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In recent years, the values of synthetic drugs have 
almost lost due to its significant side effects and most 
of them have been withdrawn from the market because 
of their high toxicity. In fact, researchers have realized 
the potentials of herbs, which have been very well 
documented even before thousands of years. Generally, 
synthetic drugs are synthesized by pure ingredients, 
while herbal medicines are made up of complex 
ingredients. Those different ingredients in one or many 
herbs may balance each other, or in other words buffer 
each other, and act synergistically to make the systemic 
effect more potent. Moreover, some synthetic drugs 
may target only one molecule and therefore, its effect 
on other molecules in the pathways or systems are 
unknown and this often could lead to severe side effects. 
However, in contrast to this, herbs act on multiple 
targets, for example, one formulation may have effects 
on major diseases such as anti-inflammatory, anti-
allergic,(1) anti-oxidant, anti-toxic, including improvement 
of cardiovascular functions, anti-cancererous,(2) 
anti-diabetic,(3) and anti-osteoporotic.(4) 

Generally, bioflavonoids are a large group of 
non-nitrogenous class of plant secondary metabolites 
that provide pigmentation to flower and protect from 
ultraviolet light, microbes, and insects, apart from 
imparting flavors to the fruits and vegetables of the 
plants.(5) They are identifi ed as a good alternative to the 
synthetic drugs. One of the most valuable biofl avonoid is 
quercetin, which needs to be explored to a larger extent 
as it is reported to be the highly competitive and potential 
component in drug formulations.(6) Therefore, the present 

review was written to emphasize the information on 
quercetin's structure, synthesis, metabolism, medicinal 
value, proteomic, and genomic information, which in turn 
may provide evidence about its role as a therapeutic and 
outlines gap in the available data that need to be fi lled 
in order to determine the quercetin's appreciable role in 
future disease therapy.

Classifi cation of Biofl avonoids
Biof lavonoid shares a common f lavones 

backbone; three ringed with hydroxyl [OH] groups. 
According to the international union of pure and applied 
chemistry (3-hydroxy-2-phenylchromen-4-one: IUPAC) 
nomenclature, biofl avonoids are classifi ed into fl avonoid, 
isofl avonoid, and neo-fl avonoid (Figure 1). The fl avonoids 
are further grouped in to fl avanones, fl avones, fl avonols, 
flavans, and anthocyanins, based on the position of 
functional groups. However, among them flavonols that 
enrolls the 3-hydroxyfl avone backbone plays a vital role 
in imparting taste, flower color and flavor to fruits and 
green leafy vegetables.(7) Many different flavonols such 
as kaempferol, morin, spirenoside, fi setin, quercetin, and 
Galanginetc, have been identified in a wide variety of 
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plants and are reported to exhibit the difference by the 
position of their functional group (Table 1).

sugars (glycosyl groups)] or as aglycones (without 
attached sugars). The hydroxyl group at the C-3 carbon 
is easily glycosylated to form quercetin glycosides. 
The monosaccharides such as glucose, galactose, 
rhamnose, or xylose are attached with quercetin at C-3 
carbon and form quercetin 3-O-glycosides,(8) as found 
in sage (Salvia officinalis) and mango fruit (Mangifera 
indica),(9,10) while quercetin 3-O-rhamnoside is found in 
olive  (Olea europaea) oil,(11) peppers (Piper nigrum),(12) 
and spinach (Spinacia oleracea).(13) During glycosylation 
of the hydroxyl group (commonly at position 3), quercetin 
derivatives undergo a change from lipophilic to hydrophilic 
to form glycosylated quercetin, which is cytosol-soluble 
and could be easily transported to various parts of the 
plant.(14,7) In general the physical and chemical properties 
(such as absorption, solubility, and in-vivo effects) of 
the glycosylated quercetin differ from aglycosylated 
quercetin.(15,16) Disaccharides are also found to be 
attached with quercetin molecule such as rutin3-O-
rhamnosylglucoside as in tea (Camellia sinensis),(17) 
spinach,(13) chokeberries (Aronia arbutifolia),(18) and 
buckwheat (Fagopyrum esculentum).(19) Another 
glycosylation site (hydroxyl group) is observed at C-7 as 
3-O-rhamnoside-7-O-glucoside as seen in peppers(12) 
and quercetin 7-O-glucoside in beans(20) respectively. 
Perhaps, C-glycosides and sulphate derivatives 
of quercetin such as 3, 4, 7, 3', 4'-pentahydroxy-
6-glucose flavon and quercetin 3-O-glucoside-3'-
sulfate were also found in Ageratina calophylla(21) and 
cornflower (Centaurea cyanus)(22) respectively, but 
these compounds occur relatively rare in nature.

Table 1. Position of the Functional Group in Flavonols

Examples
Position of functional group in carbon chain

  3   5   7 2' 3'  4' 5'

Kaempferol OH OH OH H H OH H

Morin OH OH OH OH H OH H

Rutin O-R OH OH H OH OH H

Myricetin OH OH OH H OH OH OH

Quercetin OH OH OH H OH OH H

Quercetrin O-R'a OH OH H OH OH H

Myricitrin O-R' OH OH H OH OH OH

Spirenoside OH OH OH H OH O-Gluc H

Galangin OH OH OH H H H H

Robinin O-R OH OH H H OH H

Kaempferide OH OH OH H H O-Me H

Fisetin OH H OH H OH OH H

Rhamnetin OH OH O-Meb H OH OH H

Notes: a-O-R' = alkoxy; b-O-Me = methoxy; c-O-Glu = 
glucosyl

Figure 1. IUPAC Classifi cation of Biofl avonoids
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Structural Organization and Implications of 
Quercetin

Quercet in  (molecu lar  fo rmula  C 15H 10O 7; 
molecular weight of 302.236 g/mol) is a heterocyclic 
pyrone ring (aromatic trimeric heterocyclic) with 
two benzene rings. According to IUPAC, quercetin 
is a 3,3',4',5,7-pentahydroxyflavanone (synonym 
3,3',4',5,7-pentahydroxy-2-phenylchromen-4-one), 
a compound with five hydroxyl groups attached in 
the ring structure at the position 3, 5, 7, 3', and 4' 
(Figure 2), giving it a status of amphipathic, i.e., both 
lipophilic and hydrophilic in nature. Those quercetin 
derivatives which have O-methyl, C-methyl, and prenyl 
derivatives are lipophilic and are reported in glands 
located on the surface of the leaves, fl owers, or fruits in 
members of Labiatae or Compositae families.(7) Basically, 
it is a brilliant citron yellow color compound which is 
often found in plant as either glycosides [with attached 

