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Abstract Chromatin accessibility is a highly informative structural feature for understanding gene

transcription regulation, because it indicates the degree to which nuclear macromolecules such as

proteins and RNAs can access chromosomal DNA. Studies have shown that chromatin accessibility

is highly dynamic during stress response, stimulus response, and developmental transition. More-

over, physical access to chromosomal DNA in eukaryotes is highly cell-specific. Therefore, current

technologies such as DNase-seq, ATAC-seq, and FAIRE-seq reveal only a portion of the open chro-

matin regions (OCRs) present in a given species. Thus, the genome-wide distribution of OCRs

remains unknown. In this study, we developed a bioinformatics tool called CharPlant for the de

novo prediction of OCRs in plant genomes. To develop this tool, we constructed a three-layer con-

volutional neural network (CNN) and subsequently trained the CNN using DNase-seq and ATAC-

seq datasets of four plant species. The model simultaneously learns the sequence motifs and regu-

latory logics, which are jointly used to determine DNA accessibility. All of these steps are integrated

into CharPlant, which can be run using a simple command line. The results of data analysis using

CharPlant in this study demonstrate its prediction power and computational efficiency. To our

knowledge, CharPlant is the first de novo prediction tool that can identify potential OCRs in the

whole genome. The source code of CharPlant and supporting files are freely available from

https://github.com/Yin-Shen/CharPlant.
Introduction

In eukaryotic genomes, most of the chromatin regions are

tightly coiled in the nucleus, but some regions, known as open
chromatin regions (OCRs) or accessible chromatin regions, are
loosely formed after chromatin remodeling. Whether the chro-

matin is loosely or tightly coiled largely determines transcrip-
tional regulation [1,2]. A number of cis-regulatory elements
ciences /
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interact with trans-acting factors for transcriptional regulation,
and cis-trans elements with regulatory functions participate in
the process of transcriptional regulation by binding to

OCRs [3,4]. For example, when a transcription factor binds
to an OCR, it recruits other proteins to initiate the transcrip-
tion of nearby genes. Therefore, a complete genome-wide

map of potential OCRs is helpful for the investigation of
changes in the nucleosome location and for the discovery
of genome regulatory elements and gene regulatory

mechanisms [5,6]. Chromatin accessibility information has
even been proven to be valuable for the early diagnosis and
treatment of cancer [7,8].

The OCRs are easier to excise than other regions. There-

fore, researchers often use enzymes, such as nuclease and
transposase, or physical methods to digest the chromatin.
The cleavage-sensitive sites are then sequenced using various

technologies, such as DNase I hypersensitive site sequencing
(DNase-seq), assay for transposase accessible chromatin
sequencing (ATAC-seq), and formaldehyde-assisted isolation

of regulatory element sequencing (FAIRE-seq), to obtain fur-
ther information. DNase-seq has been used for a long time;
however, it requires a large amount of starting material

(� 1 � 107 cells). On the other hand, ATAC-seq requires a sig-
nificantly smaller sample (< 1 � 105 cells) and has the advan-
tage of requiring no antibody. Therefore, ATAC-seq has
become the method of choice in recent years [9,10]. However,

none of these techniques are able to solve the problem of open
chromatin determination. All nuclease-based methods exhibit
a preference for specific sequences for cleavage, depending

on the nuclease, which is a major flaw. For example,
DNase I exhibits a strong preference for specific sequences,
and many DNase-seq results reflect cleavage preferences rather

than actual protein binding [3,11,12]. Similarly, in the ATAC-
seq method, a preference for cleavage sites has been observed
with some of the Tn5 enzymes, resulting in ‘‘false DNA

footprints” [13]. Although these technologies have been com-
monly used in human and animal studies [14], their applica-
tion in plants is still in the exploratory stage. This is because
of structural differences between plant and animal cells.

Unlike animal cells, plant cells possess a cell wall, numerous
chloroplasts, mitochondria, and other organelles that con-
taminate the assay. Consequently, OCR data have been

obtained using DNase-seq and ATAC-seq only in a small
number of model plant species, including Oryza sativa [15],
Arabidopsis thaliana, Medicago truncatula, Solanum

lycopersicum [16], and Hordeum vulgare [17].
Previous studies have shown that chromatin accessibility is

highly dynamic rather than static. OCRs usually change dur-
ing stress response, stimulus response, and developmental

transition [18,19]. Moreover, OCRs in different species are sig-
nificantly cell-specific [4]. More than 40% of the OCRs in
human T-cells differ between functional and exhausted cells

at different time points [20]. Chromatin accessibility also varies
considerably among different cells in Drosophila melanogaster,
A. thaliana, and O. sativa [16,21]. Consequently, the current

