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A B S T R A C T   

The sleep EEG mirrors neuronal connectivity, especially during development when the brain undergoes sub-
stantial rewiring. As children grow, the slow-wave activity (SWA; 0.75–4.25 Hz) spatial distribution in their sleep 
EEG changes along a posterior-to-anterior gradient. Topographical SWA markers have been linked to critical 
neurobehavioral functions, such as motor skills, in school-aged children. However, the relationship between 
topographical markers in infancy and later behavioral outcomes is still unclear. This study aims to explore 
reliable indicators of neurodevelopment in infants by analyzing their sleep EEG patterns. Thirty-one 6-month-old 
infants (15 female) underwent high-density EEG recordings during nighttime sleep. We defined markers based on 
the topographical distribution of SWA and theta activity, including central/occipital and frontal/occipital ratios 
and an index derived from local EEG power variability. Linear models were applied to test whether markers 
relate to concurrent, later, or retrospective behavioral scores, assessed by the parent-reported Ages & Stages 
Questionnaire at ages 3, 6, 12, and 24 months. Results indicate that the topographical markers of the sleep EEG 
power in infants were not significantly linked to behavioral development at any age. Further research, such as 
longitudinal sleep EEG in newborns, is needed to better understand the relationship between these markers and 
behavioral development and assess their predictive value for individual differences.   

1. Introduction 

Electroencephalography (EEG) during sleep is a non-invasive tech-
nique that allows observing neuronal activity in a state of low external 
interference. Using high-density (hd) electrode arrays with a multitude 
of channels, EEG provides a high temporo-spatial resolution and is ideal 
for vulnerable populations like young children due to its non- 
invasiveness. EEG during sleep offers a unique window into the 
connection between sleep with cognitive and psychological outcomes 
(Gregory et al., 2009; Mindell et al., 2017). Sleep EEG topography, in 
particular, allows the study of region-specific neurodevelopment in 
early childhood (Page et al., 2018; Satomaa et al., 2020), which has yet 

to be fully understood in infancy. 
Time spent in the behavioral stage of sleep is a crucial part of a 

child’s development, and the neurophysiological activity captured with 
the sleep EEG can provide valuable insights into the child’s brain con-
nectivity. Previous research has shown a correlation between EEG pat-
terns and behavioral and cognitive outcomes in healthy children 
(Buchmann et al., 2011; Ednick et al., 2009; Reynaud et al., 2018) and 
infants (Jaramillo et al., 2021; Schoch et al., 2021). The 
non-rapid-eye-movement (NREM) sleep EEG, and therein specifically 
the oscillatory activity of slow wave activity (SWA, spectral power in the 
1–4.5 Hz frequency range), undergoes drastic changes across childhood 
and the period of brain development, for example, with a shift in the 
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predominant location of SWA from posterior to anterior regions of the 
scalp (Kurth et al., 2010). This shift in SWA topography mirrors the 
development of cortical anatomy (Shaw et al., 2008) and can be easily 
understood through a simplified frontal/occipital ratio of SWA (LeB-
ourgeois et al., 2019). 

Gray matter thickness also follows a spatial gradient similar to SWA 
(Deoni et al., 2016; Shaw et al., 2008; Sowell et al., 2004; Thompson 
et al., 2001). Interestingly, the maturation of SWA along the 
posterior-anterior gradient of the scalp relates to 
behavioral-maturational changes in the cortex and is predictive of 
changes in brain function. For example, the maturation of motor skills 
(4.4–25.9 years) follows the SWA change with an estimated delay of 3.7 
years (Kurth et al., 2012). SWA maps relate not only to gray (Buchmann 
et al., 2011; Kurth et al., 2017) but also to white matter (LeBourgeois 
et al., 2019) and can be altered in functional neurological disorders. For 
example, school-age children and adolescents with 
Attention-Deficit/Hyperactivity Disorder (ADHD) have been found to 
have a 20% reduction in SWA across the entire brain (Furrer et al., 2019) 
and show furthermore region-specific alterations compared to healthy 
controls (Ringli et al., 2013). This aligns with previous neuroimaging 
results showing reduced gray matter in children with ADHD (Casey 
et al., 1997; Mostofsky et al., 2002), and the reversibility of these 
changes through stimulant medication (Rubia et al., 2021). 