Figure 2. Molecular Structure of Quercetin
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Metabolism of Quercetin
Quercetin is consumed daily by millions of people 

as a dietary source due to its presence in vegetables and 
fruits such as beans, onions, grapes, apple, green tea, 
berries, vegetables, nuts either in the fruits, fl owers, barks, 
and leaves (Figure 3). Digestion of quercetin begins 
from oral cavity by cleavage of glycosides molecule by 
β-glycosidases, while aglycosylated molecule become 
more lipophilic and could be absorbed into the epithelial 
cell of the colon.(23) Generally, absorbed quercetins are 
metabolized in liver and unabsorbed in intestine involving 
four processes namely, glucuronidation, methylation, 
hydroxylation, and sulfonylation. 

galactonojirimycin (as an inhibitor of the lactase domain 
of LPH) in a rat everted-jejunal sac model.(30) Quercetin-
3-glucuronides and quercetin-7-glucuronides, the 
major product of quercetin metabolism in the intestine 
are further absorbed or excreted by two pathways: 
(i) methylation of both quercetin-3-glucuronides and 
quercetin-7-glucuronides by methyltransferases, and (ii) 
hydroxylation of  endogenous β-glucuronidase followed 
by sulfonylation to quercetin-3'-sulfate.(31,32) Quercetin 
agylocones were found in human plasma as main 
circulating metabolite in an un-conjugated form, which 
resulted in deconjugation of quercetin glucuronides 
by the enzyme β-glucuronidase.(33) Nevertheless, an 
alternate mechanism for quercetin absorption was also 
revealed in small intestinal tract of human, where the 
flavonoid degrading strict anaerobic microorganism 
Eubacterium ramulus resides and cleaves quercetin ring 
structure into 3, 4-dihydroxy phenyl acetic acid.(34)

Pharmaceutical Accomplishment of Quercetin 
in Human Diseases

Mainly, by the fact that the quercetin has all the 
right structural features for free radical scavenging 
activity, they exert beneficial health effects such as 
anti-inflammatory, anti-allergic, anti-oxidant, anti-toxic, 
and anti-viral against reverse transcriptase of human 
immuno deficiency virus (HIV) and other retroviruses 
including Herpes simplex virus type 1, polio-virus type 
1, parainfluenza virus type 3, respiratory syncytial 
virus (RSV), and HIV-1 integrase.(35) Additionally, 
it is also reported to interact with cyclin-dependent 
kinases such as CDK6, CDK5, and CDK1,(36) fatty 
acid synthesizing enzyme (enoyl-acyl carrier protein 
reductase),(37) and G protein-coupled receptor(38) to 
label a few. Moreover, it has remarkably proven to 
improve the cardiovascular functions, reducing the risk 
for cancer. Although potential benefits are extraneous, 
it is not possible to highlight all of them individually and 
therefore, with much care, effort has been undertaken to 
cover at most under the four major headings.

Effects on Allergy
An immune response produces effector molecules 

that act to remove antigen by various mechanisms. 
Generally these effector molecules induce a subclinical 
and localized inflammatory response that eliminates 
antigen without extensively damaging the host tissue. 
An allergy is a hypersensitivity disorder of the immune 
system. An excessive activation of white blood cells, 
mast cells and basophils, through the immunoglobulin 

Figure 3. Amount of Quercetin 
(mg/100 g edible portion) in Food
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Glucuronidation is one of the detoxifying 
mechanisms in liver which play a major role in 
metabolism of xenobiotic compound with the help of 
uridine 5'-diphospho (UDP)-glucuronosyltransferase 
enzyme.(24) Quercetin is reported to be glucoronidized 
during passage across the epithelium in the liver 
by UDP-glucuronosyl transferase(25,26) and further 
conjugates with glucose transporter receptor in small 
intestine.(27) For instance, a study on a rat's small 
intestine revealed the uptake of quercetin conjugate 
that interacted with intestinal hexose transport pathway 
through glucose transporter receptor and competitively 
inhibited the uptake of galactose, due to the presence 
of quercetin-3-glucoside in the mucosal medium, 
indicating its interaction with the sodium-dependent 
glucose transporter pathway (SGLT1).(28) However, 
several observations suggested that quercetin could be 
absorbed by two ways; as stated above, one in the small 
intestine by SGLT1 with subsequent deglycosylation 
within the enterocyte by cytosolic β-glucosidase, or 
luminal hydrolysis of the glucoside by lactase phlorizin 
hydrolase (LPH); and the other is absorption by 
passive diffusion of the released aglycone.(29) However, 
the first hypothesis was evaluated with the use of 
phlorizin (the inhibitor of SGLT1) and N-(n-butyl)-deoxy 
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E antibody (IgE) is a symptom of allergic reaction. 
Quercetin exerts many effects on anti-allergic response; 
to inhibit histamine release in rat connective tissue mast 
cells, mucosal mast cells,(39) human lung, and intestinal 
mast cells.(40) In fact, quercetin isolated from Gingko 
biloba is reported to inhibit the lipopolysaccharide (LPS)-
induced tumor necrosis factor (TNF)-α, interleukin (IL)-6, 
IL-1β transcription by inhibiting the activation of ERK1/2 
and p38 MAPK in macrophages.(41) The pathologic role 
of TNF-α and IL-4, which are involved in the onset of 
various allergic diseases including atopic dermatitis, 
atopic rhinitis, and asthma, were arrested even at the 
lower (100 μmol/L) concentration of quercetin, when  
applied on human umbilical cord blood-derived cultured 
mast cells (hCBMCs).(42) In another study, IgE or phorbol-
12-myristate 13-acetate and calcium ionophore A23187 
(PMACI)-mediated histamine release were blocked 
by quercetin in RBL-2H3 cells and also it inhibited 
the elevation of intracellular calcium as well as gene 
expression and production of all the pro-inflammatory 
cytokines.(43) In an experiment, quercetin also inhibited 
the expression of CD63 and CD203c and the histamine 
release by the basophils that were activated with anti-
IgE.(44) Yet another investigation reported that quercetin 
inhibited the process of degranulation and suppressed 
the CD23 mRNA expression in RBL-2H3 cells at 
10 μmol/L concentration.(45)

