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Pax6 is a key regulator of the rates of progenitor cell division in cerebral corticogenesis.
Previous work has suggested that this action is mediated at least in part by regulation
of the cell cycle gene Cdk6, which acts largely on the transition from G1 to S phase.
We began the present study by investigating whether, in addition to Cdk6, other Pax6-
regulated cell cycle genes are likely to be primary mediators of Pax6’s actions on
cortical progenitor cell cycles. Following acute cortex-specific deletion of Pax6, Cdk6
showed changes in expression a day earlier than any other Pax6-regulated cell cycle
gene suggesting that it is the primary mediator of Pax6’s actions. We then used flow
cytometry to show that progenitors lacking Pax6 have a shortened G1 phase and that
their Cdk6 levels are increased in all phases. We found that Cdk6 levels oscillate during
the cell cycle, increasing from G1 to M phase. We propose a model in which loss of Pax6
shortens G1 phase by raising overall Cdk6 levels, thereby shortening the time taken for
Cdk6 levels to cross a threshold triggering transition to S phase.

Keywords: Pax6, cortex, Cdk6, progenitor, cell cycle

INTRODUCTION

Cerebral corticogenesis requires precise spatio-temporal control of the rates of progenitor cell
division. Previous research on the developing mouse embryo established that the transcription
factor Pax6 is a key regulator of this process (Götz et al., 1998; Warren et al., 1999; Estivill-Torrus
et al., 2002; Heins et al., 2002; Haubst, 2004; Manuel et al., 2006, 2015; Quinn et al., 2007; Sansom
et al., 2009; Asami et al., 2011; Georgala et al., 2011a,b; Mi et al., 2013). Pax6 is expressed by cortical
radial glial progenitors, which are by far the most numerous cortical cell type present at the onset
of corticogenesis at around embryonic day 12.5 (E12.5) in mouse. Previous functional studies have
shown that Pax6 is an important cell autonomous repressor of radial glial cell cycle progression
(Warren et al., 1999; Estivill-Torrus et al., 2002; Manuel et al., 2006; Georgala et al., 2011b; Mi
et al., 2013). Loss of Pax6 shortens the overall length of cortical progenitor cell cycles and hence
accelerates cell division (Mi et al., 2013). Previously, we identified a number of highly conserved
cell cycle genes with actions fundamental to cell cycle progression across cell types and species
whose levels of expression are affected by constitutive loss of Pax6 function (Nurse, 2000, 2002).
One of these was the cell cycle gene Cdk6 (Mi et al., 2013).

Cdks drive progression through the eukaryotic cell cycle by forming complexes with cyclins
(Morgan, 1997; Loog and Morgan, 2005; Hochegger et al., 2008; Coudreuse and Nurse, 2010;
Uhlmann et al., 2011). In most natural systems studied so far, levels of Cdks remain relatively
constant during the cell cycle whereas levels of the cyclins oscillate, causing Cdk activity to oscillate.
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In experiments using engineered fission yeast, oscillations in
Cdk activity alone, without the numerous additional regulatory
mechanisms that normally affect the cell cycle, can be sufficient
to drive orderly progression through major cell cycle events
(Coudreuse and Nurse, 2010). Cdk6 specifically partners a
particular type of cyclin (the D-type cyclins) and primarily
regulates the G1 to S phase transition (Hochegger et al., 2008).
In cerebral cortical progenitors, Pax6 negatively regulates the
expression of Cdk6 (Mi et al., 2013).

Here we addressed several questions. Are the effects of Pax6
on the cell cycle likely to be mediated primarily through actions
on Cdk6, or does Pax6 control multiple cell cycle regulators in
parallel? Do the effects of Pax6 vary between cell cycle phases?
Are levels of Cdk6 normally constant throughout the cell cycle of
cortical progenitors? Does Pax6 modulate Cdk6 levels equally or
differentially across the phases?

