckinghamshire, UK). 
The images were analyzed by Image Lab software (Bio-Rad 
Laboratories, CA, USA).

Transmission electron microscopy (TEM) assessment
Kidneys were first fixed with glutaraldehyde and then settled 

in osmium tetroxide. After dehydration in ethanol and embed-
ding in Epon, the tissues were cut into 70 nm sections. Next, 
the sections were subjected to uranyl acetate and lead citrate 
staining. The stained sections were checked at low magni-
fication (×3,000) to locate the renal proximal tubules. Cells 
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Fig. 1. Melatonin prevented AA-induced acute renal proximal tubular injury. (A) The picture of Aristolochia and the chemical structure of 
aristolochic acid (AA). (B) Hematoxylin-eosin (HE) and periodic acid Schiff (PAS) staining in renal sections of mice (scale bars: 50 µm). Tu-
bular necrosis (arrow), tubular atrophy (arrowhead), and tubular casting (asterisk). (C) The treatment schedule of melatonin in AA-induced 
AKI mice model. (D) Coomassie blue staining detected urinary protein (Upro) at day 11 after melatonin treatment. (E) Upro and (F) serum 
creatinine (Scr) detection at day 11 after melatonin treatment. (G) HE and PAS staining in renal sections of mice (scale bars: 50 µm). CONT 
means control. Mel means melatonin. Values are means ± SEM, *p<0.05, **p<0.01, n=6.
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in the proximal tubules were viewed at a high magnification 
(×10,000) to observe mitochondria. Finally, the images were 
collected by TEM (JEM-2000EX, JEOL, Tokyo, Japan). The 
lengths of mitochondria were measured by NIH ImageJ trac-
ing software (NIH, MD, USA). Approximately 50 mitochondria 
were measured in each cell. The percentage of cells contain-
ing less than 1% long (>1 μm) mitochondria was calculated to 
evaluate the levels of mitochondrial fragmentation.

Mitochondrial transmembrane potential assay
The cells were cultured in a 6-well plate and treated with 

AA or melatonin for 24 h, followed by incubation with the JC-1 
probe (2 μM) in PBS (pH 7.4) at 37°C for 30 min in the dark. 
Due to the sensitivity to MMP, JC-1 accumulates in the matrix 
of mitochondria to form aggregates at a high MMP and emits 
a red fluorescence. However, if JC-1 is blocked from accu-
mulating in the matrix of mitochondria due to a low MMP, the 
JC-1 monomer generates a green fluorescence. Images were 
obtained by a fluorescence microscope (Olympus).

Immunofluorescence colocalization measurement
The cells (1-5×105 per well) were seeded on polyline-coat-

ed glass slides in a 6-well plate. Then, the cells were incubat-
ed with Mito-tracker Red for 30 min, fixed in 100% methanol 
for 20 min at –20°C, washed with PBS, and placed in 0.2% 
Triton-X-100 for 5 min. After incubation with an anti-LC3A/B 
(1:200) antibody at 4°C overnight, the slides were treated with 
the fluorescent secondary antibody (1:100, Abbkine, Wuhan, 
China) for 2 h. The cell nuclei were stained with DAPI (62248, 
Invitrogen, Carlsbad, CA, USA). The images were captured 
by a confocal laser scanning microscope LSM780 (Carl Zeiss, 
Oberkochen, Germany).

TUNEL assay
For the TUNEL assay of kidney tissues, the slides were 

deparaffinized, rehydrated, incubated with proteinase K free 
of DNase (20 μg/mL) for 20 min at 37°C, and washed with 
PBS. Then, TdT-labelled nucleotide mix was added, and the 
cells were culture at 37°C for 1 h in the dark. For the TUNEL 
assay of cells, the slides were assessed as described above 
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Fig. 2. Melatonin inhibited the cytotoxicity induced by AA in renal proximal tubular epithelial cells. (A, B) MTT assay of NRK-52E and HK-2 
cells after AA exposure at different concentrations (0.5, 2.5, 5, 10 µg/mL) and different time points (24, 48, 72 h). (C) MTT assay of NRK-
52E and HK-2 cells after melatonin (1 mM) treatment in response to AA (2.5 µg/mL). (D) HE staining of NRK-52E and HK-2 cells (scale 
bars: 50 µm). (E) Colony formation assay. (F) The statistic result of colony formation rate. CONT means control. Mel means melatonin. Val-
ues are means ± SEM, *p<0.05, **p<0.01, ***p<0.001, n=3.
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after being fixed with 4% paraformaldehyde for 30 min. The 
cell nucleus was stained with DAPI. The images were cap-
tured by a fluorescence microscope, and the TUNEL positive 
cells were analyzed by imaging software ImageJ (NIH). The 
percentage of TUNEL positive cells in 500 cells of each slide 
was calculated.