Likewise, when FcεRI- anti-IgE activated 
model was treated with 1.8–20 μmol/L quercetin, it 
interacted with catalytic pocket of the enzyme  and 
inhibited P13K, consequently leading to the loss of 
phosphorylation of kinases (such as Bruton's tyrosine 
kinase)(46) which otherwise would phosphorylate 
phosphoinositide phospholipase C-γ (PLCγ) and 
lead to the production of inositol trisphosphate (IP3) 
and diacylglycerol (DAG) that may be responsible for 
the activation of membrane markers up-regulation and 
histamine production.(47) Moreover, quercetin is also 
reported to be effective on N-formyl-methionine-leucine-
phenylalanine (fMLP) triggered basophil function, which 
activate the P13Kγ and G-coupled receptor kinase 
(GRK) that are basically responsible for degranulation 
event by IP3-calcium signaling or by the activation of 
diacylglycerol-protein kinase C-PKC pathway. The 
calcium ionophore A23187 induced the expression 
of CD63 and CD203c and these markers promote 
the activation of Ca2+/calmodulin pathway, which is 
inhibited by quercetin.(48) Thus collectively, quercetin 
acts as a strong inhibitor of components those involved 

in allergic reaction and found to be functional even at 
the micromolar concentrations and thereby arising as a 
novel alternative for allergic treatments. 

Effect on Infl ammation
Infl ammation is a mechanism of innate immunity 

which act as a first response from immune system 
against harmful stimuli, such as injury caused by 
pathogens, damaged cells, and irritation.(49) It is 
characterized by increased blood flow to the tissue, 
raise in temperature, redness, swelling, and pain. 
It may involve in developing various diseases such 
as allergy, asthma, arthritis, atherosclerosis, cancer, 
aging, etc.(50) Inflammation is a complex response 
which is caused by numerous biological factors such as 
LPS (major component of the Gram-negative bacteria 
cell wall),(51) enzymes [cyclooxygenase (COX) and 
lipoxygenase (LOX)],(52) nitric oxide production, and 
nitric oxide synthase (NOS) expression.(53)

LPS is one of the major factor for infl ammation 
which is recognized by Toll-like receptor (TLR4) 
receptors that is found on the immune cells, including 
macrophages.(54) When LPS bind with specific TLR4 
receptor, it can trigger signaling pathways and 
activate nuclear factor (NF)-κB.(55) Under normal 
conditions, NF-κB occurs in cytoplasm in an inactive 
state, bound to the inhibitory κB (IκB) proteins. The 
NF-κB is activated by IκB kinase (IKK) complex, 
that are composed of Ser/Thr kinases IKKα and 
IKKβ associated with other signal transducers 
IKKγ and IKAP. Signal components activate Ser/Thr 
kinases in IKK complex and activated IKK complex 
phosphorylates IκB and then followed by proteasome-
mediated degradation of IκB.(56,57) After IκB 
degradation NF-κB enters into the nucleus and bind 
to the promoter regions of immune genes including 
IL-6 for transcriptional activation.(58) IL-6 is a pleiotropic 
interleukin that acts as both pro-inflammatory 
and anti-inflammatory cytokine. It is produced by 
T cells and macrophages as well as varieties of 
other cell types including adipocytes and microglial 
cell.(59) However, the effect of quercetin 3-O-β-(2"-
galloyl)-glucopyranoside (QG-32) from Persicaria 
lapathifolia (polygonacease) was realized when it 
inhibited reactive superoxide (ROS) production in 
human monocytes.(60) Perhaps, studies showed that 
ROS could increases the LPS-induced IL-6 expression 
at the transcription level. In spite of ROS's independent 
production, it could still amplify TLR4-mediated 
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inflammatory responsiveness.(61) When endotoxin 
LPS-activated macrophages RAW 264.7 were treated 
with various concentrations (10–100 μmol/L) of 
QG-32 or pyrrolidine dithiocarbamate (PDTC) within 
24 h, it inhibited the production of IL-6 as well as down-
regulated the LPS-induced IL-6 expression at the 
transcription level.(62) Similarly, NF-κB, a transcription 
factor that is involved in proteolytic degradation of IκB 
was also inhibited by the administration of quercetin.(62) In 
fact, quercetin inhibits cyclooxygenase and lipoxygenase 
at concentration of 10–20 μmol/L, which is an important 
mediator in inflammation and tumor promotion.(52) 
The NOS expression is also found to suppressed by 
administration of 100 μmol/L quercetin, resulting in 
inhibition of nitric oxide (a pro-inflammatory mediator) 
production.(53) Hence these factors may attribute a major 
role in numerous chronic diseases such as  allergy,(50) 
diabetes,(63) atherosclerosis,(64) depression,(65) Alzheimer's 
disease,(66) systemic lupus erythematosus,(67) prostate 
cancer,(68) and rheumatoid arthritis.(69) Since these 
studies have given lots of pharmacological potential 
of quercetin in the inflammatory disorders, the action 
of quercetin against numerous inflammatory factors 
may provide a better option to cure above mentioned 
diseases in the future.

Quercetin as an Antioxidant
The antioxidant activity of a compound is 

determined by the presence of free hydroxyl groups 
as well as position of double bond(14) that can 
donate electron through resonance to stabilize the 
free radicals.(70) The radical scavenging property 
defends the body against oxidative stress, reduces 
heart disease, prevents cancer, and slows the aging 
process in cells.(71) Lipid peroxidation is an oxidative 
degradation of lipid in which unsaturated fatty acids 
are converted to free radicals via the abstraction of 
hydrogen and further these free radicals are oxidized 
by molecular oxygen to create lipid peroxy radicals.

Quercetin shows inhibitory effect against human 
lipoxygenase (hLO) isozymes(71) that catalyzes the 
dioxygenation of polyunsaturated fatty acids to their 
hydroperoxy acids that have been implicated in several 
diseases including inflammation, immune disorders, 
and various types of cancers.(72) The low-density 
lipoprotein (LDL) is another reason for cardiovascular 
disease. While, studies have shown the ability of 
quercetin to inhibit LDL oxidation,(73) it not only stops 
the lipid peroxidation but also increases the glutathione 

(GSH) level,(74) which is a tripeptide that acts as 
an antioxidant in our body and neutralizes the free 
radicals by regulating the nitric oxide cycle (75) and 
other biochemical reactions involved in DNA synthesis 
and repair, protein synthesis, prostaglandin synthesis, 
amino acid transport, and enzyme activation.