To address the first of these questions, we used quantitative
real time polymerase chain reaction (qRT-PCR) to test for
changes in the expression of a set of cell cycle regulators following
acute cortical deletion of Pax6. The set we tested contained all
cell cycle regulators that were shown in previous work to have
altered cortical expression levels in constitutive Pax6−/−mutants
(Mi et al., 2013). Here we studied embryos with tamoxifen-
induced cortex-specific deletion of Pax6. This allowed us to focus
on the effects of Pax6 loss that are more likely to be direct by
minimizing the possibility of secondary changes arising as a long-
term consequence of cortical deletion or Pax6 removal from
non-cortical tissues. We then used flow cytometry to discover
how Pax6 affects the phases of the cell cycle and the levels of Cdk6
in each. We found that Pax6 loss increases Cdk6 levels similarly
in all cell cycle phases and, particularly interestingly, that Cdk6
levels oscillate with cell cycle phase. This prompted us to extend
our analysis to examine the relationship between Pax6 levels and
Cdk6 levels across cell cycle phases. Our results indicated that
Pax6 sets the level of expression around which Cdk6 oscillates but
is unlikely to be responsible for controlling the oscillation itself.

MATERIALS AND METHODS

Mice and Tissue Preparation
All mice were bred in-house. The University of Edinburgh
Animal Welfare and Ethics Board and a license from the Home
Office UK issued under the UK Animals (Scientific Procedures)
Act 1986 regulated all procedures. For constitutive inactivation
of Pax6, we used the Pax6Sey allele (designated as Pax6− here;
(Hill et al., 1991). For conditional inactivation of Pax6, we used
the Pax6loxP allele (Simpson et al., 2009) and a green fluorescent
protein (GFP) reporter allele (Sousa et al., 2009) with BAC
transgenic strain Emx1CreERT2 (Kessaris et al., 2006). Dams were
killed by cervical dislocation, fetuses were removed and cortices
were dissected and used for RNA extraction (RNeasy Plus micro
kit; Qiagen, Hilden, Germany) or dissociated with papain (20 U
ml−1; Dissociation kit; Worthington Biochemical Corporation,
Lakewood, NJ, United States). Dissociated cell suspensions
diluted to 1.8 × 106 ml−1 were fixed and permeabilised in 100%
ethanol and stored at−20◦C.

qRT-PCR
cDNA was synthesized from RNA with a Superscript reverse
transcriptase reaction (Thermo Fisher Scientific, Perth,
United Kingdom) and qRT-PCR was done with a Quantitect
SYBR Green PCR kit (Qiagen, Hilden, Germany) and a
DNA Engine Opticon Continuous Fluorescence Detector (MJ
Research, QC, Canada). Primer pairs are listed in Table 1. For
each sample, we normalized the abundance of each transcript
to the GAPDH expression level and calculated the ratios of
normalized expression levels in conditional knock outs (cKOs)
to littermate controls. We used three biological replicates from
three different litters. For each biological replicate we ran three
technical replicates.

Flow Cytometry
Aliquots of permeabilised and fixed cells suspended in
fluorescence activated cell sorting (FACS) buffer were
reacted with Hoechst 33342 (Thermo Fisher Scientific,
Perth, United Kingdom; Cat# 1391095). Primary antibodies
used were: anti-Pax6 (1:200, rabbit, Millipore, Livingston,
United Kingdom; Cat# AB2237); anti-Tuj1 (1:800, mouse,
Cambridge Bioscience, Cambridge, United Kingdom; Cat# MMS
435P); anti-PH3 (1:200, mouse, Cell Signaling Technology,
Danvers, Massachusetts, United States; Cat# 9706); anti-Ki67
(1:500, rat, eBioscience, San Diego, CA, United States; Cat#
12-5698); anti-Cdk6 (1:500, rabbit, Santa Cruz Biotechnology,
Dallas, TX, United States; Cat# SC-177). We used secondary-
only and fluorescence-minus-one controls to set thresholds for
primary antibody-specific staining. Cells were analyzed using an
LSRII flow cytometer and FlowJo V10 software (BD Biosciences,
Franklin Lakes, NJ, United States). In all of our experiments, we
used the same gate for forward scatter for both wild-type and
mutant progenitor cells. Since forward scatter values in flow

TABLE 1 | qRT-PCR primers.