Statistical analysis
Statistical analyses were performed by GraphPad Prism 

8.0 (GraphPad Software, CA, USA). Comparisons between 
groups were analyzed by a two-sided Student’s t test. Values 
are presented as the mean ± SEM. Statistically significant dif-
ferences were considered significant when p<0.05.

RESULTS

Melatonin attenuated AA-induced AKI in mice 
The appearance of Aristolochia and the chemical structure 

of aristolochic acid are shown in Fig. 1A. Mice were injected 
intraperitoneally with AA (2.5 or 5.0 mg/kg) every day for 3 
days to induce AKI. HE and PAS staining were used to deter-
mine the morphological changes in kidney tissues (Fig. 1B). 
The results showed that renal proximal tubular necrosis and 
atrophy were observed in the kidney after exposure 2.5 mg/kg 
AA. Substantial renal proximal tubular casting was formed af-
ter exposure 5.0 mg/kg AA. The kidneys of mice in the control 
group showed a typical structure.

Next, we chose 2.5 mg/kg AA to explore the effect of mela-
tonin on AKI in mice. The treatment schedule is shown in Fig. 
1C. As reflected by a significant increase in urinary protein 
(Upro) and Scr levels, AKI was observed in mice of the AA 
group (Fig. 1D-1F). However, melatonin (30 mg/kg) treatment 
repressed the increase in Scr and Upro in response to AA. Scr 
and Upro showed no significant change in the melatonin alone 
treatment group. As demonstrated in Fig. 1G, renal proximal 
tubular necrosis and atrophy were observed in the AA expo-
sure group. After melatonin treatment, these morphological 
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changes were limited to a few proximal tubules. The renal 
proximal tubules remained a typical structure in the melatonin 
alone treatment group. Interstitial fibrosis was not observed, 
and no abnormality was detected within the glomeruli of mice 
in any group. These data suggested that melatonin attenuated 
AA-induced AKI in mice.

Melatonin inhibited the cytotoxicity induced by AA in 
renal proximal tubular epithelial cells 

To explore the role of melatonin in AA-induced cytotoxicity 
in vitro, HK-2 and NRK-52E cells were used. AA decreased 
cell viability in a time- and dose-dependent manner. Neverthe-

less, melatonin (1 mM) increased cell viability after exposure 
AA (2.5 µg/mL) (Fig. 2A-2C). The cell morphological results 
showed that melatonin reversed the cell necrosis induced by 
AA (Fig. 2D). Consistent with the MTT results, the colony for-
mation results showed that melatonin enhanced the cell col-
ony formation rate (Fig. 2E). Collectively, these data demon-
strated that AA led to cytotoxicity in NRK-52E and HK-2 cells. 
Interestingly, melatonin preserved cell viability.