Administration of quercetin-3'-glucuronidequercetin 
is also reported to inhibit xanthine oxidase,(76) which 
catalyzes the oxidation of hypoxanthine and xanthine 
to uric acid and superoxide radicals. The former plays 
a crucial role in gout, while the latter is involved in 
oxidative stress including infl ammation, atherosclerosis, 
cancer, and aging. So, an increase in xanthine oxidase 
infl uences the rate of hepatitis and the degree of brain 
edema and its control by derivative of quercetin could 
accomplish a good measure for treating hepatitis, brain 
edema and also reduce the oxidative stress.(77,78)

In view of the number of studies, it is clear 
that quercetin possesses the structure that act as 
an effective and powerful antioxidants and since 
it is playing a major role in preventing the above 
mentioned diseases, and hence quercetin could be a 
subject of interest to control them naturally.

Quercetin as an Anti-cancer Agent
Oxidative DNA damage by oxygen species 

superoxide, hydroxyl, peroxyl, and alkoxyl, and reactive 
nitrogen species play a key role in human cancer 
development. The hydroxyl groups of quercetin have 
electron accepting capacity, while the catechol group 
chelate with metal ions.(23) In-vitro studies indicate that 
quercetin plays an important role in cancer treatment 
with the ability to act as potential antioxidants and 
there by inducing numerous molecular pathways such 
as apoptotic pathway, down-regulation of mutant P53 
protein, G1-phase arrest, inhibition of tyrosine kinase, 
inhibition of heat shock proteins, inhibition of ras protein 
expression, and estrogen receptor binding capacity.

Quercetin is reported to induce cell death by 
apoptosis in leukemia, lung, hepatoma, oral, and 
colon cancer cell lines.(79) For instance, administration 
o f  40–50μmo l / L  o f  que rce t i n  i nduced  t he 
mitochondrial apoptotic pathway through initiating Bcl-
2-associated X protein (Bax) and/or Bcl-2 homologous 
antagonist/killer (Bak) proteins. These proteins are 
involved in increasing the size of outer mitochondrial 
membrane pore and cytochrome C leakage into 
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the cytoplasm which further activates the apoptotic 
protease activating-factor 1 (APAF-1) and produces 
apoptosome.(80) The P53 is another important tumor 
suppression protein which activates the Bax and 
initiate cell death. When human hepatocellular 
carcinoma cell was treated with 40–120 μmol/L 
of quercetin, p53 expression was increased, while 
down-regulating the anti-apoptotic protein survivin 
that regulates the caspase activation and Bcl-2 that 
prevents mitochondrial mediated apoptosis.(81) 

 
TNF-α-related apoptosis-inducing ligand (TRAIL 

or Apo2L) that belongs to the TNF cytokine family 
is produced by the activated macrophages and it is 
responsible for inducing inflammation, apoptotic cell 
death, and inhibiting tumorogenesis through enhancing 
the transcription of Bcl-2.(82) TRAIL, however, binds with 
the death receptors DR4/DR5, which further interact 
with the adaptor protein Fas-associated death domain 
(FADD) and procaspase-8 and form the death-inducing 
signaling complex (DISC). Procaspase-8 activation and 
DISC lead to cleavage of procaspase-3 and engagement 
of the cellular machinery associated with the type Ⅰ 
extrinsic apoptotic pathway. However, evidence claim 
that these attributes by the TRAIL proves futile under 
glioma cells and many cancer cell lines became more 
or less resistant to the apoptotic effect.(83) Thus the 
administration of quercetin especially 250 μmol/L 
was revealed to reducing the viability of U251, LN229, 
U87-MG, MDA-MD-231 and A172 glioma cells and also 
affecting the estrogen receptor α (ER-α) by inducing 
cytotoxicity in some cancer cell lines.(84) Moreover, 
quercetin is also reported to prevent the ROS production 
in the human cervix epithelial carcinoma cell line (HeLa) 
and stimulate the activation of p38/MAPK,(85) which 
are responsible for proapoptotic caspase-3 activation 
and mediate poly (adenosine diphosphate-ribose) 
polymerase (PARP) cleavage. In another study quercetin 
(50 μmol/L) in combination with ascorbate bound to 
the estrogen receptor (ER-β) and induced apoptosis of 
breast cancer (T47D-ER-α) and osteosarcoma (U2OS-
ER-α and -ER-β) by increasing the intracellular pH 
through the modulation of the cells Na+/H+ exchanger.(86)

Quercetin reportedly evidenced the inhibition of 
malfunction of protein chaperons that are basically 
responsible for protein folding and maintenance of 
protein structure in our body.  The disturbed chaperons 
are unable to perform their function and eventually 
result is death. Moreover, the heat shock proteins 

(HSP) such as HSP90, HER2, and IGFBP-2 allowed 
tumor cells to bypass normal mechanisms of cell cycle 
and allowed survival of cancer cell in unfavorable 
condition viz., hypoxic condition, low circulation, high 
temperature etc. However, these conditions were 
reported to be suppressed by quercetin (1–100 μmol/L) 
in several malignant cell lines namely colon cancer,(87,88) 
breast cancer, and prostate cancer.(89) Thus, the ability 
of quercetin to interact with electrons even at lesser 
concentrations plays a central role in its mechanism of 
action, mainly by the activation of proteins and DNA 
damage, leading to the induction of many downstream 
pathways of the cancer.

Thus quercetin is the subject of intense research 
on the basis of its anti-inflammatory, anti-allergic, 
antioxidant, and anti-cancer activities, as well as many 
therapeutic targets to cure different kinds of diseases 
such as Alzheimer's disease, diabetes, malaria, 
Chagas' disease, Schizophrenia etc. Apart from this, 
studies also suggested that quercetin is effective 
against antibiotic resistance bacteria. For instance, 
the antibacterial activities of quercetin has been tested 
on anti-methicillin resistant Staphylococcus aureus 
(MRSA), which uncovered the unique antibacterial 
properties of quercetin against Staphylococcus aureus 
(S. aureus).(90) The study was further substantiated by 
in-silico approach, which showed a strong interaction 
of quercetin and kaempferol with multidrug resistant 
β lactamase of S. aureus.(91) Thus, collectively, one 
could say that the quercetin has risen as a novel 
alternate to the synthetic molecules as evidenced by 
the enlisted literature presented in Table 2.

Biosynthesis
Realizing the potentials, it has become essential 

to know about the synthesis of quercetin, which involves 
in multiple enzymatic processes in the cytoplasm and 
associated with endoplasmic reticulum(137) via phenyl 
propanoid pathway (Figure 4). The first step of this 
pathway is deamination of phenylalanine by the enzyme 
L-phenylalanine ammonia-lyase (PAL),(138) which acts 
as a precursor molecule to synthesize 4-coumarate that 
further acts as a substrate for formation of 4-coumaroyl 
coenzyme (CoA) with the help of 4-coumarate-CoA 
ligase using 1 ATP molecule. The 4-coumaroyl CoA 
also participates in 6'-deoxychalcone metabolism 
and in isoflavonoid biosynthesis Ⅰ, in addition to the 
synthesis of naringenin chalcone, which involves in 
the precipitation of bioflavonoid or may form many 



• 7 •Chin J Integr Med
T

ab
le

 2
. 