Gene Forward primer Reverse primer

Pax6
(exons 6–7)

TATTACGAGACTGGCTCCAT TTGATGACACACTGGGTATG

GFP CAGCCACAACGTCTATATCA GTGTTCTGCTGGTAGTGGTC

Cdk6 GAGTGTCGGTTGCATCTTT GAGTCCAATGATGTCCAAGA

Cdca7 GGAACGTCCATGCTTACTTG CACAACGTCGAGAACAAGAG

Smad2 GCAGGAATTGAGCCACAGAG CGGAGAGCCTGTGTCCATAC

Smad3 GATGACTACAGCCATTCCAT TCACTGGTTTCTCCATCTTC

Smad4 TCCTGTGGCTTCCACAAGTC ATGGTAAGTAGCTGGCTGAG

Smad7 GTGTTGCTGTGAATCTTACG CCATTGGGTATCTGGAGTAA

Cdk2 GTGTACCCAGTACTGCCATC TCCATGAATTTCTTGAGGTC

Cdk4 GAGGACATACCTGGACAAAG AGAATGTTCTCTGGCTTCAG

Ccnd1 TTCATCGAACACTTCCTCTC GAGGGTGGGTTGGAAAT

Ccnd2 AGTGTGCATGTTCCTAGCTT CAGGTTCCACTTCAGCTTAC

Sesn1 TTGGCTGATTACCAAAGAAC GAGGCAAGAGAGTGGTAGTG

Mcm3 GGACGATATAGCCAAGATCA GAGGATTGCCTTCTTGACAT

Mcm6 GATTGTTGTGCCTGATGTCT GACCAGCCTGTATGACAGAT

Smc2 GACCAGAACTGTAACCCTTG AGTTCATTCTCCTTGGTCCT

Ccdc80 ATCTTTGGTCCTGTCAACAA CATTCCATACTCCTTCCTCA

Ccdc90A GCACAGAAAAGAGAACTTGC CAGTGCAGACACAATGATTT
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FIGURE 1 | Quantitative RT-PCR analysis of the effects of tamoxifen-induced cortex-specific Pax6 deletion on the expression of cell cycle genes. (A) Tamoxifen
given at E9.5 resulted in Pax6 mRNA loss, with a ∼60% reduction by E11.5 and a ∼100% reduction by E13.5. (B) This loss coincided with the production of
increasing levels of GFP reporter gene mRNA. (C–R) Changes in the expression of 16 cell cycle genes. In all cases, the levels of cortical expression of each gene
were measured relative to levels of cortical expression of GAPDH in the same embryo. In panels (A) and (C–R), ratios of expression in conditional knock-outs (cKO)
over littermate controls were combined to give mean ± SEM at each age. All data are from three biological replicates at each age; ∗p < 0.05; ∗∗p < 0.01; Student’s
t-test comparison of cKOs with paired controls at each age.
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cytometry are directly linked to cell size, this indicates that the
wild-type and mutant cells were in the same size range.

Immunohistochemistry for BrdU and IdU
Pregnant females were injected intra-peritoneally with 200 µl
of 100 µg ml−1 IdU and then 1.5 h later with the same dose
of BrdU. They were sacrificed after 30 min and histological
sections were cut through the cortex. Primary antibodies used
were anti-BrdU/IddU (which recognizes both BrdU and IddU)
(1:100, mouse, Becton Dickinson, Swindon, United Kingdom;
clone B44) and anti-BrdU (1:100, rat, Abcam, Cambridge,
United Kingdom; clone BU1/75). Nuclei were counterstained
with TO-PRO-3 iodide (Molecular Probes). Analysis was as
described in (Martynoga et al., 2005).

