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With aging populations worldwide, there is growing interest in links between cognitive
decline and elevated mortality risk—and, by extension, analytic approaches to further
clarify these associations. Toward this end, some researchers have compared cognitive
trajectories of survivors vs. decedents while others have examined longitudinal changes
in cognition as predictive of mortality risk. A two-stage modeling framework is typically
used in this latter approach; however, several recent studies have used joint longitudinal-
survival modeling (i.e., estimating longitudinal change in cognition conditionally on
mortality risk, and vice versa). Methodological differences inherent to these approaches
may influence estimates of cognitive decline and cognition-mortality associations. These
effects may vary across cognitive domains insofar as changes in broad fluid and
crystallized abilities are differentially sensitive to aging and mortality risk. We compared
these analytic approaches as applied to data from a large-sample, repeated-measures
study of older adults (N = 5,954; ages 50–87 years at assessment; 4,453 deceased
at last census). Cognitive trajectories indicated worse performance in decedents and
when estimated jointly with mortality risk, but this was attenuated after adjustment
for health-related covariates. Better cognitive performance predicted lower mortality
risk, and, importantly, cognition-mortality associations were more pronounced when
estimated in joint models. Associations between mortality risk and crystallized abilities
only emerged under joint estimation. This may have important implications for cognitive
reserve, which posits that knowledge and skills considered well-preserved in later
life (i.e., crystallized abilities) may compensate for declines in abilities more prone to
neurodegeneration, such as recall memory and problem solving. Joint longitudinal-
survival models thus appear to be important (and currently underutilized) for research
in cognitive epidemiology.
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INTRODUCTION

The boundaries which divide Life from Death are at best shadowy
and vague. Who shall say where the one ends, and where the other
begins?

—Edgar Allen Poe, The Premature Burial
Cognitive abilities (e.g., verbal skill, abstract reasoning)

decline at different rates across the adult lifespan and with
differential sensitivity to biological and health-related influences
(Baltes et al., 2006). Cognitive declines are also closely associated
with elevated mortality risk, a relation that persists even after
accounting for sociodemographic and health-related variables
(Anstey et al., 2006; Aichele et al., 2016). Increased knowledge
of cognition-mortality associations can inform strategies to
support mental wellness in later adulthood, provide caregivers
with insight about the scope and timeframe of end-of-life
mental declines, and may be useful for diagnostic purposes:
E.g., processing speed declines as indicative of elevated vascular
risk (Batterham et al., 2012; Aichele et al., 2016). However, this
knowledge hinges on methodological criteria.

To date, favored approaches for studying cognition-mortality
associations have included comparing cognitive trajectories
of survivors vs. decedents, modeling cognitive change as a
function of time-to-death (i.e., terminal cognitive decline in
samples of decedents), and the use of two-stage procedures
for estimating survival times as a function of differences,
and longitudinal changes, in cognitive performance. More
recently, several studies have used joint longitudinal-survival
models (Rizopoulos et al., 2014) to estimate, concurrently,
intraindividual cognitive change conditionally on interindividual
differences in mortality risk, and vice versa. This latter
approach may provide increased statistical efficiency and
lessen statistical bias (i.e., because longitudinal performance
may inform death-related attrition, and mortality-related
processes may influence longitudinal performance). In
the current study, we compare outcomes from two-stage
and joint procedures for modeling longitudinal cognition-
survival associations. We first highlight considerations
for estimating cognitive trajectories in the presence of
death-related attrition. We then turn to cognitive ability as
predictive of mortality risk (cognitive epidemiology), the focal
application for the study.

Cognitive Trajectories, Accounting for
Differences in Mortality Risk
Adult lifespan psychology studies have typically sought
to describe cognitive changes that are well characterized
by chronological age (Hertzog and Nesselroade, 2003;
Sliwinski et al., 2006). Outcomes from these studies
have prompted researchers to distinguish between broad
“crystallized” and “fluid” abilities. Crystallized intelligence (Gc)
reflects accumulated knowledge (e.g., education, experience,
acculturation) and is generally thought to remain more-or-less
stable during adulthood. Fluid intelligence (Gf), which is linked
to basic information-processing efficiency, is more sensitive to
biological and health-related influences and therefore declines

more, and with greater variability, across the lifespan (Horn and
Cattell, 1966, 1967; McArdle et al., 2002; Baltes et al., 2006).

The above characterization of cognitive abilities as defined
across functional and temporal dimensions also informs research
on cognition-mortality associations. For example, White and
Cunningham (1988) proposed that Gc, which is relatively
unaffected by aging, is more markedly affected by end-of-life
processes (i.e., evincing sharper terminal decline and stronger
associations with death) than Gf, which diminishes steadily
with age and which presumably has "less room" to decline
in the final years of life. However, recent work suggests that
elevated mortality risk is more strongly associated with Gf
than Gc (Ghisletta et al., 2006; Aichele et al., 2015, 2016) and
that cognition-survival associations are quite robust across the
adult lifespan (e.g., Bosworth et al., 1999; Thorvaldsson et al.,
2006). However, if it is true that declines in crystallized abilities
primarily manifest in close proximity to death, such declines
may be especially prone to underestimation due to attrition (i.e.,
because individuals with sharp declines in Gc are more likely
to drop out of a study due to illness and death). This suggests
that understanding changes in different cognitive abilities during
adulthood depends to some extent on how cognitive performance
is modeled in relation to mortality risk.