R
es

p
o

n
se

s 
o

f 
Q

u
er

ce
ti

n
 a

g
ai

n
st

 Id
en

ti
fi 

ed
 V

u
ln

er
ab

le
 D

is
ea

se
s 

T
ar

g
et

s

T
ar

ge
t

K
ia

 (n
m

ol
/L

) 
   

  v
al

ue
IC

50
 (n

m
ol

/L
) 

   
   

va
lu

e
T

es
te

d 
on

c
E

ffe
ct

 o
f t

he
 ta

rg
et

R
ef

er
en

ce
s

D
op

am
in

e 
D

4 
re

ce
pt

or
 

   
   

7.
8

   
   

 –
H

om
o 

sa
pi

en
s

S
ch

iz
op

hr
en

ia
 a

nd
 a

nt
ip

sy
ch

ot
ic

 a
ct

io
n 

(3
8)

E
no

yl
-a

cy
l-c

ar
rie

r 
pr

ot
ei

n 
re

du
ct

as
e,

 3
-o

xo
ac

yl
-a

cy
l-

ca
rr

ie
r 

pr
ot

ei
n 

re
du

ct
as

e
   

 2
2.

0
   

   
 –

P
la

sm
od

iu
m

 fa
lc

ip
ar

um
F

at
ty

 a
ci

d 
sy

nt
he

si
s

(9
2,

37
)

C
yt

oc
hr

om
e 

P
45

0 
1A

1,
 C

yt
oc

hr
om

e 
P

45
0 

1B
1 

(C
Y

P
1B

1)
, C

yt
oc

hr
om

e 
1A

2,
 C

yt
oc

hr
om

e 
P

45
0 

2C
9

   
 2

3.
0

   
   

 –
H

om
o 

sa
pi

en
s

M
et

ab
ol

is
m

 o
f x

en
ob

io
tic

s
(9

3,
94

,9
5)

C
as

ei
n 

ki
na

se
 Ⅱ

11
80

.0
   

   
 –

H
om

o 
sa

pi
en

s
W

nt
 s

ig
na

lin
g 

pa
th

w
ay

 (
96

)
(9

7)

X
an

th
in

e 
de

hy
dr

og
en

as
e

12
00

.0
   

   
 –

B
os

 ta
ur

us
P

ur
in

e 
ca

ta
bo

lis
m

(7
7,

98
)

M
ul

tid
ru

g 
re

si
st

an
ce

-a
ss

oc
ia

te
d 

pr
ot

ei
n 

1
24

00
.0

   
   

 –
H

om
o 

sa
pi

en
s

M
ul

tid
ru

g 
re

si
st

an
ce

 in
 tu

m
or

 c
el

ls
(9

9)

A
de

no
si

ne
 A

1,
 A

2A
, A

3 
re

ce
pt

or
24

70
.0

   
   

 –
R

at
tu

s 
no

rv
eg

ic
us

(1
00

)

C
ar

bo
ni

c 
an

hy
dr

as
e 

Ⅰ
, Ⅱ

, Ⅲ
, Ⅳ

, Ⅵ
, Ⅶ

, Ⅷ
, Ⅸ

, Ⅻ
, 

, 
V

A
, V

B
, 1

 (
C

A
 Ⅰ

),
 2

 (
C

A
 Ⅱ

)
25

40
.0

   
   

 –
H

om
o 

sa
pi

en
s

M
ai

nt
ai

n 
ac

id
-b

as
e 

ba
la

nc
e 

in
 b

lo
od

 a
nd

 o
th

er
 ti

ss
ue

s
(1

01
,1

02
)

be
ta

-S
ec

re
ta

se
 (

B
A

C
E

-1
)

   
  –

  1
08

20
.0

H
om

o 
sa

pi
en

s
A

lz
he

im
er

's
 d

is
ea

se
(1

03
)

C
yc

lin
-D

ep
en

de
nt

 K
in

as
e1

 (
C

D
K

1)
, 5

 (
C

D
K

5)
, 6

 (
C

D
K

6)
, 

C
D

K
4/

C
yc

lin
 D

1
   

  –
>

20
00

0.
0

H
om

o 
sa

pi
en

s
C

el
l-c

yc
le

 p
ro

gr
es

si
on

 &
 c

el
lu

la
r 

pr
ol

ife
ra

tio
n

(1
04

,3
6,

10
5)

G
ly

co
ge

n 
sy

nt
ha

se
 k

in
as

e-
3,

 b
et

a
   

  –
   

 2
10

0.
0

R
at

tu
s 

no
rv

eg
ic

us
It 

is
 im

pl
ic

at
ed

 in
 T

yp
e 

2 
di

ab
et

es
, A

lz
he

im
er

's
 d

is
ea

se
, 

in
fl a

m
m

at
io

n,
 c

an
ce

r,
 a

nd
 b

ip
ol

ar
 d

is
or

de
r

(3
6)

P
ho

sp
ho

in
os

iti
de

 3
-k

in
as

e 
(P

I3
K

),
 a

lp
ha

 C
ha

in
 A

/b
et

a 
C

ha
in

 A
/b

et
a 

ch
ai

n 
B

/d
el

ta
 C

ha
in

 A
/g

am
m

a 
C

ha
in

 A
,

   
  –

   
 3

80
0.

0
H

om
o 

sa
pi

en
s

in
vo

lv
ed

 in
 c

el
l g

ro
w

th
, p

ro
lif

er
at

io
n,

 d
iff

er
en

tia
tio

n,
 m

ot
ili

ty
, 

su
rv

iv
al

 a
nd

 in
tr

ac
el

lu
la

r 
tr

af
fi c

ki
ng

(1
06

,1
07

)

A
lp

ha
-A

m
yl

as
e

   
  –

  2
14

00
.0

H
om

o 
sa

pi
en

s
P

la
yi

ng
 r

ol
e 

in
 c

ar
bo

hy
dr

at
e 

di
ge

st
io

n
(1

08
)

P
IM

-1
 k

in
as

e
   

 1
10

0.
0

H
om

o 
sa

pi
en

s
In

vo
lv

ed
 in

 c
el

l c
yc

le
 p

ro
gr

es
si

on
, a

po
pt

os
is

 a
nd

 
tr

an
sc

rip
tio

na
l a

ct
iv

at
io

n
(1

09
)