DNase-seq, ATAC-seq, and FAIRE-seq data represent only
some of the OCRs and do not present the entire chromatin
accessibility information about a given species [22,23]. Thus,

a global overview of the distribution of OCRs in genomes is
lacking. Moreover, these experimental technologies are
generally expensive and time-consuming [3].
Proteins recognize specific motifs and epigenetic modifica-
tions of the DNA sequence that influence its accessibility [24].
After training on a specific dataset, machine-learning algo-

rithms can collect sequence information and predict protein-
binding sites, DNA accessibility, histone modifications, and
DNA methylation patterns. Many algorithms have been devel-

oped to predict regulatory elements, such as Basset [25], Deep-
erdeepsea [26], DeepBind [27], and DeepCpG [28]. However,
these algorithms have a few limitations. First, most of the algo-

rithms are not designed for the prediction of OCRs; instead,
they are designed for the prediction of 1) regulatory fragments
that bind to transcription factors or RNA-binding proteins,
2) DNase sensitivity, and 3) genomic variants.

Second, almost all previous studies using such algorithms are
based on human or mouse data; however, the OCRs of plants
and animals exhibit significantly different characteristics. For

example, approximately 39% of the DNase I hypersensitive
sites (DHSs) are associated with introns in the human genome,
which is remarkably higher than the proportion of

intron-associated DHSs in O. sativa (11%) and A. thaliana
(5%) [29]. Third, most of the existing methods are developed
as conventional classifiers that classify sequence fragments of

a certain length (hundreds of base-pairs) as regulatory regions,
instead of scanning the whole genome.

OCRs are usually rich in various elements and specific
motif-binding factors. Therefore, it is feasible to scan the

genome and predict chromatin accessibility by learning the
motifs and their distribution from OCR data. Here, we devel-
oped a de novo OCR prediction tool, chromatin accessible

regions for plant (CharPlant), based on deep learning to pro-
vide a genome-wide overview of OCRs in a given plant species.
We constructed training datasets using the DNase-seq and

ATAC-seq data of four plant species. CharPlant simultane-
ously learns the relevant sequence motifs and regulatory logics,
which are jointly used to determine DNA accessibility. The

trained model accepts DNA sequences or scaffolds as input
and generates an outline of OCRs in a ‘‘.bed” file as output
(Figure 1A). To our knowledge, this is the first tool capable
of de novo prediction of OCRs from the DNA sequence.

Method

Construction of datasets

Considering that a dataset has to be constructed using repre-
sentative plant species that have both OCR assay data and
high-quality reference genomes, the DNase-seq data of O.
sativa and the ATAC-seq data of four plant species (A. thali-

ana, S. lycopersicum, M. truncatula, and O. sativa) were down-
loaded from the PlantDHS database at https://plantdhs.org
and the Gene Expression Omnibus (GEO) of NCBI (GEO:

GSE101482 and GSE75794) at https://www.ncbi.nlm.nih.
gov/geo [15], respectively. Detailed information about the
DNase-seq and ATAC-seq data is listed in Table 1, and basic

information about the reference genomes of these four plant
species is listed in Table 2. Because the DNase-seq and
ATAC-seq data used here represent diverse plant species of
both dicot and monocot lineages and different cell types of

the same species (O. sativa), this model applies to a broad
range of plant species with distant evolutionary relationships.

https://plantdhs.org
https://www.ncbi.nlm.nih.gov/geo
https://www.ncbi.nlm.nih.gov/geo


Figure 1 Steps involved in the construction and execution of CharPlant

A. De novo OCR prediction pipeline. B. Construction and training of the CharPlant network. OCR, open chromatin region; CNN,

convolutional neural network; ReLU, rectified linear unit.
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Table 1 Detailed information on the DNase-seq and ATAC-seq datasets

Species Data type Database Accession No. Tissue and treatment

Sample number

Training set Validation set Testing set

Oryza sativa DNase-seq PlantDHS NA Seedlings and calli 70,810 23,604 23,604

Oryza sativa ATAC-seq NCBI GSE101482 Roots of 7-day-old seedlings; two

biological replicates

� � 39,868

Oryza sativa ATAC-seq NCBI GSE75794 2nd leaves of 14-day-old seedlings;

heat stress and recovery,

dehydration stress and recovery

� � 30,634

Arabidopsis thaliana ATAC-seq NCBI GSE101482 Root cells; two biological replicates 13,778 4594 4596

Solanum lycopersicum ATAC-seq NCBI GSE101482 Root cells; two biological replicates 32,168 10,724 10,726

Medicago truncatula ATAC-seq NCBI GSE101482 Root cells; two biological replicates 27,982 9328 9330

Note: ‘‘�” represents that all GSE101482/GSE75794 data were used as the testing set.
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The use of two mainstream technologies, DNase-seq and
ATAC-seq, allowed the inclusion of nuclease-based and

transposase-based data. MACS2 software was used for peak
calling with default parameters [30]. Because of higher statisti-
cal power using long fragments, peaks longer than 200 bp were

filtered out as positive samples. Positive sequences were shuf-
fled to generate the negative dataset with fasta-shuffle-letters
in the MEME software [31]. Unlike the random interception

of fragments from the DNA sequence for use as negative sam-
ples, shuffling ensures that the negative and positive samples
have identical composition of all four bases [27]. Shuffling also
maintains a balance between positive and negative samples

when constructing the dataset. In an unbalanced dataset, clas-
sification algorithms focus on the class containing the most
samples, which degrades the classification performance of the

class that contains a small number of samples. Most
machine-learning algorithms do not work well with
unbalanced datasets. Therefore, to construct the dataset in this

study, a negative sequence was generated using each positive
sequence, i.e., the number of positive and negative samples
were equal in number. The samples were divided into three
sets, training set, validation set, and testing set, which

accounted for 60%, 20%, and 20% of the data, respectively.
The sample numbers of the three sets are listed in Table 1.