Cognitive Performance of Survivors vs. Decedents
Most early studies of end-of-life changes in cognition assessed
ability on one occasion, with follow-up recording of deaths,
but no other events, at a single census point. Performance of
survivors was then compared to that of decedents. Outcomes
from these studies typically showed that decedents performed
worse than survivors (e.g., Bosworth et al., 1999; Small et al.,
2003). An important drawback of this methodology is that choice
of census date influences group sample composition (i.e., at later
census dates, there will be smaller percentages of survivors),
and the sole dichotomous nature of survival status defined in
this way ignores individual differences in length of survivorship
(participants who died shortly before the census date are labeled
similarly to those who died much earlier). This means that
estimated cognition-mortality effects may either be attenuated
or amplified contingent on choice of census date. Obtaining
additional mortality-related information (e.g., changes in health
status or illness-related dropout) has been shown to partially
remedy these shortcomings (Rabbitt et al., 2005). However,
an inherent limitation to this methodology is that it cannot
accommodate information about individual differences in age at
death or censoring due to survivorship.

Estimation of Cognitive Change in the Presence of
Attrition
Longitudinal multilevel models (MLM) and structural equation
models (SEM) are currently preferred by many researchers for
estimating cognitive change. In studies of older adults, these
models are usually applied to data with missing observations
due to attrition (i.e., death or dropout). Not accounting for
this missingness can contribute to underestimation of cognitive
declines because higher functioning individuals remain in the
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study longer, giving an appearance of less decline and/or
improved average functioning over time (a selection effect).

If attrition-related missingness is not directly contingent on
differences in cognitive functioning (i.e., the outcome variable
is not itself a source of attrition), then the data are considered
missing at random (MAR), and, under maximum likelihood
(ML) estimation, inclusion of covariates informative of death
or dropout (e.g., smoking, general health status) can provide
unbiased estimates of cognitive change. However, to the extent
that missingness is directly contingent on differences in cognitive
ability, then the data are considered to be missing not at random
(MNAR), and unbiased estimates of longitudinal cognitive
change can be obtained only if modeled conditionally on
the corresponding basis for non-random attrition, e.g., death
(Baraldi and Enders, 2012; Rouanet et al., 2017).

A related and highly debated issue in the application of
longitudinal mixed models for estimating changes in health (and
by extension cognitive ability) when attrition may be due to death
is that such models assume an “immortal cohort” (Dufouil et al.,
2004; Kurland et al., 2009; Wen and Seaman, 2018). That is,
mixed models estimated under ML impute missing information
following death (i.e., for decedents). Thus, it has been argued
that the estimated average changes cannot be used for making
valid inferences about the broader population (wherein all
individuals remain alive) but rather only within the “immortal
cohort” population assumed by the model. Attempts to remedy
this problem initially took the form of weighting strategies
and sensitivity analyses (Dufouil et al., 2004), but more recent
innovation may now allow for estimating a conditional profile
valid for “mortal” population inference, without separation of
decedents’ data, by jointly modeling the longitudinal outcome
and semi-competing event times of dropout and death (Li and
Su, 2018). In either case, person-specific effects partialed from
the group average trajectory (i.e., random or intraindividual
effects in multilevel models) may still be validly interpreted at
the population level and thus useful for inferential and predictive
purposes (Rouanet et al., 2017).

Joint Longitudinal and Time-to-Event Models
Joint longitudinal-survival models typically combine a MLM
with a proportional hazards survival model, which are estimated
concurrently within a single statistical framework (Henderson
et al., 2000; Tsiatis and Davidian, 2004; Rizopoulos et al., 2014;
Li and Su, 2018). This means that missingness in longitudinal
scores is accounted for by differences in mortality-risk (i.e.,
survival status and survival time), and missing time of death
information for survivors is accounted for by differences in
longitudinal performance. In other words, joint models are
a useful approach when longitudinal information is MNAR
conditional on the event of interest (e.g., death).1 Joint
longitudinal-survival modeling has seen increasing use in
biomedical research (e.g., Abdi et al., 2013; Thabut et al., 2013;
Núñez et al., 2014; Li and Su, 2018), but it has very rarely
been applied in research on adult developmental cognitive

1See Rizopoulos (2012, p. 89–92) for additional technical information on how joint
models accommodate repeated observations "missing not at random," or MNAR.

change (e.g., Ghisletta et al., 2006; Muniz-Terrera et al., 2011,
2018). Although the focus of these latter studies was to
predict mortality risk contingent on differences and changes in
cognitive abilities, it is informative to compare how longitudinal
estimates of cognitive performance may differ when estimated
in standalone MLM vs. when estimated in joint models using
“real world” data, even if the group-level longitudinal parameter
estimates (fixed effects) from these models arguably pertain to
immortal cohorts.

Toward this end, we could identify only three prior
studies that reported estimates of cognitive changes from both
standalone longitudinal and joint longitudinal-survival modeling
procedures. The first of these studies looked at Alzheimer’s
disease (AD) onset as the target event in a sample of 398 Swedish
older adults. Intercepts and slopes of memory performance
differed very little across frameworks, with slightly larger
standard errors when estimated with the joint models (McArdle
et al., 2005). In the remaining studies (both looking at death
as the target event, and both using data from the Swedish
Twin Registry; N = 618 and N = 551, respectively), estimates
for intercepts of cognitive performance differed little, and slope
parameters were non-significant, across frameworks. There was
a very slight reduction in the standard error of the intercept in
joint analysis from the earlier of these studies (Muniz-Terrera
et al., 2011, 2018). Taken together, these results indicate at most
slight differences in magnitude and accuracy of longitudinal
parameter estimates in standalone vs. joint models. However,
with so few comparative studies from which to draw conclusions
(i.e., three studies, all based on samples of Swedish participants),
it remains worth asking (a) whether different results might be
found in similar comparative studies of different populations
and (b) whether the inclusion of health-related covariates may
have mitigated differences across frameworks (i.e., as might be
expected under MAR).