The sleep EEG topography is linked to myelination in preschool- and 
school-age children. This relationship was investigated using the 
mcDESPOT (multi-compartmental model-based DESPOT) protocol 
(Deoni et al., 2008), a magnetic resonance imaging (MRI) technique that 
models proton density to distinguish tissue properties and estimates 
brain myelin content. In healthy children aged 2–8 years, the simplifi-
cation of sleep SWA maps by using a frontal/occipital (f/o) ratio was 
found to predict whole-brain myelin outcomes 3.5 years later (LeB-
ourgeois et al., 2019). This discovery provided a specific EEG marker for 
brain myelin. But also further sleep-EEG markers for cortical 
morphology have been tested, for example, a central/occipital (c/o) 
ratio approach was used to identify preterm-born infants, who are 
generally at heightened risk for neurodevelopmental impairments 
(Guyer et al., 2019). The c/o ratio unraveled significant neurophysio-
logical differences between term- and preterm-born infant cohorts at age 
3 months, that predominated in the theta frequency range (4.5–7.5 Hz). 
However, it remains to be determined which behavioral functionality 
this ratio relates to and to what extent it serves as a predictive marker. 
Such markers could reflect the maturation of neuronal structures and the 
maturation of connections that are related to the establishment of ho-
meostatic and circadian sleep regulators, such that the maturation of 
these neuronal substrates could contribute to the gradual increase of 
sleep consolidation across infancy and early childhood (Jenni et al., 
2004). 

Once established, non-invasive neurophysiological markers can 
critically support diagnosis and thereby promote intervention strategies 
addressing the problem that many neurodevelopmental disorders go 
undiagnosed until school-age (Bachmann et al., 2017; Brett et al., 2016; 
Sheldrick et al., 2017).This study aimed to evaluate simple and reliable 
indicators of neurodevelopmental growth by analyzing topographical 
sleep EEG patterns and behavioral outcomes in healthy infants. Specif-
ically, we hypothesized that an increased c/o ratio of theta power and an 
increased f/o ratio of SWA correspond to advanced 
behavioral-developmental status. Additionally, we captured the specific 
scalp regions showing the greatest interindividual differences with a 
data-driven variability index in SWA and theta power. 

2. Methods 

2.1. Participants 

This study included 35 healthy 6-month-old infants in a larger lon-
gitudinal investigation of primarily actimetric sleep-wake assessments 

(Schoch et al., 2022). Two participants did not fall asleep, leaving 33 
participants with EEG data. Participants obtained an at-home hdEEG 
(124 electrodes) sleep assessment, and parent-rated surveys about in-
fants’ behavior were completed at 3 (N = 21), 6 (N = 31), 12 (N = 22), 
and 24 (N = 27) months of age. Inclusion criteria were vaginal birth, 
birth at term (37–43 weeks of gestation), primarily breastfeeding until 3 
months, birth weight above 2500g, and families being native German 
speakers or having a high level of knowledge of the language. In addi-
tion, participants had to be in good general health and neither received 
any medications affecting the sleep-wake cycle nor antibiotics before the 
assessment started. Participants were excluded for diagnosis of central 
nervous system disorders, brain damage, chronic diseases, or family 
history of sleep or mental disorders. The study procedures were 
approved by the cantonal ethics committee (BASEC 2016-00730) and 
adhered to the Declaration of Helsinki. The parents of the infants pro-
vided written consent for their participation in the study after being fully 
informed of the study procedures. 