A
ld

os
e 

re
du

ct
as

e
   

  –
  5

01
00

.0
S

us
 s

cr
of

a
P

ol
yo

l p
at

hw
ay

(1
10

,1
11

)

A
ra

ch
id

on
at

e 
5-

lip
ox

yg
en

as
e,

 a
ra

ch
id

on
at

e 
12

-li
po

xy
ge

na
se

,  
ar

ac
hi

do
na

te
 1

5-
lip

ox
yg

en
as

e,
 

ar
ac

hi
do

na
te

 1
5-

lip
ox

yg
en

as
e,

 ty
pe

 Ⅱ

   
  –

  3
70

00
.0

O
ry

ct
ol

ag
us

 c
un

ic
ul

us
P

ar
tic

ip
at

es
 in

 a
ra

ch
id

on
ic

 a
ci

d 
m

et
ab

ol
is

m
(1

12
,1

13
,7

1)

C
yc

lo
ox

yg
en

as
e-

1/
C

yc
lo

ox
yg

en
as

e-
2

   
  –

  5
00

00
.0

R
at

tu
s 

no
rv

eg
ic

us
F

or
m

at
io

n 
of

 p
ro

st
ag

la
nd

in
s,

 p
ro

st
ac

yc
lin

 a
nd

 th
ro

m
bo

xa
ne

(1
12

,1
14

,1
13

)

T
yr

os
in

e-
pr

ot
ei

n 
ki

na
se

 L
C

K
, T

yr
os

in
e-

pr
ot

ei
n 

ki
na

se
 

S
R

C
, E

G
F

-R
 T

yr
os

in
e 

K
in

as
e

   
  –

  1
50

00
.0

H
om

o 
sa

pi
en

s
ph

os
ph

or
yl

at
io

n 
of

 ty
ro

si
ne

 r
es

id
ue

s 
in

 p
ro

te
in

s
(1

15
,1

16
)

H
IV

-1
 in

te
gr

as
e

   
  –

  1
36

00
.0

H
um

an
 im

m
un

od
efi

 c
ie

nc
y 

vi
ru

s 
1

K
ey

 c
om

po
ne

nt
 in

 th
e 

re
tr

ov
ira

l p
re

-in
te

gr
at

io
n 

co
m

pl
ex

(3
5)

T
ry

ps
in

   
  –

   
 7

10
0.

0
H

om
o 

sa
pi

en
s

C
le

av
es

 p
ep

tid
e 

ch
ai

ns
(1

17
)

C
hy

m
ot

ry
ps

in
, B

et
a-

ch
ym

ot
ry

ps
in

   
  –

10
00

00
.0

H
om

o 
sa

pi
en

s
D

ig
es

tiv
e 

en
zy

m
e 

co
m

po
ne

nt
 o

f p
an

cr
ea

tic
 ju

ic
e

(1
18

)

P
ro

te
in

-t
yr

os
in

e 
ph

os
ph

at
as

e 
1B

 (
P

T
P

1B
)

   
  –

  2
33

00
.0

H
om

o 
sa

pi
en

s
T

he
ra

pe
ut

ic
 ta

rg
et

 in
 tr

ea
tin

g 
ty

pe
 2

 d
ia

be
te

s
(1

19
)

(T
o

 B
e 

C
o

n
ti

n
u

ed
)



• 8 • Chin J Integr Med

T
ar

ge
t

K
ia

 (n
m

ol
/L

) 
   

  v
al

ue
IC

50
 (n

m
ol

/L
) 

   
   

va
lu

e
T

es
te

d 
on

c
E

ffe
ct

 o
f t

he
 ta

rg
et

R
ef

er
en

ce
s

S
or

bi
to

l d
eh

yd
ro

ge
na

se
   

  –
17

70
00

.0
H

om
o 

sa
pi

en
s

C
ar

bo
hy

dr
at

e 
m

et
ab

ol
is

m
(1

20
)

A
ld

eh
yd

e 
re

du
ct

as
e

   
  –

  3
84

00
.0

S
us

 s
cr

of
a

C
at

al
yz

in
g 

th
e 

re
du

ct
io

n 
of

 g
lu

co
se

 to
 s

or
bi

to
l

(1
20

)

M
al

at
e 

de
hy

dr
og

en
as

e
   

  –
   

 6
00

0.
0

T
he

rm
us

 th
er

m
op

hi
lu

s
R

ev
er

si
bl

y 
ca

ta
ly

ze
s 

th
e 

ox
id

at
io

n 
of

 m
al

at
e 

to
 

ox
al

oa
ce

ta
te

(1
07

)

B
et

a-
la

ct
am

as
e/

P
en

ic
ill

in
-b

in
di

ng
 p

ro
te

in
 a

m
pH

   
  –

   
 4

00
0.

0
E

sc
he

ric
hi

a 
co

li
R

es
po

ns
ib

le
 fo

r 
re

si
st

an
ce

 to
 b

et
a-

la
ct

am
 a

nt
ib

io
tic

s
(1

07
)

B
et

a-
la

ct
am

as
e

   
  –

   
   

 –
S

ta
ph

yl
oc

oc
cu

s 
au

re
us

R
es

po
ns

ib
le

 fo
r 

re
si

st
an

ce
 to

 b
et

a-
la

ct
am

 a
nt

ib
io

tic
s

S
er

in
e 

be
ta

-la
ct

am
as

e-
lik

e 
pr

ot
ei

n
   

  –
   

 4
00

0.
0

H
om

o 
sa

pi
en

s
R

es
po

ns
ib

le
 fo

r 
th

e 
β

-la
ct

am
as

e 
ac

tiv
ity

(1
07

)

G
lu

ta
th

io
ne

 r
ed

uc
ta

se
   

  –
21

80
00

.0
H

om
o 

sa
pi

en
s

T
ar

ge
ts

 fo
r 

al
do

se
 r

ed
uc

ta
se

 in
hi

bi
to

r 
ac

tio
n

(1
21

,1
20

)

C
el

l d
iv

is
io

n 
pr

ot
ei

n 
ki

na
se

 5
   

  –
   

   
 –

R
at

tu
s 

no
rv

eg
ic

us
In

hi
bi

t c
el

l c
yc

le
 p

ro
gr

es
si

on
(1

22
)

F
at

ty
 a

ci
d 

sy
nt

ha
se

   
  –

   
 1

50
0.