Longitudinal Cognitive Performance as
Predictive of Survival
Studies in cognitive epidemiology have shown that cognitive
performance predicts differences in mortality risk in later
adulthood (e.g., Anstey et al., 2001; Whalley and Deary,
2001; Bosworth and Siegler, 2002). Various interpretations
have been given for cognition-mortality associations, and these
are not necessarily mutually exclusive. For example, higher
childhood IQ may influence later socioeconomic status and
access to health care (and hence reduced mortality risk).
Alternatively, associations between declines in cognitive function
and differences in mortality risk may be mediated by an
underlying health condition, such as cerebrovascular illness.
In modeling cognition-mortality associations, it makes sense
to place cognitive performance on the predictor side of the
equation and survival status on the outcome side—if for no other
reason than temporal precedence (death being final)—whether
cognitive performance is viewed as a diagnostic indicator or as
playing a causal role.

In previous work using data from the Manchester
Longitudinal Study of Cognition (Rabbitt et al., 2004), we
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showed that lower baseline cognitive performance (intercepts)
of Gc and Gf, and sharper decline (negative linear slope)
in Gf, predicted increased mortality risk (Aichele et al.,
2015). These results were based on a two-stage procedure
in which longitudinal cognitive parameters (intercepts,
slopes) were estimated prior to their inclusion as predictors
in survival analysis. However, if Gc exhibits decline only
in the terminal stage (White and Cunningham, 1988), a
significant association between decline in Gc and mortality
risk would more likely be found if longitudinal and survival
processes were jointly estimated (i.e., to account for the
effect of mortality-related dropout on estimated decline in
Gc). This line of reasoning also applies to Gf to the extent
that mortality-related declines in Gf do not overlap declines
characterized by aging alone.

Testing these assumptions requires comparing two-stage
vs. joint model estimates of cognition-mortality associations.
We could identify only two prior longitudinal cognitive
studies reporting results both from two-stage and joint
longitudinal/time-to-event models. In the first of these studies
(McArdle et al., 2005), joint modeling produced more accurate
estimates (smaller standard errors) for the effects of cognitive
ability on the target event (AD onset). Whereas slope-event
estimates were non-significant across frameworks, there
was sign flipping in the significant associations between
intercepts of cognitive performance and disease onset across
standalone (positive association) and joint (negative association)
frameworks. In other words, the standalone model showed
that better baseline memory predicted higher risk for AD
onset, whereas the joint model showed that better baseline
memory predicted lower risk for AD onset (a more theoretically
admissible outcome). This suggests a selection effect such
that AD-related dropout may have biased the estimate (and
interpretation) of the memory-AD association in the standalone
model (and hence a reason to prefer the joint framework).

The second study included eight cognitive measures (Ghisletta
et al., 2006). In the two-stage analyses, none of the cognitive
variables significantly predicted mortality risk. In the joint
analyses, better baseline ability, and less decline in ability,
predicted increased survival time across nearly all cognitive
tasks, even when conditioned on age, sex, and socio-economic
differences. Although these results highlight the joint modeling
approach as potentially critical for accurate estimation of
cognition-mortality associations, results from two-stage vs. joint
models in this study cannot be directly compared because the
former were based on models in which cognitive variables
were analyzed simultaneously as predictors, whereas in the
latter, the predictive effects of the cognitive variables were
estimated independently.

Taken together, outcomes from these two studies indicate
that estimated associations between cognitive trajectories and
event incidence (whether AD onset or death) may be affected
with respect to their accuracy (standard errors) and their
magnitude and direction of effect. However, with scant extant
research in this area, similar comparative studies are needed
before firmer conclusions and recommendations for modeling
strategies can be made.

Potential Implications for Public Health
Prevalence rates for cognitive impairment in later life are
15–20%, with more severe forms (i.e., dementias) affecting an
estimated 5–7%, of adults age 60 years and over. Cost of care
currently approaches $1 trillion (USD) globally (World Health
Organization, 2017). Thus, it is critically important to identify
cost-effective, non-pharmacological strategies for addressing
mental declines in later life. At present, it is thought that
well-preserved knowledge and skills (i.e., crystallized abilities)
can to some extent compensate for other cognitive declines,
such as in memory and abstract reasoning, that are more
strongly influenced by mortality-related pathologies (Stern,
2009). A clearer understanding of the extent to which these
abilities are differentially sensitive to mortality risk may thus
allow for more accurately gauging the potential of crystallized
abilities to serve as compensatory factors.

The Present Study
In a large-sample repeated-measures study of middle-aged and
older adults, we compared two-stage vs. joint procedures for
estimating longitudinal cognition-mortality associations. We
estimated these models both with and without adjustment for
survival-related covariates (smoking and self-rated health).
We expected that differences across statistical frameworks in
estimated average cognitive change and in cognition-mortality
associations would be most evident in unadjusted models.
We expected to observe sharper declines in cognitive abilities,
stronger cognition-mortality associations, and improved
estimation accuracy (narrower credible intervals) in results from
joint analyses compared to results from two-stage analyses.

MATERIALS AND METHODS

Data for the analyses came from the Manchester Longitudinal
Study of Cognition (MLSC). The broader aims and methods
of the MLSC have previously been described at length (Rabbitt
et al., 2004). We therefore briefly summarize participants
and measures, whereas we describe statistical methods in
greater detail. The MLSC was approved by the Department of
Psychology Internal Ethics Committee, University of Manchester;
by the University of Manchester Ethics Committee; and by
the Greater Manchester National Institute for Health Trust
Ethics Committee.