2.2. Study design 

2.2.1. Behavioral development 
To assess the infants’ developmental status, the primary caregiver 

completed a translated version of the age-appropriate Ages and Stages 
Questionnaire (ASQ) (Squires et al., 1995) at all time points. The ASQ is 
a validated method for quantifying behavioral development (Gollenberg 
et al., 2010), consisting of 5 subdomains (Communication, Gross Motor, 
Fine Motor, Problem Solving, and Personal Social) and of a Collective 
Score that encompasses all subdomains. In addition to the Collective 
Score, this study focused on the Gross Motor and Personal Social sub-
domains, as developmental delay in the first year of life is most frequent 
within the Gross Motor area, resulting from EEG and MRI-based research 
(Valla et al., 2015). A close association between Personal Social devel-
opment and infants’ sleep habits was revealed in our previous study with 
over 150 infants (Schoch et al., 2022). This is consistent with the 
intertwined role of early sleep in social-emotional development (Kaley 
et al., 2012; Mindell et al., 2017; Williams et al., 2016). Specifically, the 
Gross Motor subdomain assessed how infants use their muscles for ac-
tivities such as rolling, sitting, walking, and running and how their legs 
and arms are incorporated in various situations, and the Personal Social 
subdomain captured infants’ interactions with others and self-help 
skills. For example, at 6 months, the Gross Motor subdomain entails, 
“Does your baby roll from back to belly without putting its arms under 
itself?”, while the Personal Social subdomain at 12 months entails, “Does 
your baby play with a doll or stuffed animal by hugging it?”. ASQ scores 
did not reveal any outliers, neither at 3, 6, nor at 12 months (Fig. S1). 

2.2.2. Sleep EEG assessment at-home 
The hdEEG sleep recording was performed at the infants’ homes and 

scheduled to their habitual evening bedtimes. A 124-electrodes sponge 
net was used (Electrical Geodesics Sensor Net, Electrical Geodesics Inc., 
EGI, Eugene, OR), which was soaked in a solution of electrolyte for 3–5 
min, that was composed of potassium chloride (10 mL), baby shampoo 
(1 mL) and warm tap water (1L). The net size was matched with head 
circumference, and the net was carefully positioned on the infant’s head 
and adjusted to vertex and mastoids. Impedances were kept below 50 
kΩ, and the recording was performed on a Mac computer with software 
from Electrical Geodesics Inc. (EGI, Eugene, OR) with a sampling rate of 
500 Hz and a band-pass filter of 0.01–200 Hz. The recording was 
referenced to the vertex (Cz) and lasted up to 2 h. 

2.2.3. Sleep EEG preprocessing 
The EEG data was first down-sampled to 128 Hz and filtered using a 

band pass filter (0.5–50 Hz). Sleep stages were assigned in 20-s epochs 
by two independent scorers using the American Academy of Sleep 
Medicine (AASM) Manual with pediatric adjustments (Iber, 2007). 
Disagreement between scores was resolved through discussion. Artifacts 
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were semi-automatically identified and visually verified using EEG fre-
quency and power information (Huber et al., 2000). Poor-quality 
channels likely influenced by muscle artifacts were excluded from the 
analysis. One recording was excluded due to over 50% missing elec-
trodes in the central area (37 excluded electrodes after noise correction). 
One participant with only 13.7 min of NREM was excluded. EEG power 
was calculated for the remaining participants (n = 31) and electrodes 
(on average 101 electrodes per infant). In the SWA (0.75–4.25 Hz) and 
theta (4.5–7.5 Hz) frequency range for the first 30 min of artifact-free 
NREM sleep (comprising stages N2 and N3). For three participants 
included, artifact-free NREM sleep was only 28, 26, and 25 min. 