Melatonin repressed the oxidative stress induced by AA in 
vivo and in vitro

Melatonin is a strong mitochondria targeted antioxidant 
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NRK-52E and HK-2 cells after melatonin (1 mM) treatment in response to AA (2.5 µg/mL) (scale bars: 20 µm) (n=3). (D) ATP levels in NRK-
52E and HK-2 cells (n=4). (E) ATP levels in kidney tissues of mice (n=6). (F) Immunofluorescence colocalization detection in NRK-52E and 
HK-2 cells using GFP-LC3A/B antibody (green) and Mito-tracker (red) (scale bar: 5 μm). The cell nuclei were stained with DAPI (blue). (G) 
The statistical result of mitophagosome formation (n=3). CONT means control. Mel means melatonin. Values are means ± SEM, *p<0.05, 
**p<0.01, ***p<0.001.
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(Tan et al., 2016; Reiter et al., 2017). Therefore, we next inves-
tigated the role of melatonin in AA-induced oxidative stress. 
In vivo, ROS production was enhanced in the kidneys of the 
AA group compared with those of the control group (Fig. 3A). 
Nevertheless, melatonin significantly inhibited the genera-
tion of ROS induced by AA. Then, SOD and MDA, as oxida-
tive stress biomarkers were measured in the serum of mice. 
Melatonin increased the SOD activities and decreased the 
MDA levels in the AA+melatonin group (Fig. 3B, 3C). In vitro, 
we evaluated the ROS level in NRK-52E and HK-2 cells by 
DCFH-DA staining. NRK-52E and HK-2 cells incubated with 
AA showed a dramatic increase in the fluorescence intensity 
of DCFH-DA. However, melatonin reversed the increased fluo-
rescence intensity (Fig. 3D, 3E). Additionally, iNOS expression 
was increased in NRK-52E and HK-2 cells after AA incubation, 
and melatonin inhibited the expression of iNOS (Fig. 3F, 3G). 
Thus, we proved that melatonin repressed oxidative stress in 
AA-induced AKI.

Melatonin attenuated mitochondrial damage in AA-
induced AKI

Given that melatonin inhibited AA-induced oxidative stress, 
we further explored whether this effect was related to its mito-
chondrial protective activity. Mitochondrial morphology in the 
renal proximal tubules of mice was examined by TEM (Fig. 
4A, 4B). AA caused mitochondrial fragmentation and loss of 
cristae and mitophagosomes in the renal proximal tubular 
epithelial cells of mice. Melatonin treatment reversed these 
changes induced by AA. The mitochondria of tubular epithelial 
cells were normal in size and shape in the melatonin alone 
treatment group. In vitro, a JC-1 probe was used to evaluate 

the mitochondrial transmembrane potential of tubular epithe-
lial cells (Fig. 4C). JC-1 formed red fluorescent aggregates 
in the mitochondrial matrix of NRK-52E and HK-2 cells in the 
control group. AA blocked the formation of JC-1 aggregates, 
leading to the generation of JC-1 monomers (green fluores-
cence) in the mitochondria, suggesting that AA damaged the 
MMP. However, melatonin reversed the changes induced by 
AA. The ATP levels were also assessed (Fig. 4D, 4E). AA re-
pressed ATP levels compared with the control group in vitro 
and in vivo. However, melatonin increased the levels of ATP. 

Since the TEM study showed that melatonin reduced mi-
tophagosomes in tubular epithelial cells in vivo, we assessed 
mitophagy in NRK-52E and HK-2 cells by Immunofluorescence 
colocalization detection using Mito-tracker and GFP-LC3A/B. 
The results showed that puncta containing Mito-tracker and 
GFP-LC3A/B were more abundant in the AA group, indicating 
increased autophagosome formation in mitochondria. Notably, 
melatonin reduced the puncta induced by AA (Fig. 4F, 4G). 
These results demonstrated that melatonin reversed the mito-
chondrial damage in AA-induced AKI.

Melatonin prevented the autophagy of renal proximal 
tubular epithelial cells induced by AA

Next, we further explored whether melatonin inhibited au-
tophagy of tubular epithelial cells induced by AA. Immuno-
fluorescence staining assays were performed in NRK-52E 
and HK-2 cells using an anti-LC3A/B antibody (Fig. 5A, 5B). 
LC3A/B were increased in the AA group compared with the 
control group, indicating that AA caused autophagosome for-
mation in NRK-52E and HK-2 cells. Melatonin repressed the 
autophagy induced by AA. In accordance with the immuno-
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fluorescence results, western blot analysis showed that the 
autophagy-related protein LC3A/B-II was increased and that 
the autophagy substrate p62 was reduced after AA exposure. 
Melatonin reduced the protein levels of LC3A/B-II in HK-2 cells 
and increased the protein levels of p62 in both NRK-52E and 
HK-2 cells (Fig. 5C-5E). Our data confirmed that melatonin 
suppressed AA-activated autophagy in renal proximal tubular 
epithelial cells.