Construction of the CharPlant model

The CharPlant model is trained using ATAC-seq data of four
plants or DNase-seq data of O. sativa, and each plant has its

own model parameters. The model is based on a multilayer
convolutional neural network (CNN) (Figure 1B). The CNN
model, which originates from artificial neural networks, con-

tains perceptrons with multiple hidden layers and combines
low-level features to form more abstract high-level attributes
or features for discovering feature representations of
data [32,33]. The motivation is to build a neural network that

can simulate the human neuron for analysis and learning, and
imitate the mechanism of the human brain to interpret data,
such as images, sounds, and texts [34–36]. Unlike traditional

methods, in which features are manually selected in the pre-
processing stage, the CNN adaptively extracts features from
large-scale training datasets. It then maps input data to high-

dimensional representations with abundant information by
nonlinear transformation, thus simplifying classification or
regression. Early application of the CNN model in DNA
sequence analysis surpasses existing mature algorithms, such
as support vector machines or Random forests, in predicting

protein binding and DNA sequence accessibility [25,27].
To achieve high computational efficiency, our model is

designed with only three hidden layers: the first and second

layers are convolutional, whereas the third layer is fully con-
nected. The CNN model used in CharPlant requires binary
vectors as input. Each input DNA fragment is first converted

into a 4 � n matrix, where n represents the length of the input
fragment. Thus, each base is preprocessed with ‘‘one-hot”
encoding (A: [1, 0, 0, 0]; C: [0, 1, 0, 0]; G: [0, 0, 1, 0]; T: [0,
0, 0, 1]; N: [0, 0, 0, 0]), and the sequence is converted into a

matrix with four rows. The first layer of the CNN model con-
tains convolutional filters for the identification of low-level fea-
tures in a given DNA sequence. A convolutional filter is an

essential motif prober that scans each input matrix to discover
potential patterns. The identification of low-level DNA fea-
tures involves the following steps. First, each input sequence

is fed into the first convolutional layer, and the convolution
kernel slides over the sequence fragment to calculate the acti-
vation score. If the activation score of the convolution kernel
at a certain position is greater than the preset threshold, the

sequence segment centered at that position will be identified
and represented by the position frequency matrix (PFM) of
four base frequencies. Then, the PFM is used to calculate

the information entropy and is transformed into position
weight matrix (PWM), which is widely used for the representa-
tion of motifs. The PMW contains four rows, and describes the

entropy of four bases at each position [25,37]. Subsequently,
the sequence logo is used to visualize the motif, i.e., the base
size of each position indicates the possibility of the base at this

position. To obtain the activation score of the convolutional
filter, the rectified linear unit (ReLU) is used as the activation
function for three hidden layers. The ReLU function f(x) is
calculated as follows:

f xð Þ ¼ max 0; xð Þ
where x is the input.

The ReLU function is used by neurons just like traditional
activation functions such as sigmoid or hyperbolic tangent.

Compared with the conventional activation function, ReLU
has much less computational complexity for calculating the
error gradient in back propagation. Additionally, when the

conventional activation function propagates backward, it is
likely that the derivative will approach zero, which would



Table 2 Genome-related information on the four plant species used in this study

Species Genome size (bp) Database Website

Oryza sativa 373,245,519 IRGSP-1.0 RAP–DB (https://rapdb.dna.affrc.go.jp)

Arabidopsis thaliana 119,667,750 TAIR10 TAIR (https://www.arabidopsis.org)

Solanum lycopersicum 823,944,041 ITAG2.4 Phytozome (https://phytozome.jgi.doe.gov)

Medicago truncatula 384,466,993 MT4.0 Medicago truncatula genome database (https://www.medicagogenome.org)

Note: RAP–DB, Rice Annotation Project Database; TAIR, The Arabidopsis Information Resource.
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make it impossible to complete the training of deep network.
However, ReLU overcomes this shortcoming very well.

To overcome the problem of over-fitting, random dropout
is set after every hidden layer in the model. Dropout is an opti-
mization method for resolving over-fitting and gradient disap-

pearance in deep neural networks. In the learning process of
the neural network, the weight of randomly selected nodes in
the hidden layer is set at zero. Because different nodes are reset

to zero after each iteration, the importance of each node is
balanced. Because of the use of random dropout, each node
of the neural network contributes roughly equally to the train-

ing, and there is no case where a few high-weight nodes com-
pletely dominate the output. In this study, the dropout
probability is set at 0.6, i.e., the weights of 60% of the neurons
are set to zero in every iteration.