RESULTS

Changes in the Expression of Cell Cycle
Regulators Following Acute Cortical
Deletion of Pax6
We gave tamoxifen to experimental Pax6fl/fl;Emx1CreER

(designated cKO) and littermate control Pax6fl/+;Emx1CreER

embryos at E9.5. All embryos contained a floxed-stop GFP
reporter allele (Sousa et al., 2009). We used qRT-PCR to measure
levels of mRNA in cortical samples relative to levels of GAPDH.
For all genes except GFP we then calculated ratios between the
relative mRNA levels in cKO and control littermates at E11.5,
12.5, and 13.5 (Figure 1).

Pax6 levels decayed exponentially and GFP levels rose
steadily over the 4 days following tamoxifen administration
(Figures 1A,B). Pax6 levels had declined to ∼40% of normal
by E11.5, the earliest post-tamoxifen time-point examined. Cdk6
was the only cell cycle gene studied that showed a significant
change (upregulation) in gene expression at E12.5 and this was
sustained at E13.5 (Figure 1C). Cdca7 showed a significant
upregulation but only later, at E13.5 (Figure 1D). Smad3, Smad7,
and Sesn1 showed significant downregulation but only at E13.5
(Figures 1F,H,M). These results suggest that no other Pax6-
regulated cell cycle gene rivals Cdk6 as the top candidate among
possible mediators of Pax6’s actions on cortical progenitor cell
cycle lengths. Whereas genes such as Cdca7, Smad3, Smad7, and
Sesn1 are almost certainly involved, it is possible that they alter
their expression as a secondary consequence of changes in Cdk6
expression.

G1 Is Abnormally Short in Pax6−/−

Mutants
Given that Cdk6’s main action during the eukaryotic cell cycle is
to promote the G1 to S phase transition (Hochegger et al., 2008),
we hypothesized that elevation of Cdk6 in Pax6−/− mutants
might shorten the cell cycle of cortical progenitors by shortening
primarily G1 phase. We first estimated the overall lengths of the
cell cycles (Tc) of progenitors in Pax6+/+ and Pax6−/− E12.5
and E14.5 cortex using double labeling with iododeoxyuridine
(IdU) and bromodeoxyuridine (BrdU) (Martynoga et al., 2005).

At E12.5, Tc was ∼10% shorter in Pax6−/− cortex than in
Pax6+/+ cortex (n = 3 embryos of each genotype from three
different litters; mean Tc± SEM = 12.1± 0.15 h in Pax6+/+ and
10.75± 0.06 h in Pax6−/−; p = 0.0099, Student’s t-test). At E14.5,
Tc was ∼15% shorter in Pax6−/− cortex than in Pax6+/+ cortex
(n = 3 embryos of each genotype from three different litters; mean
Tc ± SEM = 18.0 ± 0.41 h in Pax6+/+ and 15.5 ± 0.42 h in
Pax6−/−; p = 0.0004, Student’s t-test) (Figure 2).

We then used flow cytometry to quantify the relative lengths
of G1, S, G2, and M phases in cortical cells from E12.5 and
E14.5 Pax6+/+ and Pax6−/− embryos (Figure 3). A combination
of Hoechst and antibody staining identified cells in each of the
phases (Figures 3A–F). Cells were labeled with Hoechst 33342
to measure DNA content and antibodies for Ki67 (a marker
of proliferating cells), class III beta-tubulin (TuJ1; a marker of
postmitotic neurons), phospho-Histone H3 (PH3; a marker of
M phase), and Pax6. Cells were classified as G1 if they had
2n DNA content and were positive for Ki67 (Figure 3A). As
expected, almost all of these cells (∼98%) were negative for TuJ1
(Figure 3C). Combining data from multiple embryos (four per
genotype per age) showed significant reductions by ∼8–10% in
the proportions of cells in G1 at both ages in Pax6−/− embryos
(Figures 3G,H). For phases other than G1, the only significant
differences were in S and G2 at E14.5 (Figures 3G,H), where
mean values were higher in mutants in both cases.