Melatonin inhibited the apoptosis of renal proximal 
tubular epithelial cells caused by AA 

To determine the role of melatonin in the apoptosis of renal 
proximal tubular epithelial cells after exposure AA, a TUNEL 
assay was performed on the mouse kidneys. As shown in Fig. 
6A and 6B, there were fewer TUNEL-positive cells in the kid-
neys in the AA+melatonin group than in the AA group. In vitro, 

AA increased the number of TUNEL-positive in NRK-52E and 
HK-2 cells; however, melatonin reversed the change induced 
by AA (Fig. 6C, 6D). The above results were confirmed by 
cleaved caspase-3 expression (Fig. 6E, 6F). AA enhanced the 
expression of cleaved caspase-3. After melatonin treatment, 
cleaved caspase-3 protein levels were reduced. These find-
ings suggested that melatonin inhibited AA-mediated apopto-
sis of tubular epithelial cells in vivo and in vitro.

DISCUSSION

In the present study, we successfully established an AA-
induced AKI mouse model characterized by increased Upr 
and Scr, necrosis, and atrophy in the renal proximal tubules. 
Melatonin remarkably prevented the biochemical and morpho-

Biomol  Ther 31(1), 97-107 (2023) 

E

Caspase-3

Cleaved caspase-3

GAPDH

CONT Mel AA AA+mel

NRK-52E

CONT Mel AA AA+mel

HK-2

A

CONT Mel AA AA+mel

T
U

N
E

L
D

A
P

I
M

e
rg

e

Kidney tissues B

30

20

10
T

U
N

E
L

c
e
lls

/m
m

+
2

0
Mel+

AAControl

*** *

+

C NRK-52E
HK-2

D

5

4

3

2

1

T
U

N
E

L
c
e
lls

/m
m

+
2

0

Mel+ + + +

AAAAControl Control

*** ** ** **

NRK-52E
HK-2F

2.5

2.0

1.5

1.0

0.5

R
e
la

ti
v
e

p
ro

te
in

le
v
e
l

(c
le

a
v
e
d

c
a
s
p
a
s
e
-3

/G
A

P
D

H
)

0

Mel+ + + +

AAAAControl Control

** * * *

CONT Mel AA AA+mel

M
e
rg

e
T

U
N

E
L

CONT Mel AA AA+mel

HK-2NRK-52E

Fig. 6. Melatonin inhibited the apoptosis of renal proximal tubular epithelial cells induced by AA in vivo and in vitro. (A) TUNEL staining in 
kidney sections of mice (scale bars: 20 µm). (B) The statistic result of the percentage of TUNEL positive cells in kidney sections of mice 
(n=6). (C) TUNEL staining in NRK-52E and HK-2 cells after melatonin (1 mM) treatment under AA (2.5 µg/mL) exposure (scale bars: 20 µm). 
(D) The statistical result of the percentage of TUNEL positive cells in NRK-52E and HK-2 cells (n=3). (E) Western blot analysis of caspase-3 
and cleaved caspase-3 expression. (F) The statistic result of relative expression of cleaved caspase-3 to GAPDH (n=3). CONT means con-
trol. Mel means melatonin. Values are means ± SEM, *p<0.05, **p<0.01, ***p<0.001.



www.biomolther.org

Sun et al.   Melatonin Prevents AA Induced Acute Kidney Injury

105

logical changes, along with the oxidative stress caused by AA. 
In particular, melatonin reduced mitochondrial fragmentation, 
restored MMP, increased ATP levels and repressed the mi-
tophagy of renal proximal tubular epithelial cells responding to 
AA. Eventually, autophagy and apoptosis of tubular epithelial 
cells exposed to AA were reversed, and cytotoxicity was in-
hibited. Therefore, our study revealed that melatonin prevents 
AA-induced AKI by attenuating mitochondrial damage (Fig. 7).