The architecture of the second layer is the same as that of
the first layer and is based on three key technologies: convolu-
tional network, ReLU activation function, and dropout. The

second layer combines low-level motif features to form
abstract high-level attributes. In the CNN model, a fully con-
nected layer is set behind the two convolutional layers. Each

neuron in the fully connected layer is connected with all the
neurons in its preceding layer to integrate local sequence infor-
mation with class discrimination in the convolutional layer.
The fully connected layer contains 200 neurons, and it flattens

the matrix into a column vector. The weights of links are cal-
culated by a linear regression algorithm, but linear regression
could only predict the continuous value, which does not solve

the classification problem. Therefore, the output layer determi-
nes whether the input sequence belongs to the positive or neg-
ative class, depending on the calculations. The final output

layer uses sigmoid function to perform nonlinear transforma-
tion and maps the results of the fully connected layer from
(�1, +1) to (0, 1), which indicates the probability of open

chromatin sequence. The goal of the training model is to
minimize the error between predicted and labeled values, i.e.,
to minimize the cost function. A series of cost functions is
available. Here, the binary cross-entropy cost function is

used because it can overcome the problem of gradient
disappearance when calculating gradient descent, thus showing
high learning efficiency.

Implementation of CharPlant

CharPlant, implemented in Python, is based on Keras 2.0.1

with TensorFlow 1.2.0, an open source machine-learning plat-
form developed by Google. Additionally, a widely used work-
flow management system, Snakemake, is employed to combine

a series of steps into a single pipeline that can be run by an
inexperienced user using simple command line entries [38].
Steps in the workflow are described in terms of the rules
defined using the input and output and Shell and Python
codes. The workflow determines the steps that need to be per-
formed and produces one or more output files. Dependencies

between rules are automatically resolved, and rules are
automatically parallelized when possible. A text file titled
‘‘Snakefile” is created, which defines the input and how the out-

put is created from the input. CharPlant can learn OCR features
from DNase-seq or ATAC-seq data and predict potential chro-
matin accessible regions in a plant genome de novo. It performs

four steps: 1) data pre-processing, 2) model training, 3) motif
visualization, and 4) de novo prediction. If all the steps are suc-
cessful, CharPlant outputs the results of the predicted OCRs

in a ‘‘.bed file” in the directory CharPlant/peak.
Snakefile has a number of parameters, such as epoch num-

ber, learning rate, batch size, and dropout, which could be
adjusted using a configuration file ‘‘config.yaml”. This config-

uration file provides default values and their meaning for each
parameter. It is not necessary for the users to modify the
default values, except for two directories as follows: ‘‘genome:

Yourpath/CharPlant/example/oryza_sativa.fa” and ‘‘bed:
Yourpath/CharPlant/example/oryza_sativa.bed”. For exam-
ple, the parameter ‘‘genome” represents the input genome file

in ‘‘.fasta” format, and the parameter ‘‘bed” represents the
output OCR file in ‘‘.bed” format. The user would need to
replace ‘‘Yourpath” with the true path in which CharPlant is
installed.

Installation and execution of CharPlant

CharPlant is currently available for Linux-based operating sys-

tems. To install and run CharPlant, download the package
from the GitHub development platform at https://github.
com/Yin-Shen/CharPlant and then set ‘‘CharPlant” as the cur-

rent directory. The subdirectory CharPlant/example contains
the reference genome (file ‘‘oryza_sativa.fa”) and the DNase-
seq data of O. sativa as an example (file ‘‘ory_whole.bed”).

All Python and Shell scripts are in the subdirectory
CharPlant/src. Some fundamental Python packages, such as
numpy, matplotlib, and keras, will be needed for scientific com-
puting and network construction. File S1 provides a detailed

CharPlant manual, installation steps, and parameter settings
for the abovementioned Python packages, and complete
‘‘config.yaml” and ‘‘Snakemake” files. Users can run the pro-

gram by typing the following command: $ CharPlant.sh.

Results and discussion

Motifs identified by CharPlant

The positive dataset was obtained from the peaks of ATAC-
seq and DNase-seq data, and the negative samples were
generated by shuffling the positive samples, as described

https://github.com/Yin-Shen/CharPlant
https://github.com/Yin-Shen/CharPlant
https://rapdb.dna.affrc.go.jp
https://www.arabidopsis.org
https://phytozome.jgi.doe.gov
https://www.medicagogenome.org


Figure 2 Motifs identified by CharPlant in Oryza sativa and other plant species

A. Six of the eight known Oryza sativa motifs in the JASPAR database identified by CharPlant. B.–D. Motifs of Arabidopsis thaliana (B),

Populus trichocarpa (C), and Nicotiana sp. (D) in JASPAR identified by CharPlant. CIS-BP, Catalog of Inferred Sequence Binding