We estimated the lengths of each phase in hours under
different conditions by multiplying the proportion of cells in that
phase by the corresponding Tc derived from calculations above.
These estimations gave values for G1 of 9.3 h in Pax6+/+ cortex
and 7.7 h in Pax6−/− cortex at E12.5. At E14.5, values for G1 were
14.8 h in Pax6+/+ cortex and 11.5 h in Pax6−/− cortex. At E12.5,
S phase was 1.7 h in Pax6+/+ cortex versus 1.8 h in Pax6−/−

cortex, G2 phase was 0.9 h in Pax6+/+ cortex versus 1.0 h in
Pax6−/− cortex and M phase was 0.2 h in Pax6+/+ cortex versus
0.25 h in Pax6−/− cortex. At E14.5, S phase was 1.9 h in Pax6+/+

FIGURE 2 | Cell cycle lengths are shortened in Pax6−/− progenitors. Lengths
of the cell cycles of progenitors in Pax6+/+ and Pax6−/− E12.5 and E14.5
cortex measured using double labeling with IdU and BrdU [n = 3 embryos of
each genotype from three different litters for each age; mean ± SEMs are
shown; in panel (A), p = 0.0099, Student’s t-test; in panel (B), p = 0.0004,
Student’s t-test].
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FIGURE 3 | Flow cytometric analysis of cell cycle phases of cortical progenitors in Pax6+/+ and Pax6−/− embryos at E12.5 and E14.5. (A–F) Representative
examples of flow cytometry showing how cells were assigned to specific stages of the cell cycle. Cells were labeled with Hoechst 33342 and antibodies for Ki67,
class III beta-tubulin (TuJ1), phospho-Histone H3 (PH3) and Pax6. (A) Fluorescence intensity of Ki67 against Hoechst, shown as a heat-map with red areas
containing most cells and blue areas fewest: Cells were classified as G1 if they had 2n DNA content and were positive for Ki67 (intensity values above the red line),
which is a marker of proliferating cells. (B) Fluorescence intensity of TuJ1 against Hoechst: TuJ1 was used as a marker of differentiating neurons. (C) Fluorescence
intensity of Ki67 against TuJ1, with different colors indicating cell cycle phase of each cell: In this sample, 98.0% (50.7/51.74) of Ki67+ cells were TuJ1– whereas
69.3% (33.5/48.3) of Ki67– cells were Tuj1+. (D) Fluorescence intensity of PH3 against Hoechst, plotted using the same method as in panel (A): Cells in M phase

(Continued)

Frontiers in Cellular Neuroscience | www.frontiersin.org 5 November 2018 | Volume 12 | Article 419

https://www.frontiersin.org/journals/cellular-neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cellular-neuroscience#articles


fncel-12-00419 November 14, 2018 Time: 17:11 # 6

Mi et al. Pax6 and Cortical Progenitor Cell Cycle

FIGURE 3 | Continued
were identified by their expression of PH3 (0.858%, above black line). (E) Fluorescence intensity of Ki67 against Hoechst: M phase cells expressed PH3 and
contained the highest levels of Ki67. (F) Fluorescence intensity of Pax6 against Ki67, plotted using the same method as in panel (C): Very few Ki67– cells expressed
Pax6 (11.5% [6.72/58.52] in this sample) whereas most Ki67+ cells co-expressed Pax6 (74.7% [31/40.5] in this sample). (G,H) Proportions of proliferating cells (i.e.,
G0 cells excluded) in each phase of the cell cycle in Pax6+/+ and Pax6-/- embryos at E12.5 and E14.5. Values are mean ± SEM (n = 4 embryos in all cases).
ANOVA showed a significant effect of genotype at both ages (α = 0.05). Significant effects of genotype on each phase at each age are marked (Sidak’s multiple
comparisons tests: ∗∗p = 0.0029; ∗∗∗p = 0.0001; ∗∗∗∗p < 0.0001). (I–L) Charts, drawn to scale, summarizing the relative lengths of the cell cycle phases across
ages and genotypes.