2.2.4. Sleep EEG analysis 
We employed a three-pronged analytical approach, including 

markers of sleep EEG topography based on literature (i, ii) and a data- 
driven topography marker (iii) based on SWA and theta power. The 
first literature-based marker (i) was inspired by research on term- and 
preterm-born 3-month-olds and included three primary regions of in-
terest (occipital, central, frontal) (Guyer et al., 2019). We used theta 
power in line with this study and also considered SWA, which reflects 
brain maturation and behavior (Huber et al., 2004, 2006; Kurth et al., 
2010; Wilhelm et al., 2014). We captured EEG power in three clusters: 
occipital, central, and frontal (Fig. 1A and B), and thereof calculated 
each subject’s central/occipital (c/o) and frontal/occipital (f/o) ratios. 
The c/o ratio was obtained by averaging the power in SWA and theta 
frequencies at central and occipital clusters, respectively. (i.e., 
SWA-c/o-GRatio, Theta-c/o-GRatio). The f/o ratio was calculated 
similarly by averaging the power in SWA and theta frequencies at frontal 
and occipital clusters for each subject: SWA-f/o-GRatio, 
Theta-f/o-GRatio. 

The second literature-based marker (ii) was derived from research on 
the maturation of SWA topography in healthy children and adolescents 
ages 2–20 years (Kurth et al., 2010). This maturation was found to 
follow a gradient from the occipital to frontal regions and is believed to 
be linked to the development of brain myelin (LeBourgeois et al., 2019). 
To apply this marker in our analysis, we identified electrode clusters 
with occipital and frontal electrodes (Fig. 1C) and calculated a f/o ratio 
by averaging the power in SWA and theta frequencies for each subject 
(SWA-f/o-GRatio, Theta-f/o-GRatio). 

The third approach was data-driven, and (iii) was designed to 

identify the scalp regions with the largest variability between subjects 
within the current dataset. This approach illuminated locations where 
inter-individual differences in infant EEG power were maximal. We first 
computed the standard deviation (SD) of SWA and theta power across 
subjects for each electrode. We then sorted the electrodes based on the 
SD and defined the 10% of electrodes with the highest SD as a cluster of 
interest (Fig. 1D). The mean within each cluster provided the Local 
Variability Index (LVI), which was calculated for both SWA and theta 
power (SWA-LVI, Theta-LVI). Based on the primary investigation of this 
paper to assess the association between topographical sleep patterns and 
brain maturation, the LVI would specifically unravel individual differ-
ences within the cohort that would probably relate to individual 
behavioral developmental status. Individual EEG data for SWA and theta 
frequency ranges, normalized to the average across the subjects’ EEG 
power map did not reveal any outliers (Fig. S2). 

2.3. Statistical analysis 

An ANOVA was performed to test for power differences among 
selected electrodes for 5 frequency ranges as defined previously (Kurth 
et al., 2010): SWA 1–4.5 Hz, theta 4.75–7.75 Hz, alpha 8–9.75 Hz, sigma 
10–15 Hz, and beta 20–25 Hz. General linear models were used to 
conduct three analyses: First, to investigate the associations for the four 
EEG markers (f/o-GRatio, c/o-GRatio, c/o-KRatio, and LVI) measured at 
6 months in the two frequencies (SWA, theta) with the concurrent 
behavior measured at 6 months. Second, to examine the predictive 
power of the EEG markers measured at 6 months at both frequencies, for 
later behavioral outcomes measured at 12 and 24 months. Third, to 
determine whether behavioral status would be the driver, behavioral 
measures at 3 months were evaluated on their prediction of EEG markers 
at 6 months. For all models, three infant behavioral variables were 
included (Composite, Gross Motor, Personal Social). 

For each general linear model, we controlled for sex and exact age at 
EEG recording and set the significance level to p < 0.05. p-values were 
corrected for multiple testing using the false discovery rate method 
(Benjamini and Hochberg, 1995). We used R Studio (R version 4.0.0), 
the packages mice, dplyr, tidyr, and magrittr (Bache and Wickham, 
2014; Wickham et al., 2015; Wickham and Henry, 2019), and Matlab 
R2020a. 