Preferences.
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above. In the positive samples, motifs are usually clustered for
protein binding, whereas the negative samples generally have
far fewer motifs. A DNA motif is defined as a short similar

recurring pattern of nucleotides, with many biological func-
tions. A previous study has shown that sequence motifs are
roughly constant in length, and are often repeated and

conserved [39]. Based on the difference between positive and
negative datasets, our model learned the sequence motifs and
the regulatory logics with which they are combined to deter-

mine DNA accessibility. The convolutional layer searched
for the motifs along the genome sequence and produced a
matrix, with rows representing neurons and columns repre-
senting positions. Determination of OCRs was based on the

accurate identification of motifs. We compared the motifs
learned by the convolution kernels with the known motifs in
the JASPAR database [37]. The results showed that many of

the motifs predicted by our model were previously known
and experimentally validated. For example, JASPAR has eight
known motifs in O. sativa, of which six were identified by our

model (Figure 2A). We also identified many known motifs of
other plants, some of which are shown in Figure 2B–D.
Notably, sequence motifs were very small in size (6–19 bp),

whereas intergenic regions were very long and highly variable,
thus making motif discovery a very difficult task. Therefore,
the number of motifs in plant genomes and their positions with
respect to target genes remain unclear. Given that JASPAR

has a very limited repertoire of only 501 experimentally vali-
dated motifs, some of the identified sequences not included
in the database could be potential motifs, which might be

experimentally validated in the future. Overall, CharPlant
can detect motifs of various lengths, which can be subse-
quently used for the identification of OCRs.
Performance comparison between CharPlant and other methods

CharPlant is designed as a de novo OCR prediction tool. By

contrast, almost all current methods are developed as conven-
tional classifier algorithms and cannot scan the genome
sequence to discover OCRs. Moreover, the architecture and
parameters of these models are developed based on human

and animal data. Therefore, a strict comparison of these meth-
ods with CharPlant is difficult. Because it was impossible to
compare de novo prediction with other methods, we compared

the learning ability and computational efficiency of CharPlant
with two state-of-the-art deep learning algorithms, Basset [25]
and Deeperdeepsea [26], using chromatin accessibility data of

plants. Basset is an open source package and learns the func-
tional activity of DNA sequences from genomic data. The
authors applied Basset to a compendium of accessible genomic
sites mapped in 164 cell types by DNase-seq and showed

greater predictive accuracy than previous methods [25]. We
revised Basset to adapt it to plant data. Deeperdeepsea is a
recently published PyTorch-based deep learning library for

any biological sequence data. We downloaded the package
from https://selene.flatironinstitute.org/. Each method was
adjusted to its best state and trained using the dataset con-

structed in this study, as described above. We calculated the
false positive rate vs. true positive rate to plot receiver operat-
ing characteristic (ROC) curves and determined the area under

the ROC curve (AUROC; Figure 3, Figure S1). In Figure 3A,
the curves were obtained using the DNase-seq data of
O. sativa. Although the AUROC values of CharPlant were
slightly better than those of Basset and Deeperdeepsea on
the O. sativa DNase-seq data, no major difference was

observed among the three methods. However, the perfor-
mances of these three methods on the datasets of other three
species (A. thaliana, M. truncatula, and S. lycopersicum) were

quite different (Figure 3B–D). Although the ROC curves and
AUROC values of Basset on O. sativa and A. thaliana datasets
were similar to those of CharPlant, the prediction accuracy of

Basset was only � 50% with S. lycopersicum andM. truncatula
datasets. Thus, the results of Basset were equivalent to a ran-
dom guess, indicating that Basset failed to predict OCRs. Sim-
ilarly, Deeperdeepsea failed on the datasets of all analyzed

plant species, except O. sativa. By contrast, our method could
be applied to all datasets and achieve consistent performance.
Basset and Deeperdeepsea are both excellent methods for the

prediction of regulatory elements and have been proven to
produce accurate results after training on human data. How-
ever, these methods do not work on plant datasets, as shown

in this study. This is likely because the structural design and
hyperparameter choice of the model are not suitable for plant
datasets. The characteristics of DNA sequences differ greatly

between plants and animals. To shift an algorithm from the
animal to the plant system, replacing the animal training set
with a plant dataset is not sufficient; instead, to achieve similar
performance, it is often necessary to make substantial changes

to the model structure, essentially transforming it into a new
model.