0
P

la
sm

od
iu

m
 fa

lc
ip

ar
um

F
at

ty
 a

ci
d 

bi
os

yn
th

es
is

(9
2)

S
er

ot
on

in
 r

ec
ep

to
r 

1A
   

  –
   

   
 –

H
om

o 
sa

pi
en

s
T

ar
ge

t o
f a

nt
id

ep
re

ss
an

ts
, a

nt
ip

sy
ch

ot
ic

s,
 a

no
re

ct
ic

s,
 a

nt
i-

em
et

ic
s,

 g
as

tr
op

ro
ki

ne
tic

 a
ge

nt
s,

 a
nt

i-m
ig

ra
in

e 
ag

en
ts

, 
ha

llu
ci

no
ge

ns
, a

nd
 e

nt
ac

to
ge

ns
 (

12
3)

(1
24

)

G
ly

ox
al

as
e 

I
   

  –
   

 3
20

0.
0

H
om

o 
sa

pi
en

s
T

ar
ge

t f
or

 a
nt

ic
an

ce
r 

dr
ug

(1
25

)

D
ip

ep
tid

yl
 p

ep
tid

as
e 

Ⅳ
 (

D
P

P
-Ⅳ

)
   

  –
13

00
00

.0
H

om
o 

sa
pi

en
s

–
(1

25
)

17
-b

et
a-

hy
dr

ox
ys

te
ro

id
 d

eh
yd

ro
ge

na
se

 2
 (

17
-b

et
a-

H
S

D
2)

   
  –

   
 1

54
0.

0
H

om
o 

sa
pi

en
s

T
ar

ge
t f

or
  a

nt
i-b

re
as

t c
an

ce
r 

th
er

ap
y

(1
26

)

S
ia

lid
as

e 
(N

eu
ra

m
in

id
as

e)
   

  –
   

 1
70

0.
0

C
lo

st
rid

iu
m

 p
er

fr
in

ge
ns

In
vo

lv
ed

 in
 th

e 
re

le
as

e 
of

 P
ro

ge
ny

 in
fl u

en
za

 v
iru

s 
fr

om
 

in
fe

ct
ed

 c
el

ls
(7

8)

G
ly

ce
ra

ld
eh

yd
e-

3-
ph

os
ph

at
e 

de
hy

dr
og

en
as

e,
 

gl
yc

os
om

al
   

  –
14

20
00

.0
T

ry
pa

no
so

m
ac

ru
zi

T
ar

ge
t f

or
 C

ha
ga

s'
 d

is
ea

se
(1

27
)

R
ep

lic
as

ep
ol

yp
ro

te
in

 1
ab

   
  –

>
50

00
0.

0
H

um
an

 S
A

R
S

 c
or

on
av

iru
s

T
ar

ge
t f

or
 h

um
an

 S
A

R
S

 c
or

on
av

iru
s

(1
28

)

M
on

oa
m

in
e 

ox
id

as
e 

ty
pe

 A
 (

M
A

O
-A

),
 m

on
oa

m
in

e 
ox

id
as

e 
B

, a
m

in
e 

ox
id

as
e,

 m
on

oa
m

in
e 

ox
id

as
e 

A
   

  –
   

 2
80

0.
0

H
om

o 
sa

pi
en

s
C

en
tr

al
 r

ol
e 

in
 th

e 
m

et
ab

ol
is

m
 o

f m
on

oa
m

in
e 

ne
ur

ot
ra

ns
m

itt
er

s
(1

29
,1

30
)

H
yp

ox
ia

-in
du

ci
bl

e 
fa

ct
or

 1
-a

lp
ha

 in
hi

bi
to

r
   

  –
  1

02
00

.0
H

om
o 

sa
pi

en
s

T
ar

ge
t f

or
 tr

ea
tin

g 
an

em
ia

(1
31

)

A
ro

m
at

as
e 

(C
Y

P
19

)
   

  –
   

   
  1

2.
0

H
om

o 
sa

pi
en

s
T

ar
ge

t f
or

  a
nt

i-b
re

as
t c

an
ce

r 
th

er
ap

y
(1

32
)

N
A

D
P

H
 o

xi
da

se
 4

   
  –

   
   

68
0.

0
H

om
o 

sa
pi

en
s

C
on

tr
ib

ut
es

 in
 o

xi
da

tiv
e 

da
m

ag
e 

re
la

te
d 

di
se

as
es

(1
33

)

C
al

m
od

ul
in

   
  –

  1
29

70
.0

H
om

o 
sa

pi
en

s
T

ar
ge

t f
or

 a
nt

ih
yp

er
te

ns
iv

e 
ag

en
ts

(1
34

)

A
T

P
-B

in
di

ng
 c

as
se

tte
 tr

an
sp

or
te

r 
A

B
C

G
2

   
  –

   
 6

90
0.

0
H

om
o 

sa
pi

en
s

T
ar

ge
t f

or
  a

nt
i-b

re
as

t c
an

ce
r 

th
er

ap
y

(1
35

)

M
ito

ge
n-

ac
tiv

at
ed

 p
ro

te
in

 k
in

as
e 

p3
8 

al
ph

a,
 c

-J
un

 
N

-t
er

m
in

al
 k

in
as

e 
3 

(J
N

K
3)

   
  –

   
 3

45
0.

0
H

om
o 

sa
pi

en
s

In
vo

lv
ed

 in
 c

el
lu

la
r 

pr
ol

ife
ra

tio
n,

 d
iff

er
en

tia
tio

n,
 tr

an
sc

rip
tio

n
(1

36
)

N
ot

es
: 

a K
i- 

in
hi

bi
to

r 
co

ns
ta

nt
s;

 b IC
50

- 
ha

lf 
m

ax
im

al
 i

nh
ib

ito
ry

 c
on

ce
nt

ra
tio

n;
 c T

ox
ic

ity
 t

es
te

d 
in

 t
he

 m
en

tio
ne

d 
or

ga
ni

sm
 c

el
l 

lin
e 

or
 c

ul
tu

re
; 

S
A

R
S

: 
se

ve
re

 a
cu

te
 r

es
pi

ra
to

ry
 s

yn
dr

om
e;

 
N

A
D

P
H

: n
ic

ot
in

am
id

e 
ad

en
in

e 
di

nu
cl

eo
tid

e 
ph

os
ph

at
e

(C
o

n
ti

n
u

ed
)