FIGURE 4 | Flow cytometric analysis of Cdk6 levels at different phases of the cell cycle in Pax6+/+ and Pax6−/− cortex at E12.5. (A,B) Fluorescence intensity of
Cdk6 against Ki67: Samples from a Pax6+/+ and a Pax6−/− embryo with cells classified according to their cell cycle phase by methods illustrated in Figure 3. G1
cells were distinguished from G0 cells by positivity for Ki67 in quadrants Q2-1 and Q4-1 (cells in quadrants 1-1 and 3-1 were negative for Ki67). (C) Relative levels of
Cdk6 in the cortex of four Pax6+/+ and four Pax6−/− embryos at each phase of the cell cycle. Each data point is the average level in the cortex of one embryo.
Regression analysis of levels of Cdk6 against cells cycle phase gave r2 values of 0.78 for Pax6+/+ data and 0.81 for Pax6−/− data. ANOVA showed a significant
effect of genotype (α = 0.05) and Sidak’s multiple comparisons tests showed significantly higher levels of Cdk6 in Pax6-/− cortex in all phases (G1, p = 0.0075; S,
p < 0.0001; G2, p = 0.0167; M, p = 0.0019).

cortex versus 2.2 h in Pax6−/− cortex, G2 phase was 1.3 h in
Pax6+/+ cortex versus 1.6 h in Pax6−/− cortex, and M phase was
0.1 h in Pax6+/+ cortex versus 0.2 h in Pax6−/− cortex. These
estimations are summarized graphically in Figures 3I–L. These
data suggest that in the absence of Pax6 G1 phase is shortened by
∼2–3 h while other phases are similar to or ∼15–20 min longer
than normal.

Cdk6 Levels Are Elevated During All
Phases of the Cell Cycle in Pax6−/−

Cortical Progenitors
In most systems studied to date, levels of Cdks remain relatively
constant during the cell cycle (Hochegger et al., 2008). It was
not known whether this is also the case for cortical progenitors

and whether the absence of Pax6 affects Cdk6 levels in all phases
of the cortical progenitor cell cycle. We used flow cytometry to
identify cells in each cell cycle phase (Figures 3A–F) and measure
their Cdk6 levels. We found significantly elevated levels of Cdk6
in all cell cycle phases of Pax6−/− progenitors (Figure 4C). In
addition, Cdk6 levels varied across the phases, rising by ∼1.5–2-
fold from G1 to M both in Pax6+/+ and Pax6−/− progenitors
(Figure 4C).

Pax6 Levels Oscillate During the Cell
Cycle in Cortical Progenitors
A parsimonious explanation for the fact that Cdk6 levels oscillate
not only in Pax6+/+ cortex but also in Pax6−/− cortex is that
Pax6 influences the average level of Cdk6 expression rather than
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being directly responsible for the oscillations themselves, which
would be caused by a different mechanism. This would explain
why Cdk6 levels still oscillate in the absence of Pax6. Nonetheless,
a more complex scenario was conceivable. In normal cortex, Pax6
levels might oscillate during the cell cycle in such a way as to drive
changes in Cdk6 levels; in Pax6−/− cortex, some other unknown
mechanism might take over Pax6’s role. We addressed whether
this second possibility might be feasible by measuring Pax6 levels
in each phase of the cell cycle in normal embryos using flow
cytometry (Figure 5).