Participants
Participants were recruited by magazine, radio, or television
advertisements. A first wave of participants entered the MLSC
in 1983, with subsequent cohorts recruited yearly until 1993.
Cognitive testing was carried out until 2003. Data were
selected from participants who completed one or more cognitive
assessments of both Gc and Gf tasks, who were assessed between
the ages of 50 and 87 years, who had complete information
for mortality status (i.e., dead vs. alive; and if dead, age at
death) as of August, 2012, and who were free from dementia at
time of assessment.
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In the original sample, some individuals were observed prior
to age 50 years and/or after age 87 years. Here, we set a
minimum cutoff of 20 observations (n = 20) per time point to
safeguard against leveraging effects from outliers, resulting in
the current age range. Individuals with severe visual or auditory
handicaps were excluded from the study. There were 4,197
women (70.5%) and 1,757 men (29.5%), giving a combined
N = 5,954. Median age at study entry was 65.0 years [interquartile
range (IQR) = 60.0–70.0 years]. In general, participants had
higher income and education levels (38% completed one or
more years of college) than U.K. averages, but there were
substantial numbers of participants with lower incomes and less
education than the U.K. population average (Rabbitt et al., 1993).
Of participants, 1470 (24.7%) were tobacco smokers. Self-rated
health (SRH) scores (scaled 1 = poor to 5 = excellent) showed
that participants generally considered themselves to be healthy at
study entry (Median = 4, IQR = 3–5).

Mortality information (dates and proximate causes for all
deaths between 1983, when the study began, and August
2012, the most recent update) was obtained from a search of
death certificates performed by Her Majesty’s General Registry
Office. Of participants selected for the current analyses, there
were 4,453(74.8%) deceased and 1,501 (25.2%) survivors as of
2012. For deceased, median age at study entry was 66.0 years
(IQR = 62.0–71.0 years). Median age at death was 84.0 years
(IQR = 77.0–89.0 years). Median time-to-death from study
entry was 17.0 years (IQR = 10.0–22.0 years), and median
time-to-death from last completed cognitive assessment was
10.0 years (IQR = 5.0–16.0 years).

Cognitive Measures
Cognitive data for the current analyses were obtained from
measures of crystallized intelligence (Gc) and fluid intelligence
(Gf). For each of these domains, three separate tasks were
administered shortly after induction into the study and
subsequently up to three times, on average at 4-year intervals
(IQR = 3.0–5.0-year intervals). Thus, each individual completed
up to 4 cognitive testing occasions over a period of approximately
12 years. Cognitive measures were selected on the basis that
they were appropriate for assessment of cognitive change in
samples of older adults according to lifespan developmental
theory (Baltes et al., 2006), are well-known and documented
in the empirical literature, have good psychometric properties,
and could be administered by pencil-and-paper for effective
assessment within a large sample.

Gc was measured by the Raven (1965) Mill Hill Vocabulary
A and B (synonyms and word definitions) subtests and by the
Wechsler Adult Intelligence Scale-Revised (WAIS-R) vocabulary
scale (Wechsler, 1986). Gf was assessed by the Heim (1970)
AH4-1 and AH4-2 tasks (logic, arithmetic, number series, verbal
and visuospatial objects comparisons) and the Cattell and Cattell
(1960) Culture Fair Intelligence Test (2A or 2B, at alternating
occasions). Raw scores for each measure were rescaled to be
centered at the first testing occasion, with mean = 50 and
SD = 10 (T metric). We used longitudinal structural factor
analyses with strict factorial invariance to aggregate data from
individual tasks as factor scores (i.e., Gc, Gf) across measurement

occasions, as described in Aichele et al. (2015). Factor scores were
re-centered during estimation with mean = 0 at the first occasion.
On average, participants completed 2 cognitive assessments
(M = 2.2). Median time in study (across cognitive testing) was
4.0 years (IQR = 0.0–8.0 years). Longitudinal summary statistics
based on measurement occasion (observations, age, and cognitive
performance) are shown in Table 1.

Statistical Analyses
Trajectories of Cognitive Change
In a first series of analyses, we estimated cognitive changes
using multilevel models (MLM; Laird and Ware, 1982). Three
MLM were specified, as described by the following latent
change parameters: (a) intercept-only model (intercepts as fixed
and random effects), (b) linear change model (intercept and
linear change component as both fixed and random effects),
and (c) quadratic change model (linear change model plus
quadratic change component as a fixed effect only because few
participants completed more than three assessments). Consistent
with previous comparative studies noted in the introduction, we
modeled cognitive change based on chronological age in years
(centered at age 65 years, which was the median age at testing;
for a similar approach, see Gerstorf et al., 2013).

We applied the MLM to data from all participants (i.e.,
inclusive of both survivors and decedents) and then to data
only from decedents (to examine the potential selection effect
of excluding survivors). Analyses were conducted separately
by biological sex (men, women) because we previously
demonstrated non-proportional mortality hazards for women
and men (Aichele et al., 2015), and we wanted the standalone
MLM to be consistent with the joint longitudinal-survival

TABLE 1 | Summary information by cognitive measurement occasion.

Cognitive measurement occasion

T1 T2 T3 T4

Women

n 4,197 2,675 1,554 792

Deaths (cumulative) 0 170 334 434

Age (median) 65.0 69.0 72.0 75.0

Gc (mean) −0.06 0.20 0.14 0.40

Gf (mean) −0.08 0.19 0.25 0.34

Men

n 1,757 1,109 603 295

Deaths (cumulative) 0 156 292 374

Age (median) 67.0 70.0 74.0 76.0

Gc (mean) 0.17 0.42 0.34 0.43

Gf (mean) 0.17 0.42 0.34 0.52

Age = chronological age in years at time of cognitive assessment. Age ranges at
each measurement occasion are not shown as these were capped between 50 and
87 years for the current analyses. Number of deaths were approximated based on
age at death (if known) relative to last observed age at assessment. If age at death
was = 4 years from last assessment age, then absence at follow-up was attributed
to death rather than dropout. Gc, crystallized intelligence, standardized factor
score; Gf, fluid intelligence, standardized factor score. Cognitive factor scores were
scaled based on the mean and standard deviation (based on combined scores of
women and men) at first measurement occasion. Standard deviations for cognitive
scores were near 1.0 across occasions and so are not reported.
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models. MLM models were first estimated using R statistical
software (version 3.3.2; R Core Team, 2016) with package nlme
(Pinheiro et al., 2016) with maximum likelihood estimation.
We compared model fit using standard chi-square tests of
changes in log-likelihood. Note that models selected based on
these comparisons were used simply for providing starting
values required by the joint modeling software, JMBayes,
described below (Rizopoulos, 2012, 2016). JMBayes uses Monte
Carlo (MCMC) estimation with Gibbs sampling. Therefore, for
comparative purposes, we re-analyzed the best-fitting MLM
both in standalone and joint longitudinal-survival analytical
frameworks using JMbayes MCMC estimation with non-
informative priors.