Fig. 1. Electrode clusters used to calculate topographical markers. Literature-based markers: a) central and occipital cluster for SWA-c/o-GRatio and Theta-c/o- 
GRatio, b) frontal and occipital cluster for SWA-f/o-GRatio, Theta-f/o-GRatio, and c) frontal and occipital cluster for SWA-f/o-KRatio, Theta-f/o-KRatio. Data- 
driven markers: d) SWA and Theta cluster for SWA-LVI and Theta-LVI. 
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3. Results 

First, we investigated the EEG power spectrum of selected electrodes 
(along the posterior-anterior axis) over the right and left hemispheres, 
which revealed a typical age-specific pattern. ANOVA was performed for 
5 classical frequency ranges: SWA 1–4.5 Hz, theta 4.75–7.75 Hz, alpha 
8–9.75 Hz, sigma 10–15 Hz, and beta 20–25 Hz, which revealed a sig-
nificant effect of electrode location in the right hemisphere in the SWA 
band (p < 0.005, f = 18) and no significant effect in the other frequency 
bands (p ≥ 0.17; Fig. 2). In the left hemisphere, a location effect was 
found for the beta frequency band (p = 0.03; f = 2.4). Interestingly, no 
other location effect reached significance among the electrodes of the 
left hemisphere (p ≥ 0.11). 

3.1. Association between topographical EEG markers and infants’ 
concurrent behavioral status 

Next, we examined the relationship between infant sleep EEG 
markers at age 6 months and their behavioral scores at the same age. 
Neither significant associations with overall behavior (Composite) nor 
with Gross Motor nor with Personal scores were detected for any of the 
ratios (p-values≥0.31; Table 1). Thus, results do not support the appli-
cation of GRatio, KRatio, or LVI as markers for concurrent behavioral 
status in healthy infants at 6 months of age, as captured with the ASQ 
survey. 

3.2. Association between topographical EEG markers and infants’ future 
behavioral status 

We then examined whether the topographical sleep EEG markers at 6 
months of age predict later behavioral outcomes at 12 and 24 months of 
age. The results showed that the GRatios, KRatios, and LVI were not 
significant predictors of overall behavior, as measured by the Composite 
score at 12 or 24 months (SWA-c/o-GRatio, Theta-c/o-GRatio, SWA-f/o- 
GRatio, Theta-f/o-GRatio: range of p-values 0.61–0.91; Table 2). These 
results indicate that the selected topographical sleep EEG markers 
assessed in healthy infants at 6 months do not predict later behavioral 
outcomes, as captured by the parent-reported ASQ, at either 12 or 24 
months. Therefore, our hypothesis that GRatios, KRatios, or LVI could 
serve as simple predictors of behavioral outcomes at 12 and 24 months is 
not supported. 

3.3. Association between infant behavioral status and successive 
topographical EEG markers 

Finally, we explored the relationship between behavioral status and 
topographical-maturational EEG markers and vice versa. Specifically, 
we investigated whether infant behavioral scores at age 3 months pre-
dict EEG markers at 6 months. Findings show no correlation between 
overall behavior (Composite), Gross Motor, or Personal Social scores at 3 
months with the GRatios, KRatios, or LVI (Table 3). 

In sum, results show no significant concurrent, predictive, or retro-
spective relationships between parent-reported Composite, Gross Motor, 
or Personal Social skills and the simplified topographical EEG markers, 
as investigated in healthy infants age 6 months. 

4. Discussion 

This study aimed to determine the applicability of a straightforward, 
easy-to-use infant sleep EEG maturation indicator as a behavioral 
correlate. This investigation was based on the assumption that brain 
activity during the first hour of nighttime sleep of healthy infants is 
related to behavioral scores and developmental outcomes, for which we 
used a simple measure based on previous research in children and ad-
olescents. However, the results of the current study did not support the 
hypothesis, such that none of the markers evaluated - the central/oc-
cipital ratio or the frontal/occipital ratios, or the local variability index 
in SWA or theta frequencies - reliably indicated concurrent, predictive, 
or retrospective infant developmental behavioral scores in a sample of 
healthy, full-term infants. 