We identified cells in each phase using methods illustrated in
Figures 3, 5A,B. We found that Pax6 levels varied significantly
with cell cycle phase at all ages studied (Figures 5C–E). In most
phases at E12.5 and E13.5 (the one exception being M phase at
E13.5), Pax6 levels were significantly higher in rostral than in
caudal cortex (p < 0.01 in all phases at both ages, Sidak’s multiple
comparisons tests following ANOVA, α = 0.05). This was only
the case in G1 at E14.5 (p < 0.01). These findings on rostral
versus caudal differences are in excellent agreement with previous
work showing a rostral [high] to caudal [low] gradient of Pax6
expression at E12.5 and E13.5 that flattens by E14.5 (Mi et al.,
2013).

Pax6 levels changed by ∼1.5–2-fold from trough to peak
during the cell cycle (Figures 5C–E). The oscillations in Pax6

levels were out of phase with the oscillations in Cdk6 levels shown
in Figure 4. Levels rose to a peak in G2 and dropped in M, before
Cdk6 levels fell. The rise of Pax6 from G1 to G2 paralleled that of
Cdk6 through these three phases.

DISCUSSION

Our new results support a central role for Cdk6 in Pax6’s
regulation of cortical progenitor cell cycles. Figure 6 shows a
model illustrating how elevated Cdk6 levels across the cell cycle
could shorten G1 phase. We propose that the time of G1 and the
G1 to S phase transition is determined by the time it takes Cdk6
activity to rise above a threshold; our model proposes that the
threshold is similar in both Pax6+/+ and Pax6−/− progenitors
(Figures 6B,C). Oscillation of Cdk6 activity at abnormally high
levels would shorten the length of G1 since it would take less
time to achieve the threshold required to exit G1. We also found
evidence that other cell cycle phases were slightly longer than
normal in Pax6−/− progenitors, particularly at the later age
studied, E14.5. This is reflected in the way Figure 6 is drawn.
These changes were not enough to compensate for the shortening
of G1 and, overall, cell cycle lengths were reduced. We do
not know how these other phases might be affected. At least

FIGURE 5 | Flow cytometric analysis of Pax6 levels at different phases of the cell cycle in Pax6+/+ cortex at E12.5, E13.5, and E14.5. Cells classified according to
their cell cycle phase by methods illustrated in Figure 1. (A) Example showing how M phase cells were identified by their expression of PH3. (B) Example showing
how G1 cells were distinguished from G0 cells by positivity for Ki67. (C–E) Average relative levels (± SEM) of Pax6 in proliferating cortical cells (G0 cells excluded) in
each cell cycle phase in rostral and caudal cortex (n = 4 embryos at each age). ANOVAs at each age showed significant effects of cell cycle phase (α = 0.05). Sidak’s
multiple comparisons tests showed significant differences between phases, as marked (∗p < 0.05; ∗∗p < 0.001; ∗∗∗p < 0.0001).
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FIGURE 6 | A model. (A,B) Pax6 and Cdk6 oscillations are slightly out of
phase. (C) A general elevation of Cdk6 activity throughout the cell cycle might
allow levels critical for switching from G1 to S (horizontal line in B,C) to be
achieved more rapidly than normal.

one possibility is that they are lengthened as a consequence of
accelerated progression through G1 phase rather than a direct
action of Pax6 on regulators of these phases. Another possibility
is that delayed changes in the expression of cell cycle genes
other than Cdk6, such as those observed here (Figure 1: Cdca7,
Smad3, Smad7, or Sesn1) directly affect the lengths of these
phases.

This proposal has similarity to the mechanism proposed to
regulate an engineered minimal control network in fission yeast
(Coudreuse and Nurse, 2010). This control network is based
on oscillating levels of CDK activity, which drive cell cycle
progression as they cross thresholds triggering transition between
cell cycle phases including G1 to S. As in the fission yeast model,
it is possible that the oscillations in Cdk6 in cortical progenitors
result from phase-dependent changes in Cdk6 synthesis and
degradation.