Equation (1) shows the specification for the quadratic change
model, under which intercept-only and linear change models
were nested:

Yti = B0 + B1 · Ageti + B2 · Age2
ti

+ (u0i + u1i · Ageti + eti) (1)

In this equation, Y ti is the cognitive factor score (Gc, Gf) at age
t for individual i; B0, B1, and B2 correspond to fixed effects of
intercept, linear change and quadratic change in chronological
age in years; u0i and u1i are random effects for intercept and linear
change, respectively, and eti corresponds to residual component
(random effects for quadratic change could not be estimated
under ML, and we did not include them in models estimated with
MCMC). To the best fitting models, we then added covariates (as
fixed effects) that were later included in the survival models (see
below). These were age at study entry (also centered at 65 years),
the interaction of age at study entry with linear change in age,
smoking (yes/no), and SRH at study entry.2

Yti = B0 + B1 · Ageti + B2 · Age2
ti + B3 · StartAgei

+ B4 · StartAgei · Ageti + B5 · Smokingi + B6 · SRHi

+ (u0i + u1i · Ageti + eti) (2)

Equation (2) thus adds to Equation (1): B3, the effect of age at
study inception (StartAgei); B4, the interaction between starting
age and age-related linear change; and B5 and B6, the effects of
being a smoker and of SRH, respectively.

Cognition-Survival Associations
We estimated cognition-survival associations by two approaches.
First, we used a two-stage method in which we estimated
individuals’ scores for intercepts and linear changes for each
cognitive ability from the best-fitting MLM models (i.e., MCMC-
estimated individual random effects), and we then used those
scores to predict mortality risk in a Cox proportional hazards
(PH) modeling framework (Cox, 1972). The Cox PH model
specifies a multiplicative association between covariates and the
target event (in this case death), formulated as follows:

hi(t) = h0(t)exp(γwi), (3)

2Retest effects were nearly always non-significant when starting age was included
as a covariate. Retest was also not a predictor in survival models. For these reasons,
we chose to exclude retest as a covariate.

where hi(t) is the cumulative hazard up to time t for individual
i, h0(t) is the baseline hazard function at time t, and wi is
a vector of baseline predictors with corresponding regression
coefficients γ (described below). Survival models in the two-
stage procedure were estimated with a MCMC approach using
R package spBayesSurv (Zhou et al., 2017) to ensure that both
2-stage and joint modeling were estimated with MCMC. MCMC
estimation was run with 20,000 iterations per model with a burn-
in phase of 3000 iterations. Covariates included in the survival
models are described in the following section.

Joint Longitudinal-Survival Models
We next conducted a series of joint longitudinal-survival
analyses. Compared to a two-stage approach, joint modeling
reduces bias in longitudinal parameters by concurrently
accounting for sources of informative dropout (e.g., missingness
related to mortality risk) during estimation. It does this by linking
the longitudinal and survival statistical frameworks through
shared parameterization (Henderson et al., 2000). The defining
feature of the joint model is that longitudinal and survival data
are modeled simultaneously with respect to a conditional joint
density, rather than separately with two independent marginal
densities (Rizopoulos et al., 2014). For fitting the joint models, we
used the R package JMbayes (Rizopoulos, 2012, 2016). JMbayes
fits joint models under a Bayesian approach using MCMC
estimation (with starting values obtained from standalone MLM
and CoxPH models). We again specified MCMC estimation to
run with 20,000 iterations per model and with a burn-in phase of
3000 iterations). We evaluated model convergence in reference
to common MCMC diagnostic plots (trace, auto-correlation, and
kernel density).

We fit joint models using the JMbayes “shared random
effects” association structure, which links the random effects
(individual deviations from the trajectory parameters specified
in the longitudinal sub-model) to the survival process. For this
study, random effects were limited to individual intercept and
linear change terms (specified in the longitudinal model of
Equation 1), giving the following equation for the initial JMbayes
survival sub-model:

hi(t) = h0(t)exp(γwi + α1u0i + α2u1i), (4)

which expands on Equation (2) by adding α1 and α2, the
predictive effects corresponding respectively to the random
intercept, u0i, and random linear change component, u1i, of
the individual cognitive trajectory. Thus, α1 and α2 are the
shared parameters for the joint longitudinal-survival models
(Rizopoulos, 2016). For interested readers, we provide as
Supplementary Materials working code (S1) and simulated
data (S2) to demonstrate how to implement JMbayes. A longer
tutorial is also available (Cekic et al., in press). Further discussion
regarding implementation of two-stage vs. joint approaches can
be found in Guo and Carlin (2004) and Rizopoulos (2012).