• 9 •Chin J Integr Med

derivatives of quercetin through a series of reactions. 
Meanwhile, naringenin chalcone may take part in aurone 
biosynthesis and chalcone 2'-O-glucoside biosynthesis, 
where the former is important for synthesizing derivatives 
of auronem that imparts yellow color to flowers,(139) 
while the later is involved in synthesizing chalcone 
2'-O-glucoside. The most stereochemically important 
reaction of flavonoid biosynthesis is conversion of 
naringenin chalcone to naringenin (2S-flavanones) 
using chalcone isomerase (CHI, 4th step) or 
chalcone-flavanone isomerase.(140) Precisely, the 
synthesized naringenin acts as an intermediate 
for formation of flavones, flavonols, flavan-4-ols, 
anthocyanins, and isoflavonoids. Thus, naringenin 
is involved in five different pathways that include 
ponciretin biosynthesis, sakuranetin biosynthesis, 
naringenin glycoside biosynthesis, luteolin biosynthesis, 
and isoflavonoid biosynthesis Ⅱ, which synthesizes 
ponciretin, 2S-sakuranetin, naringenin, luteolin, and 
pratensein respectively. In the meanwhile as a 5th step 
dihydrokaempferol is synthesized using naringenin 
3-dioxygenase, which leads to the leucopelargonidin, 
leucocyanidin and kaempferolglucoside biosynthesis 
apart from quercetin/flavonol biosynthesis. Further, 
dihydrokaempferol in the presence of flavonoid 
3'-monoxygenase is converted to dihydroquercetin.

Thus it is evident from the step 7 that the synthesis 
of quercetin is dependent on 2-oxoglutarate-dependent 
dioxygenases flavonol synthase (FLS), which is an 
enzyme that belongs to oxidoreductases family and 
shows a broad substrate and product selectivity.(141,142) 
Since FLS is an enzyme that catalyzes the formation 
of quercetin, it is considered to be vital in the quercetin 
biosynthetic pathway. Eventually the synthesis of 
glycosylated quercetin from aglycosylated quercetin is 
catalyzed by the quercetin 3-O-glucosyltransferase and 
quercetin 3-O-rhamnosyltransferase enzyme (8th and 
9th step)(143) by the transfer of a glucosyl group from 
UDP-glucose to the 3'-hydroxy group (of a quercetin 
molecule). Thus, the glycosylation of aglycosylated 
quercetin is responsible for the modifi cation of stability, 
solubility, or localization, and the biological properties 
of the quercetin glycosides.(143)

Molecular Investigations and Digitalization
Taking into account the importance of each 

enzyme or the intermediary products formed during 
the process of secondary metabolite (quercetin) 
synthesis, it has become necessary to know about the 
genes involved in the system. With this perception, 
the literary surfi ng earmarked the remarkable quantity 
of work done on this segment. In fact, the genes 

Figure 4. Quercetin Glucoside Biosynthesis Pathway in Arabidopsis thaliana 
Notes: Compiled from Plant Metabolic Pathway Databases; http://www.plantcyc.org/
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responsible for almost all the enzymes involved in the 
pathway has been studied and very well documented 
(Table 3). However, when observed keenly, one could 
realize that the plant systems, that has been explored 
is very limited (http://medicinalplantgenomics.msu.
edu/; http://www.plantcyc.org/). When the medicinal 
plants find application in pharmaceutical, cosmetic, 
agricultural, and food industry right from the pre-
historic era and that when the plant diversity is rich 
in the world,(144) why there is scarce research on the 
molecular investigation of this vital compound in the 
herbal systems? Digital inventory has a significant 
role in the pharmaceutical market as many drug 
interaction studies use these databases for either 
virtual screening of ligand based on plant origin or 
proteins, which are of clinical importance (Table 
4).(91) Although many plant databases are available 
(many are licensed/commercialized), most of them 
reveals less information on the important secondary 
metabolites, which once again give us a scope in the 

future for extending research in this frontier area.

Conclusion
Quercetin derivatives are available not only in 

dietary vegetables; also it is present in plants that are 
non-dietary such as Ginkgo biloba and Hypericum 
perforatum. Quercetin derivatives are generally nontoxic 
and manifest a diverse range of beneficial biological 
activities which are abundantly present in the human 
diet, as evidenced through the ongoing epidemiological 
studies, promotion as an effective anti-oxidative agent 
with scavenging (chelating) capacities and interaction 
with diverse range of therapeutic target. Therefore, 
this compound is being intensively investigated, which 
indicated its role as anti-inflammatory, anti-allergic, 
antioxidant, anti-cancerous, etc. This has proportionally 
increased the demand for quercetin from the pharma-
industry as an alternate for the synthetic molecules 
and has given scope for two important concepts to be 
concentrated in the future. One, in spite of the diverse 

Table 3. Details of the Genes Involved for the Biosynthesis of Quercetin

Serial No. Enzyme involved in the biosynthesis of quercetin Source organism
      Gene (mRNA) 
sequence length (bp)

Gene bank ID

1 phenylalanine ammonia-lyase Arabidopsis thaliana 2530   30687012

Arabidopsis lyrata 2436 297827210

Isatis tinctoria 2490   95020528

Parrya nudicaulis 2113 323709173

Brassica rapa 2476 282182892

Brassica oleracea 2145 269313497

Thellungiella halophila 2477 312281768

2 4-coumarate-CoA ligase Arabidopsis thaliana 1648 145336963

Arabidopsis lyrata 1631     9322511

3 Naringenin chalcone synthase Arabidopsis thaliana 1491 145357993

Arabidopsis lyrata 1490 297807414

Arabidopsis arenosa 1422 333448902

Arabidopsis halleri 2427   56797558

4 Chalcone isomerase Arabidopsis thaliana   930   42565949

5 Flavonone/Naringenine 3-dioxygenase Arabidopsis thaliana 1508 334185877

Arabidopsis lyrata 1494 297816383

6 Flavonoid 3'-monoxygenase Arabidopsis thaliana 1835   30682179

Arabidopsis lyrata 1796 297806828

Matthiola incana 1748   12231885

Brassica napus 3038   84380740

7 Flavonol synthase Arabidopsis thaliana 1323 334187529

Arabidopsis lyrata 1241 297806938

8 Quercetin 3-O-glucosyltransferase Arabidopsis thaliana 1672   42569054

Arabidopsis lyrata 1446 297832031

9 fl avonol-3-O-rhamnosyltransferase Arabidopsis thaliana 1829   42562413
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medicinal properties upholded by quercetin, the lack of 
experiments in testing quercetin's effi ciency on various 
diseases clinically has necessitated the need to clarify 
the nature of the impact and interactions between 
quercetin on different types of targets; and the other 
concept probably would be a mechanism to determine 
how effi cient and practical it would be to increase the 
production of quercetin using the available proteomic 
and genomic details, as the role of quercetin is limitless.
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