We calculated three topographical ratios (central/occipital and two 
frontal/occipital) and evaluated their relationship with parent-rated 
behavioral developmental status. We targeted SWA and theta power, 
that have been previously linked to neurostructural and behavioral 
maturation (Kurth et al., 2010), and showed high inter-individual 
variability in 3-month-old infants (Guyer et al., 2019), respectively. 
However, our results did not align with the conclusions of previous 
studies on 3-month-old preterm/term-born infants and older children. 
This difference may arise from the age differences between study pop-
ulations. In the current study, EEG was evaluated at 6 months of age, and 
behavior was measured at 3, 6, 12, and 24 months, while in (Guyer et al., 
2019), measures took place at 3 months, and in (Kurth et al., 2010), and 
(LeBourgeois et al., 2019), assessments were done between 2.4-19.4 
years and 2.4–8.0 years, respectively. This suggests that findings 
regarding EEG topographical markers may not be directly transferable 

Fig. 2. Power spectrum of A) electrodes on the left hemisphere and B) electrodes on the right hemisphere of the scalp in 31 healthy infants, including the first 30 min 
of artifact-free NREM nighttime sleep (n = 31 for all channels). For a visual representation, lines were smoothed through the moving average adjustment, including 
five data points. Asterisks represent significant ANOVA in the corresponding averaged frequency ranges with p < 0.05. 
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Table 1 
Relationship between maturational sleep EEG markers and concurrent behavioral status in 31 healthy infants aged 6 months. Statistics are based on linear mixed 
models with b as an unstandardized beta coefficient and the False Discovery Rate-corrected p-values addressing multiple comparisons.  

Behavioral scores (ASQ) c/o-GRatio f/o-GRatio 

Composite Gross Motor Personal Social Composite Gross Motor Personal Social 

b p b p b p b p b p b p 

SWA 1.01 0.31 − 1.10 0.81 0.34 0.44 0.43 0.58 0.78 0.51 − 0.19 0.95 
Theta − 0.1 0.93 − 0.64 0.56 0.82 0.72 0.23 0.81 0.56 0.31 − 0.85 0.66  

Behavioral scores (ASQ) f/o-KRatio LVI 

Composite Gross Motor Personal Social Composite Gross Motor Personal Social 

b p b p b p b p b p b p 

SWA 0.43 0.66 0.71 0.48 − 0.32 0.77 − 0.40 0.70 − 1.39 0.17 0.95 0.35 
Theta 0.29 0.77 0.95 0.37 − 0.67 0.58 0.37 0.71 − 0.61 0.56 1.84 0.91  

Table 2 
Topographical sleep EEG markers in healthy infants as predictors of behavioral status at A) age 12 (n = 22) and B) 24 months (n = 27). Statistics are based on linear 
mixed models with b as an unstandardized beta coefficient and the False Discovery Rate-corrected p-values addressing multiple comparisons.  

A) 

Behavioral scores (ASQ) EEG markers at 6 mo as predictors of behavioral outcome at 12 mo 

c/o-GRatio f/o-GRatio 

Composite Gross Motor Personal Social Composite Gross Motor Personal Social 

b p b p b p b p b p b p 

SWA 0.46 0.64 − 0.84 0.65 − 0.46 0.60 0.12 0.89 0.17 0.95 − 0.51 0.59 
Theta 0.11 0.91 − 0.35 0.77 − 0.67 0.69 − 0.50 0.61 0.39 0.64 − 0.46 0.95 
Behavioral scores (ASQ) f/o-KRatio LVI 

Composite Gross Motor Personal Social Composite Gross Motor Personal Social 
b p b p b p b p b p b p 

SWA 0.10 0.92 0.20 0.85 0.42 0.68 − 0.28 0.86 0.70 0.45 − 0.20 0.89 
Theta − 0.37 0.78 − 0.37 0.81 0.13 0.89 − 0.76 0.48 − 1.7 0.11 − 0.18 0.95  