For both two-stage and joint longitudinal-survival analyses,
we first estimated mortality risk only as a function of the cognitive
predictors (intercepts and linear changes for Gc and Gf). These
were the shared parameters for the joint longitudinal-survival
models, and we wanted to look at their predictive influence in
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isolation. We then expanded the analyses by further including
covariates that from previous work (Aichele et al., 2015, 2016)
we knew to be comparatively strongly predictive of mortality
risk (age at study entry, smoking status, and SRH, thereby
expanding Equation 3). Note that we did not include covariates
related to socioeconomic status (i.e., education, occupational
class) as in prior work we found these variables to have a minor
influence on mortality risk in this sample. Survival analyses
were run independently by sex because we previously showed
non-proportional hazards across men and women. In total, there
were 16 survival analyses using data from all participants, with
permutations defined as: Statistical framework (2-stage/Joint) ∗
sex(F/M) ∗ cognitive domain (Gc/Gf) ∗ covariates (no/yes).

RESULTS

The MLM estimated with ML all converged. Diagnostic plots for
models re-estimated with MCMC indicated that 20,000 iterations
were largely sufficient for obtaining stable parameter estimates.

Trajectories of Cognitive Change
Initial model fit comparisons based on changes in log-likelihood
are reported as Supplementary Materials (S3). Fit statistics
for standalone MLM with quadratic changes (the best-fitting
models) estimated using MCMC are provided in Table 2.
Explained variation for multilevel models is given as pseudo-R2,
which was estimated as the proportional reduction in residual
variance relative to that from an unconditional means model
(i.e., fixed and random intercepts only), consistent with the

TABLE 2 | Fit statistics from multilevel models with quadratic change.

Sample N Obs Model Deviance BIC Pseudo-R2

Crystallized intelligence

Women, all 4,197 9,202 QC 48,063 48,127 0.12

3,801 8,658 QC.c 44,138 44,238 0.16

Women, decedents 2,978 6,090 QC 32,597 32658 0.13

2,681 5,694 QC.c 29,756 29,852 0.19

Men, all 1,757 3,758 QC 19,748 19,806 0.17

1,615 3,559 QC.c 18,289 18,379 0.23

Men, decedents 1,475 3,039 QC 16,248 16,304 0.18

1,352 2,875 QC.c 14,982 15,069 0.26

Fluid intelligence

Women, all 4,191 9,196 QC 49,367 49,430 0.57

3,799 8,656 QC.c 44,188 44,288 0.65

Women, decedents 2,973 6,085 QC 33,213 33,274 0.58

2,679 5,692 QC.c 29,757 29,852 0.66

Men, all 1,754 3,755 QC 20,684 20,742 0.61

1,613 3,557 QC.c 18,784 18,874 0.69

Men, decedents 1,473 3,037 QC 16,904 16,960 0.63

1,351 2,874 QC.c 15,402 15,490 0.71

QC, quadratic change model; QC.c, quadratic change with covariates for age at
study entry, starting age ∗ linear change interaction, smoking status, and self-
rated health; Obs, observations; BIC, Bayesian information criterion. Pseudo-R2

was estimated as proportional reduction in residual variance from an unconditional
means model (Snijders and Bosker, 1999).

method proposed by Snijders and Bosker (1999). Estimated
trajectories of cognitive change are shown in Figure 1 (Gc)
and Figure 2 (Gf). Estimates for fixed and random effects from
the standalone MLM and from the longitudinal components
of the joint analyses are provided in Tables 3–6. To facilitate
comparison of estimated trajectories across analytic frameworks,
we also report linear changes in cognition approximated as
changes in standardized scores per decade for models with
covariates (1Z/10y; Table 5, last column).

In general, explained variation was higher for Gf than for
Gc. Gf declined at a faster rate than Gc (the latter showed only
slight declines in models adjusted for covariates). Men had higher
levels of initial cognitive performance but subsequently showed
steeper declines than women. Adjustment for covariates (age at
study entry, smoking, and SRH) effectively removed downward
curvature (i.e., accelerated declines in later life) that were visibly
present in the unadjusted models. We previously reported similar
outcomes from analyses of these data (Aichele et al., 2015), so we
now turn our attention to the comparative analyses that are the
basis for the current study.

Joint Longitudinal-Survival Models vs. Standalone
MLM
To compare overall predictive accuracy across standalone
vs. joint models, we first examined differences in residual
(unexplained) variance (Tables 4, 6) rather than calculating
pseudo-R2 values because the latter are not applicable for the
joint models. Note that for the joint models, residual variance
here pertains only to the longitudinal sub-model (not the survival
sub-model). Specifically, we examined whether the point estimate
for residual variance from the joint analysis fell within the 95%
CI for residual variance from the corresponding MLM analysis.
For Gc, residual variances were slightly higher in joint analyses,
but they mostly fell within the 95% CI from standalone MLM. In
contrast, for Gf, residual variances were lower in joint models and
fell outside the 95% CI from standalone MLM. Thus, for Gf, joint
models appeared to confer slightly improved overall estimation
accuracy for the longitudinal parameters.

With respect to the average trajectories (Figures 1, 2),
in unadjusted models, cognitive changes estimated in joint
analyses showed comparatively more downward curvature
(significantly steeper quadratic declines) than those from
corresponding standalone models. These differences were more
pronounced at ends of the age range where observations were
sparse (and CI were correspondingly wider due to increased
uncertainty). The trajectories estimated in standalone MLM
vs. joint models only differed significantly at far ends of the
age range in models unadjusted for differences in starting age,
smoking, and SRH.