An alternative possibility is that cyclical changes in Pax6
levels might cause the oscillations in Cdk6 levels, given that
Pax6 can directly repress Cdk6 expression (Mi et al., 2013). The
oscillations in Pax6 were slightly out of phase with those in
Cdk6 (Figures 6A,B) but it is very unlikely that fluctuations
in Pax6 protein levels alone cause the oscillations in Cdk6
protein levels. Additional factors would be required to explain
the very different rates of change of Pax6 during its rising
phase and Cdk6 during its falling phase and vice versa. An
additional complexity would be explaining the dynamics of this

scenario. Changes in Pax6 protein levels would need a certain
time to influence transcription of the Cdk6 gene and the mRNA
would then need to be translated to alter Cdk6 protein levels.
Although we do not exclude the possibility that fluctuations in
Pax6 levels might contribute to the temporal pattern of change
of Cdk6 levels, the simplest suggestion is that Pax6 reduces
Cdk6 levels overall and that the oscillations in Cdk6 levels
during the cell cycle are driven by other mechanisms. Our
previous work showed that Pax6 overexpression significantly
reduced Cdk6 levels (Mi et al., 2013), and in the future it
would be interesting to test how Cdk6 levels oscillate during
the cell cycle in these mutants and how cell cycle phases
change.

It is likely that post-translational processes are involved
in the relatively rapid cyclical changes in Cdk6 and Pax6
levels identified here. Cortical progenitor cells might generate
excess amounts of their mRNAs, which might be translated at
levels that vary as the cell progresses through the cell cycle.
A similar mechanism, termed “translation on demand,” was
suggested in a recently published review paper (Liu et al., 2016).
It suggests that quick generation of proteins in response to
signals could be achieved purely by regulating the translation
rate of pre-existing mRNA (Le Roch et al., 2004; Lee et al.,
2011; Lackner et al., 2012; Eichelbaum and Krijgsveld, 2014;
Jovanovic et al., 2015). Some studies suggested that transcription
factors are more likely to be subject to translation on demand
regulation, as some rapid cell state transitions require fast
synthesis and reactions of transcription factors to modulate their
downstream gene networks (Lee et al., 2013; Jovanovic et al.,
2015; Liu et al., 2016). Rapid degradation via ubiquitination
might also contribute to rapid adjustments of Pax6 and Cdk6
protein levels during the cell cycle. In eye development, for
example, a post-translational ubiquitin-mediated proteasomal
mechanism degrades Pax6 protein (Pfirrmann et al., 2016).
It is possible that Pax6 regulates the overall levels of Cdk6
not only by direct repression of the Cdk6 gene itself (Mi
et al., 2013) but also by affecting the post-translational
mechanisms that determine Cdk6 protein production and
stability.

A Pax6-loss-induced change in the length of G1 phase is
likely to have consequences for the subsequent development
of progenitors and the neurons that they generate. Previous
studies have shown that cell cycle length has a direct
impact on a cell’s mode of division, i.e., whether it is
neurogenic, producing neurons, or proliferative, producing
new progenitor(s). G1 length is increased in neurogenic
progenitors compared with proliferative progenitors (Caviness
et al., 2003; Lukaszewicz et al., 2005; Dehay and Kennedy,
2007; Salomoni and Calegari, 2010). This is in line with
the finding that basal progenitors, which mostly generate
neurons through neurogenic division, have a longer G1 phase
than apical progenitors (Calegari et al., 2005; Salomoni and
Calegari, 2010; Arai et al., 2011). The functional importance
of G1 length was demonstrated by manipulating it. An
increase in G1 length leads to neurogenic division and
premature neurogenesis (Calegari, 2003; Calegari et al., 2005).
Shortening G1 increases proliferative divisions, leading to an
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expansion of the progenitor pool, and affects laminar phenotypes
later in development (Lange et al., 2009; Pilaz et al., 2009). This
might be one mechanism by which Pax6 affects the later stages
of cortical formation despite being downregulated in postmitotic
neurons.
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