B) 

Behavioral scores (ASQ) EEG markers at 6mo as predictors of behavioral outcomes at 24 mo 

c/o-GRatio f/o-GRatio 

Composite Gross Motor Personal Social Composite Gross Motor Personal Social 

b p b p b p b p b p b p 

SWA 0.71 0.48 − 1.28 0.80 − 0.40 0.72 0.61 0.54 − 0.58 0.64 1.50 0.16 
Theta 0.8 0.42 − 0.57 0.62 0.15 0.88 0.16 0.86 − 0.81 0.52 0.58 0.80 
Behavioral scores (ASQ) f/o-KRatio LVI 

Composite Gross Motor Personal Social Composite Gross Motor Personal Social 
b p b p b p b p b p b p 

SWA 0.66 0.54 − 1.01 0.33 1.20 0.25 − 0.38 0.73 0.60 0.56 − 1.47 0.19 
Theta 0.19 0.84 − 1.36 0.22 − 0.10 0.94 0.58 0.56 0.12 0.90 0.03 0.97  

Table 3 
Maturational sleep EEG markers in infants age 6 months in relation to behavioral status at age 3 months (n = 21). Statistics are based on linear mixed models with b as 
an unstandardized beta coefficient and the False Discovery Rate-corrected p-values addressing multiple comparisons.  

Behavioral scores (ASQ) c/o-GRatio f/o-GRatio 

Composite Gross Motor Personal Social Composite Gross Motor Personal Social 

b p b p b p b p b p b p 

SWA 0.76 0.45 0.40 0.68 0.60 0.52 − 0.39 0.70 0.76 0.45 − 0.38 0.76 
Theta 0.77 0.46 0.61 0.54 − 0.37 0.66 − 0.74 0.47 0.53 0.71 − 0.50 0.66  

Behavioral scores (ASQ) f/o-KRatio LVI 

Composite Gross Motor Personal Social Composite Gross Motor Personal Social 

b p b p b p b p b p b p 

SWA − 0.48 0.70 0.66 0.51 − 0.62 0.58 0.17 0.86 − 0.77 0.46 0.75 0.46 
Theta − 0.88 0.40 0.15 0.88 − 0.76 0.47 0.66 0.52 0.27 0.79 1.53 0.15  
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across age groups, and thus, the topographical distribution of these 
markers would need to be verified at different ages to ensure their val-
idity and reliability for moving forward toward a generalized use. 

Another potential explanation for the lack of association may be that 
the current study population of healthy full-term infants is highly ho-
mogeneous compared to other studies investigating the relationship 
between EEG power and developmental status. Relatedly, the low 
sample size is a limitation and could also explain the lack of association 
in this study. Thus, the EEG markers used in this study may not be 
sensitive enough to detect any correlation. Yet, if a correlation is not 
present in a smaller population like the current one, these specific 
topographical associations may be overall negligible in healthy infants. 
In contrast, previous studies with populations of preterm-born or autistic 
children, typically more heterogeneous regarding age and health, have 
found links between EEG power and behavioral scores with sample sizes 
as small as n = 30 (Page et al., 2018). Notably, the current study sample 
was well-controlled, with strict inclusion criteria and a very narrow age 
range of 5.8 months (SD ± 0.17). 

A further possible reason for the lack of association between EEG 
power topography and infant developmental status could be the 
simplified behavioral testing used in this study (Squires et al., 1995). 
Although the parent-reported metric of the ASQ has been shown to have 
valid correlations with the BAYLEY Scales of Infant Development II in 
children aged 24 months (Gollenberg et al., 2010), its evaluation 
focused on identifying developmental delays, with an overall sensitivity 
of 100% and specificity of 87% at 24 months for severe delays. This 
framework may not be sufficient to capture individual variability in 
behavior among our comparably homogeneous, healthy and carefully 
screened cohort of 6-month-olds. Other studies have used different 
measures, such as infant motor performance (Campbell, 2021) or the 
Bayley Scales of Infant Development-II (Balasundaram and Avulakunta, 
2022) in relationship to MRI (Butera et al., 2022) or EEG (van ’t West-
ende et al., 2022). These studies have yet included older or broader age 
ranges with a more comprehensive range of tests. Therefore, while the 
ASQ may be appropriate for the developmental screening of high-risk 
populations in the clinical context (Singh et al., 2017), it may not 
have enough sensitivity for use in a healthy, homogenous infant cohort. 
Thus, the simplified markers proposed in this study may be too specific 
and not general enough to reflect the differences in the population and 
the behavioral outcome measures used. 