Comparing the fixed longitudinal parameter estimates in
models adjusted for covariates (Table 5), estimates for intercepts
and for the effects of smoking and SRH on Gc and
Gf scores differed dramatically across standalone vs. joint
frameworks. However, the average trajectories for Gc and
Gf differed litter across frameworks—and in fact less so
after adjustment for these covariates (Figures 1, 2). This
indicates that explained variance in Gc and Gf scores was
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FIGURE 1 | Estimated average changes in crystallized intelligence (Z-scaled) by chronological age. (A,C) Trajectories unadjusted for starting age and health-related
covariates. (B,D) Trajectories adjusted for differences in starting age, SRH, and tobacco smoking. MLM, standalone, multilevel model trajectories; Joint, joint
longitudinal-survival model trajectories; All, data from decedents and survivors; Dec, data only from decedents. Shaded regions indicate 95% credible intervals for
the group average trajectories.

partitioned differently across the two frameworks: I.e., estimated
effects of health-related predictors were offset by changes in
the estimated intercepts in standalone models; whereas in
joint models, conditioning on survival status negated any
effects of health covariates, and intercepts remained unaffected.
With respect to random effects, within-person variation in
intercepts of Gc and Gf was reduced, and within-person
variation in linear changes in Gc and Gf was amplified, in
joint vs. standalone models, whether unadjusted (Table 4) or
adjusted (Table 6).

Sample Selection: All Participants vs. Decedents
Pseudo-R2 values were 1%–3% higher for analyses restricted to
data from decedents vs. those using data from all participants
(Table 2). Trajectories for decedents indicated worse overall
cognitive performance (lower intercepts) compared to
trajectories estimated with data from all participants, but
the 95% credible intervals (CI) for the average trajectories
of each sample largely overlapped (i.e., differences were
non-significant), especially at far ends of the observed age
range—with the exception of the unadjusted Gc trajectories
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FIGURE 2 | Estimated average changes in fluid intelligence (Z-scaled) by chronological age. (A,C) Trajectories unadjusted for starting age and health-related
covariates. (B,D) Trajectories adjusted for differences in starting age, SRH, and tobacco smoking. MLM, standalone, multilevel model trajectories; Joint, joint
longitudinal-survival model trajectories; All, data from decedents and survivors; Dec, data only from decedents. Shaded regions indicate 95% credible intervals for
the group average trajectories.

for women (Figure 1A) and the unadjusted Gf trajectories for
women and men (Figures 2A, C). In other words, adjustment for
differences in starting age and health-related covariates reduced
differences in average cognitive declines across decedents vs.
all participants.

Cognition-Survival Associations
Mortality risk estimates are summarized in Table 7. Significant
proportional hazards for Gc predictors emerged only in joint
analyses. Better baseline Gc (higher intercepts) predicted reduced
mortality risk in unadjusted and adjusted joint models for
women but only in adjusted joint models for men. Estimated

proportional hazards for Gc intercepts were more negative
(stronger effect) and had narrower 95% CI (greater accuracy)
when estimated in joint vs. two-stage analyses. Linear changes
in Gc significantly negatively predicted mortality risk (i.e., less
Gc decline was associated with lower mortality risk) only in
unadjusted joint models. Raw estimates for the proportional
hazards of linear changes in Gc from the corresponding
two-stage models were stronger (more negative) but less accurate
(wider 95% CI which overlapped null values). For Gf, better
baseline ability (more positive intercepts) and less decline (less
negative linear changes) predicted reduced mortality risk in
both two-stage and joint analyses, with and without adjustment
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TABLE 3 | Fixed effects from quadratic change models (unadjusted).

Fixed effects

Analysis Data Intercept Linear change Quadratic change

Crystallized intelligence (women)

MLM All −0.19 [−0.45, 0.07] 0.02 [0.02, 0.03] 0.00 [0.00, 0.00]

MLM Dec −1.04 [−1.35, −0.71] 0.02 [0.01, 0.04] 0.00 [0.00, 0.00]

Joint All −0.18 [−0.46, 0.08] 0.06 [0.04, 0.08] −0.01 [−0.01, −0.01]

Crystallized intelligence (men)

MLM All 1.96 [1.57, 2.37] 0.04 [0.02, 0.06] 0.00 [0.00, 0.00]

MLM Dec 1.58 [1.13, 2.02] 0.04 [0.02, 0.06] 0.00 [−0.01, 0.00]

Joint All 1.82 [1.41, 2.26] 0.08 [0.04, 0.12] −0.01 [−0.01, −0.01]

Fluid intelligence (women)

MLM All 0.12 [−0.13, 0.38] 0.03 [0.02, 0.05] −0.01 [−0.01, −0.01]

MLM Dec −1.71 [−2.01, −1.42] 0.04 [0.02, 0.06] −0.01 [−0.01, −0.01]

Joint All 0.08 [−0.18, 0.34] 0.04 [0.03, 0.05] −0.02 [−0.02, −0.02]

Fluid intelligence (men)

MLM All 2.71 [2.28, 3.14] 0.04 [0.01, 0.07] −0.02 [−0.02, −0.01]

MLM Dec 1.56 [1.11, 2.01] 0.04 [0.01, 0.08] −0.02 [−0.02, −0.01]

Joint All 2.66 [2.24, 3.08] 0.05 [0.03, 0.07] −0.02 [−0.02, −0.02]

MLM, multilevel model with age as time metric; Joint, joint longitudinal-survival
model using age as time metric. For all models, time was scaled in years. All, using
data from all participants; Dec, using data from decedents. Brackets denote 95%
CI from MCMC estimation.

for health-related covariates. For Gf intercepts, magnitudes and
95% CI of the estimated proportional hazards differed little
across two-stage and joint analyses. In contrast, proportional
hazards for Gf linear changes were stronger (more negative) and
more accurate (narrower 95% CI) when estimated in joint vs.
two-stage analyses.

For further comparison, we calculated hazard ratios for
1SD differences in the cognitive predictors.3 For Gc, linear
changes more strongly predicted mortality risk in unadjusted
models, whereas Gc intercepts more strongly predicted mortality
risk in adjusted models. For Gf, linear changes more strongly
predicted mortality risk than did intercepts across analyses. With
respect to other covariates, age at study inception was negatively
associated with mortality risk—likely a selection effect wherein
being older at study inception indicates increased survivability
(Lindenberger et al., 2002). Smoking predicted higher mortality
risk, and better SRH predicted lower mortality risk. Scaled hazard
ratios for non-cognitive predictors differed little across two-stage
and joint analyses.