To further validate the performance of CharPlant, we com-

pared our model with machine-learning methods including
Random forest, Adaboost, GBDT, XGBboost, and CatBoost
on all four plant datasets. These machine-learning methods

were implemented using the Scikit-learn package, a widely
used library that supports supervised and unsupervised learn-
ing [40]. We computed the precision and recall ratios of the

comparative methods, and plotted the precision recall (PR)
curves. As shown in Figure S2, analysis of the PR curves of
CharPlant, Basset, and Deeperdeepsea led us to a similar con-
clusion to that obtained from the analysis of ROCs described

above (Figure 3). When the other five comparative methods,
including Random forest, Adaboost, GBDT, XGBboost, and
CatBoost, were used on the four plant datasets, their perfor-

mances were similar, and their ROC and PR curves were close
to each other. However, the performance of each of these algo-
rithms was significantly inferior to that of neural network

methods.
In some instances, the method of sample partitioning influ-

ences model evaluation. To avoid the randomness of a single
training set and testing set, we performed 10-fold cross valida-

tion. The dataset was divided into 10 parts and each part was
used in turn as a testing dataset, and nine were used as the
training dataset. ROC and PR curves were plotted for each test

(Figure S3). All samples were used as training and testing sets,
and each sample was tested one time. The majority of PR
curves overlapped, indicating that precision and recall were

stable when using different dataset partition methods. Similar
conclusions could be drawn from ROC curves.

To compare the computation efficiencies, we trained and

tested CharPlant, Basset, and Deeperdeepsea on the central
processing unit (CPU) and graphics processing unit (GPU).
The manufacturers and models are as follows: Tesla P100-
PCIE-16GB (GPU) and Intel(R) Xeon(R) Gold 6140 CPU

https://selene.flatironinstitute.org/
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@ 2.30 GHz (CPU). The comparison was performed on the
DNase-seq dataset of O. sativa. The results showed that
CharPlant took significantly less time than Basset and

Deeperdeepsea on both CPU and GPU (Table 3).

De novo prediction of OCRs in genomes

To enable the prediction of OCRs from long DNA sequences
or complete genomes using CharPlant, we used the sliding-
window method to split the sequence into fragments. The win-

dow width was set at 36 bp. Generally, a smaller sliding step is
helpful for the accurate prediction of the locations of OCRs;
however, the computational complexity with a smaller sliding

step is significantly higher than that with a large sliding step.
To compromise the calculation efficiency and accuracy, the
sliding step was set at 5 bp. The trained model was used to cal-
culate the probability of chromatin accessibility of these frag-

ments, and then the peaks of OCRs in these fragments were
called using the MACS2 tool, with default parameters [30].
We scanned the whole genome sequences of four plant species
Figure 3 Comparison of ROC curves and AUROC values between Ch

A. Oryza sativa. B. Arabidopsis thaliana. C. Medicago truncatula. D

AUROC, area under the ROC curve.
using the CharPlant model and aligned the predicted OCRs
with the DNase-seq or ATAC-seq dataset to validate the per-
formance of CharPlant. The training datasets were obtained

from a single cell type at a specific time, yet we tried to predict
all potential OCRs in different tissues at different times. The
results showed that the number of OCRs in the latter was

higher than that in the former. Notably, the number of OCRs
predicted by CharPlant in all datasets was much larger than
that detected by DNase-seq or ATAC-seq assays (Figure 4).

CharPlant predicted 153,594 potential OCRs in the DNase-
seq dataset of O. sativa seedlings and calli, of which 65,634
overlapped with those detected by the DNase-seq assay
(Figure 4A). Although the remaining 87,960 predicted OCRs

were not supported by the DNase-seq assay, 21,420 of these
were supported by the ATAC-seq assay of O. sativa roots and
leaves (ATAC-seq data from GSE101482 and GSE75794) (Fig-

ure 4B). Based on the currently available DNase-seq and
ATAC-seq data of a few plant species, it is reasonable to specu-
late that more predicted OCRs could be confirmed if more

experimental data were available. Among the OCRs predicted
arPlant and comparative methods on four plant datasets

. Solanum lycopersicum. ROC, receiver operating characteristic;



Table 3 Computation efficiency of the three methods on CPU and GPU

Method
Training time (s) Testing time (s)

GPU CPU GPU CPU

CharPlant 2558 280,640 21 2371

Basset 3205 382,093 28 3533

Deeperdeepsea 5520 13,502,400 290 12,465

Note: CPU, central processing unit; GPU, graphics processing unit.

Figure 4 Overlap between OCRs predicted by CharPlant and those detected by DNase-seq or ATAC-seq assays in four plant species

A. Overlap between the CharPlant-predicted OCRs and those detected by DNase-seq assay in Oryza sativa. B. CharPlant-predicted OCRs

supported by ATAC-seq assay after excluding the overlap with DNase-seq assay. ATAC-seq data were from GSE101482 and GSE75794.