Our results reveal that the chosen topographical markers are not 
suited to predict acute or later measures of parent-rated infant behavior 
in a healthy cohort. In contrast, in a separate analysis, we identified 
spindle density as a potential early marker for infant behavioral devel-
opmental outcomes (Jaramillo et al., 2023). These findings suggested 
that fast spindle density (or spindle frequency) can be used as an early 
EEG biomarker in the context of thalamocortical maturation and 
potentially for early diagnosis in relation to deviations thereof. Thus, the 
selection of the EEG marker is fundamental for specificity in predicting 
behavioral ratings, especially in homogenous cohorts of healthy infants. 
Future adaptations may explore effects across the full night data. The 
current limitation to 30 min early-night data was based on reasons of 
compliance with at-home recordings and comparability with existing 
pediatric hdEEG research (Guyer et al., 2019; Kurth et al., 2010; LeB-
ourgeois et al., 2019). Exploring the stability of effects across the night 
would be an interesting avenue to investigate. However, considering an 
overarching objective of developing a simplified marker for infancy that 
is practical and efficient for diagnostics, it is important to note that 
utilizing across-night EEG data may not result in a feasible and appli-
cable tool in real-world settings. 

Beyond neuro-maturational dynamics, the sleep EEG is shaped by 
various factors, with the most significant being sleep history (Borbély, 
1982), experience-dependent plasticity (Huber et al., 2004, 2006; Wil-
helm et al., 2014), contextual stress (Jones et al., 2021), genetics and 
their interactions with the immediate environment (Adamczyk et al., 
2015; Reineberg et al., 2018). For instance, a twin study with 

adolescents showed that environmental impact could account for 66% 
(compared to 19% for genetic) of the variance in EEG coherence (Mar-
kovic et al., 2021). Although infants have had a shorter exposure to the 
environment, the family environment still contributes to variability that 
can be reflected in brain connectivity and, therefore, in the sleep EEG 
(Markovic et al., 2023). Indeed, beyond the sleep EEG, behavior can also 
be influenced by the immediate environment. For instance, sleeping 
arrangements and co-sleeping can relate to developmental outcomes 
such as attachment (Mileva-Seitz et al., 2016) or self-regulation, which 
is related to prefrontal functioning (Goldberg, 2001). 

Other important factors affecting the lack of correlation between 
behavior and EEG in our infant cohort might include sleep habits, which 
are linked to neurophysiological connectivity (Schoch et al., 2021). The 
current study did not consider daytime sleep, which might have affected 
the homeostatic dynamics of SWA or theta, which could underlie 
locally-biased variations in EEG, which have been shown to undergo 
dynamics in relation to children’s age (Kurth et al., 2016; Lassonde 
et al., 2016; Schoch et al., 2021). 

Our findings indicate that simplified topographical sleep EEG 
markers in the SWA and theta range in healthy 6-month-olds are no 
direct indicators of behavioral development at 6, 12, or 24 months, 
contrary to previous observations in older or clinical populations. The 
interplay between developmental and sleep-related processes is highly 
complex and requires further elucidation. Future studies with larger 
sample sizes, clinical groups, and longitudinal sleep EEG data would 
help generate clarity and extract clinically-relevant markers. Further, 
expanding the sample’s age range would allow us to better understand 
the stability of individual traits versus dynamic and transitional states. 
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