An increasing number of reports have suggested that dam-
aged mitochondria are implicated in the pathogenesis of acute 
and chronic kidney diseases, including AAN, which lead to 
significant changes in mitochondrial morphology and function 
(Hall and Schuh, 2016; Tang et al., 2018; Anger et al., 2020). 
Reversing mitochondrial dysfunction has been shown to pre-
vent tubular epithelial cells death and maintain renal function 
(Brooks et al., 2009; Ishimoto and Inagi, 2016; Suzuki et al., 
2016). Mitochondria are intracellular organelles and function 
as the powerhouse because of their ability to generate ATP, 
which provides energy to support basic cell activities (Li et al., 
2006). AA induces a decrease in ATP levels and mitochondrial 
membrane depolarization in renal proximal tubular epithelial 
cells (Qi et al., 2007). Melatonin, a potent protector of mito-
chondria, was shown to be more effective than mitochondri-
al-targeted antioxidative products, such as vitamin E (MitoE) 
and coenzyme Q10 (MitoQ) (Tan et al., 2016). Mitochondria 
are biological targets of melatonin, playing an antitumor role 
through the mitochondrial apoptosis pathway (Huo et al., 
2017; Yu et al., 2018). Besides, melatonin has been shown 
to rescue mitochondrial function from renal fibrosis in diabetic 
mice and regulate mitochondrial bioenergetics to protect mes-
enchymal stem cells in chronic kidney disease (Han et al., 
2019; Tamarindo et al., 2019). In this study, melatonin reduced 
fragmented mitochondria, restored MMP, and increased lev-
els of ATP in tubular epithelial cells. In addition, autophagy 
has been found to promote AA-induced kidney injury (Yang et 
al., 2013). Mitophagy is a form of autophagy that selectively 
eliminates dysfunctional and damaged mitochondria to au-
tophagosomes. However, excessive activation of mitophagy 

may deteriorate the pathological progression of diabetic ne-
phropathy (Higgins and Coughlan, 2014). In the present study, 
we demonstrated that AA caused autophagy and mitophagy 
in renal proximal tubular epithelial cells in AA-induced AKI. 
However, melatonin reduced the expression of the autophagy 
marker LC3A/B-II expression and enhanced the expression 
of the autophagy substrate p62 expression, thereby inhibiting 
mitophagy and autophagy in tubular epithelial cells. All these 
data suggested that melatonin protected mitochondria from 
AA-induced damage in AKI.

Mitochondria are also a leading source of ROS in cells. 
Excessive ROS generated by mitochondria lead to oxidative 
stress, which in turn enhances ROS production and further 
damages mitochondria (Tang et al., 2015). Numerous reports 
have demonstrated that ROS are increased in renal tubular 
epithelial cells exposed to AA (Romanov et al., 2015; Wang 
et al., 2019; Zhang et al., 2019). AA-induced oxidative stress 
has been associated with decreased SOD2 and glutathione 
synthetase mRNA levels and increased MDA contents (Kim 
et al., 2019). In this work, melatonin reduced ROS generation, 
increased SOD levels, and decreased MDA levels and iNOS 
expression in vivo and in vitro. ROS and mitochondrial mem-
brane depolarization also contribute to DNA damage and cell 
apoptosis (Thangam et al., 2014; Dai et al., 2015). Increased 
apoptosis has been found in AA-induced cancers (Cosyns et 
al., 1999; Chang et al., 2007; Simoes et al., 2008) and cul-
tured tubular epithelial cells exposed to AA (Hsin et al., 2006; 
Zhou et al., 2010). Apoptosis of tubular epithelial cells is one of 
the central mechanisms leading to AAN (Pozdzik et al., 2008; 
Romanov et al., 2015). In this study, we provided evidence 
to support the role of damaged mitochondria in AA-induced 
AKI. Damaged mitochondria produce excessive ROS and re-
lease proapoptotic factors such as cytochrome c, which may 
ultimately result in the death of renal tubular epithelial cells 
(Sweetwyne et al., 2017; Szeto et al., 2017). We found that AA 
caused a significant increase in TUNEL-positive cells in vivo 
and in vitro. Melatonin inhibited AA-induced tubular epithelial 
cell apoptosis and decreased the expression of cleaved-cas-
pase3.

In summary, melatonin exhibited a protective role in AA-
induced AKI in vivo and in vitro. Melatonin attenuated mito-
chondrial damage by reducing mitochondrial fragmentation, 
restoring MMP, increasing ATP levels and repressing mitoph-
agy in renal proximal tubular epithelial cells exposed to AA. 
Eventually, melatonin suppressed ROS generation and oxida-
tive stress, inhibiting autophagy and apoptosis of renal tubular 
epithelial cells. Therefore, our findings suggest that melatonin 
may offer a novel therapeutic strategy and be a potential pro-
tective drug for AA-induced AKI via protecting mitochondria.
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