C.–E. Overlap between the CharPlant-predicted OCRs and those detected by ATAC-seq assay in Arabidopsis thaliana (C), Medicago

truncatula (D), and Solanum lycopersicum (E).
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in the O. sativa seedling/callus data, a considerable proportion
was supported by the root/leaf data, implying that the OCRs

predicted by CharPlant are credible and not false positives.
To provide more evidence, we compared the predicted

OCRs with experimental OCRs and three types of histone

modifications (H3K4me3, H3K9ac, and H3K27ac) in A. thali-
ana. Covalent modification of the histone tail plays a key role
in regulating chromatin structure and gene transcription. In
eukaryotes, H3K4me3 is associated with active chromatin
and promotes transcription through interactions with effector

proteins [41,42]. H3K9ac and H3K4me3 frequently coexist as
markers of active gene promoters. H3K27ac is related to gene
activation and is mainly enriched in enhancer and promoter

regions [43,44]. Figure S4A and B show two examples of over-
lap between predicted OCRs and experimental OCRs, indicat-
ing that the ATAC-seq data supported the predicted results.
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Additionally, H3K4me3, H3K9ac, and H3K27ac modifica-
tions showed peaks at these sites. However, another scenario
is that a predicted OCR does not overlap with DNase-seq or

ATAC-seq data. For example, as shown in Figure S4C, the
ATAC-seq data showed no peak at the predicted OCR,
whereas H3K4me3, H3K9ac, and H3K27ac modifications

showed significant peaks. Considering the tissue- and time-
specificity of OCRs, it is difficult to definitively conclude that
this site is not an OCR. To determine whether there is a predic-

tion bias, i.e., some regions have higher prediction accuracy
Figure 5 Distributions of CharPlant-predicted OCRs and

experimental OCRs in four plant species
than other regions, we calculated the distributions of predicted
OCRs in the promoter (� 2 kb) regions, intergenic regions,
exons, introns, 50 UTRs, 30 UTRs, and downstream regions

(300 bp downstream of transcription termination sites), and
compared them with experimental data to show their consis-
tency. The results showed that the distributions of predicted

OCRs were consistent with those of the DNase-seq data in
O. sativa and the ATAC-seq data in A. thaliana and M. trun-
catula (Figure 5A–C). Although the distribution of predicted

OCRs appeared different from that of the ATAC-seq data in
S. lycopersicum, the number of OCRs was highest in the inter-
genic regions, followed by the promoter regions, and least in
the 30 UTRs (Figure 5D). Epigenetic modifications provide

further evidence for the validation of OCRs predicted by
CharPlant. Among the four plant species, A. thaliana has the
most abundant data, including ATAC-seq dataset and various

epigenetic datasets. Therefore, we used A. thaliana as an exam-
ple to compare the difference in the frequency of H3K4me3
modification between the predicted OCRs and ATAC-seq

peaks. The distribution of H3K4me3 in the A. thaliana genome
was obtained from the Plant Chromatin State Database
(PCSD; https://systemsbiology.cau.edu.cn/chromstates) [45].

Our results showed no significant difference in the frequency
of H3K4me3 modification between the predicted OCRs and
ATAC-seq peaks, and the two boxplots were almost identical
(Figure S5A). Furthermore, we investigated the difference of

H3K4me3 modification between the predicted OCRs and
10,000 randomly selected inactive chromatin regions (based
on ATAC-seq data). We found that the predicted OCRs were

significantly more enriched for H3K4me3 modification than
the unopened chromatin regions (Figure S5B).

Notably, the time taken to scan the genome of four plant

species was closely related to the genome size; analyses of A.
thaliana, O. sativa,M. truncatula, and S. lycopersicum genomes
took 8 h, 22 h, 24 h, and 49 h, respectively.
Conclusion

In summary, experimental technologies can determine only the

current status of DNA accessibility, whereas CharPlant is a
neural network model that learns the sequence motifs and reg-
ulatory logics and predicts potential OCRs, according to the

experimental data. Compared with existing algorithms,
CharPlant has several advantages. First, to our knowledge,
CharPlant is the first de novo prediction tool that can identify

potential chromatin accessible regions along the genome
sequence. Second, CharPlant is specifically designed to predict
OCRs of plants, rather than those of human or animals, as in
other algorithms. Third, CharPlant marks all potential OCRs

of a given plant species in different tissues and at different
times, which is beneficial for the investigation of gene regula-
tion under different conditions. Lastly, CharPlant is signifi-

cantly faster than other deep learning algorithms because it
is designed with a concise and efficient structure.
Code availability

The source code of CharPlant and supporting files are freely
available from GitHub at https://github.com/Yin-Shen/

CharPlant.

https://systemsbiology.cau.edu.cn/chromstates
https://github.com/Yin-Shen/CharPlant
https://github.com/Yin-Shen/CharPlant
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[38] Köster J, Rahmann S. Snakemake — a scalable bioinformatics

workflow engine. Bioinformatics 2012;28:2520–2.

[39] Hashim FA, Mabrouk MS, Al-Atabany W. Review of different

sequence motif finding algorithms. Avicenna J Med Biotechnol

2019;11:130–48.

[40] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B,

Grisel O, et al. Scikit-learn: machine learning in python. J Mach

Learn Res 2011;12:2825–30.

[41] Pena PV, Davrazou F, Shi X, Walter KL, Verkhusha VV, Gozani

O, et al. Molecular mechanism of histone H3K4me3 recognition

by plant homeodomain of ING2. Nature 2006;442:100–3.

[42] Schneider R, Bannister AJ, Myers FA, Thorne AW, Crane-

Robinson C, Kouzarides T. Histone H3 lysine 4 methylation

patterns in higher eukaryotic genes. Nat Cell Biol 2004;6:73–7.

[43] Musselman CA, Lalonde ME, Cote J, Kutateladze TG. Perceiving

the epigenetic landscape through histone readers. Nat Struct Mol

Biol 2012;19:1218–27.

[44] Sproul D, Gilbert N, Bickmore WA. The role of chromatin

structure in regulating the expression of clustered genes. Nat Rev

Genet 2005;6:775–81.

[45] Liu Y, Tian T, Zhang K, You Q, Yan H, Zhao N, et al. PCSD: a

plant chromatin state database. Nucleic Acids Res 2018;46:

D1157–67.

http://refhub.elsevier.com/S1672-0229(21)00040-1/h0150
http://refhub.elsevier.com/S1672-0229(21)00040-1/h0150
http://refhub.elsevier.com/S1672-0229(21)00040-1/h0150
http://refhub.elsevier.com/S1672-0229(21)00040-1/h0155
http://refhub.elsevier.com/S1672-0229(21)00040-1/h0155
http://refhub.elsevier.com/S1672-0229(21)00040-1/h0155
http://refhub.elsevier.com/S1672-0229(21)00040-1/h0160
http://refhub.elsevier.com/S1672-0229(21)00040-1/h0160
http://refhub.elsevier.com/S1672-0229(21)00040-1/h0160
http://refhub.elsevier.com/S1672-0229(21)00040-1/h0165
http://refhub.elsevier.com/S1672-0229(21)00040-1/h0165
http://refhub.elsevier.com/S1672-0229(21)00040-1/h0170
http://refhub.elsevier.com/S1672-0229(21)00040-1/h0170
http://refhub.elsevier.com/S1672-0229(21)00040-1/h0175
http://refhub.elsevier.com/S1672-0229(21)00040-1/h0175
http://refhub.elsevier.com/S1672-0229(21)00040-1/h0175
http://refhub.elsevier.com/S1672-0229(21)00040-1/h0180
http://refhub.elsevier.com/S1672-0229(21)00040-1/h0180
http://refhub.elsevier.com/S1672-0229(21)00040-1/h0180
http://refhub.elsevier.com/S1672-0229(21)00040-1/h0185
http://refhub.elsevier.com/S1672-0229(21)00040-1/h0185
http://refhub.elsevier.com/S1672-0229(21)00040-1/h0185
http://refhub.elsevier.com/S1672-0229(21)00040-1/h0185
http://refhub.elsevier.com/S1672-0229(21)00040-1/h0190
http://refhub.elsevier.com/S1672-0229(21)00040-1/h0190
http://refhub.elsevier.com/S1672-0229(21)00040-1/h0195
http://refhub.elsevier.com/S1672-0229(21)00040-1/h0195
http://refhub.elsevier.com/S1672-0229(21)00040-1/h0195
http://refhub.elsevier.com/S1672-0229(21)00040-1/h0200
http://refhub.elsevier.com/S1672-0229(21)00040-1/h0200
http://refhub.elsevier.com/S1672-0229(21)00040-1/h0200
http://refhub.elsevier.com/S1672-0229(21)00040-1/h0205
http://refhub.elsevier.com/S1672-0229(21)00040-1/h0205
http://refhub.elsevier.com/S1672-0229(21)00040-1/h0205
http://refhub.elsevier.com/S1672-0229(21)00040-1/h0210
http://refhub.elsevier.com/S1672-0229(21)00040-1/h0210
http://refhub.elsevier.com/S1672-0229(21)00040-1/h0210
http://refhub.elsevier.com/S1672-0229(21)00040-1/h0215
http://refhub.elsevier.com/S1672-0229(21)00040-1/h0215
http://refhub.elsevier.com/S1672-0229(21)00040-1/h0215
http://refhub.elsevier.com/S1672-0229(21)00040-1/h0220
http://refhub.elsevier.com/S1672-0229(21)00040-1/h0220
http://refhub.elsevier.com/S1672-0229(21)00040-1/h0220
http://refhub.elsevier.com/S1672-0229(21)00040-1/h0225
http://refhub.elsevier.com/S1672-0229(21)00040-1/h0225
http://refhub.elsevier.com/S1672-0229(21)00040-1/h0225

	CharPlant: A De Novo Open Chromatin Region Prediction Tool for Plant Genomes
	Introduction
	Method
	Construction of datasets
	Construction of the CharPlant model
	Implementation of CharPlant
	Installation and execution of CharPlant

	Results and discussion
	Motifs identified by CharPlant
	Performance comparison between CharPlant and other methods
	De novo prediction of OCRs in genomes

	Conclusion
	Code availability
	CRediT author statement
	Competing interests
	Acknowledgments
	Supplementary material
	 ORCID
	References