DISCUSSION

We compared two-stage vs. joint longitudinal-survival
estimation approaches using data from a large sample study of
middle-aged and older participants. Differences in estimated

3Percent reductions in mortality risk were calculated as (1 − HRZp) ∗ 100, where
HRZp is the hazard ratio corresponding to+ 1SD difference in predictor p (Zp). Zp
was calculated as the square root of the estimated random variance for the given
predictor. Thus, for women’s intercept for fluid intelligence (in the joint model,
with covariates): HRZp = 1−exp(−0.012 ∗

√
52.78) = 1−0.916, or 8.4% lower risk

per+ 1SD difference.

cognitive declines across standalone MLM vs. joint modeling
frameworks were only evident at far ends of the age spectrum,
and these differences were negligible after adjustment for
differences in smoking and self-rated health (SRH). In contrast,
cognition-mortality associations were conspicuously more
pronounced when estimated using joint models vs. using a
two-stage procedure. Importantly, longitudinal associations
between crystallized intelligence and mortality risk emerged only
when estimated jointly.

Cognitive Trajectories in Joint vs.
Standalone Analyses
Compared to estimates from standalone multilevel models,
cognitive trajectories estimated jointly with mortality risk showed
sharper declines at ends of the age spectrum where participant
data were fewer; however, these differences were negligible
after adjustment for age at study entry, smoking, and SRH
(Figures 1, 2), variables that in previous analyses we identified
as comparatively strongly related to mortality risk in this
participant sample. This outcome suggests that for research
primarily focused on modeling longitudinal changes in cognitive
performance, the use of standalone MLM with inclusion of
appropriate health- and survival-related covariates may suffice
for common use cases.

We could only identify two prior reports of cognitive declines
across both two-stage and joint longitudinal-survival statistical
frameworks. In these studies, memory and visuospatial reasoning
showed non-significant declines in both frameworks (Muniz-
Terrera et al., 2011, 2018). This differed from our results
wherein performance in Gc and Gf declined (approximately
−0.1 SD/decade and −0.6 SD/decade, respectively) in both
frameworks. These differences may be because the studies
estimated changes in different cognitive abilities or because of
different sample selection criteria, including differences in sample
size (and by extension, statistical power necessary to estimate
reliable change).

We also examined the selection effects of excluding survivors
(approximately 25% of participants) on cognitive trajectories
estimated in standalone MLM. We found that decedents
on average performed worse (lower baseline performance)
than participants generally, which is consistent with previous
studies (e.g., Bosworth et al., 1999; Small et al., 2003).
However, these differences were greatly reduced in models
adjusted for differences in starting age, smoking, and self-
rated health. This is consistent with prior findings that
adjustment for health-related covariates partially remedies the
effects of death-related dropout on estimated performance
(Rabbitt et al., 2005). Taken together, these results point to the
importance of including survival-related covariates in models of
adult developmental cognitive change estimated independently
of mortality risk.

Cognition-Survival Associations in Joint
vs. Two-Stage Methodologies
Gc was significantly associated with mortality risk only
in joint analyses, whereas associations between Gf and
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TABLE 4 | Random effects from quadratic change models (unadjusted).

Random effects

Analysis Data Intercept Linear change r (I,LC) Residual

Crystallized intelligence (women)

MLM All 80.50 [77.17, 84.41] 0.01 [0.00, 0.01] 0.62 [0.52, 0.73] 1.08 [1.04, 1.13]

MLM Dec 79.24 [75.26, 83.54] 0.01 [0.01, 0.01] 0.53 [0.43, 0.64] 1.05 [0.99, 1.11]

Joint All 74.27 [70.75, 77.99] 0.32 [0.30, 0.34] 0.07 [0.03, 0.11] 1.12 [1.07, 1.17]

Crystallized intelligence (men)

MLM All 75.91 [70.62, 81.07] 0.01 [0.01, 0.01] 0.62 [0.48, 0.77] 1.06 [0.99, 1.14]

MLM Dec 77.51 [71.86, 84.12] 0.01 [0.01, 0.01] 0.61 [0.47, 0.75] 1.06 [0.98, 1.15]

Joint All 69.50 [64.29, 74.80] 0.47 [0.44, 0.51] 0.08 [0.02, 0.14] 1.11 [1.01, 1.20]

Fluid intelligence (women)

MLM All 71.97 [68.80, 75.02] 0.05 [0.04, 0.05] −0.07 [−0.13, −0.01] 1.06 [1.01, 1.12]

MLM Dec 65.10 [61.51, 68.88] 0.05 [0.05, 0.06] −0.12 [−0.19, −0.05] 1.12 [1.05, 1.20]

Joint All 71.75 [68.56, 75.02] 0.09 [0.08, 0.09] −0.07 [−0.12, −0.03] 0.95 [0.90, 1.00]

Fluid intelligence (men)

MLM All 75.04 [70.18, 80.69] 0.06 [0.05, 0.07] −0.05 [−0.14, 0.04] 1.18 [1.08, 1.29]

MLM Dec 69.69 [64.09, 75.46] 0.07 [0.06, 0.08] −0.08 [−0.18, 0.02] 1.24 [1.13, 1.38]

Joint All 74.09 [69.07, 79.43] 0.12 [0.11, 0.14] −0.06 [−0.13, 0.01] 1.04 [0.96, 1.13]

MLM, multilevel model with age as time metric; Joint, joint longitudinal-survival model using age as time metric. For all models, time was scaled in years. All, using data
from all participants; Dec, using data from decedents; r(I,LC), correlation between intercept and linear change. Brackets denote 95% CI.

TABLE 5 | Fixed effects from quadratic change models (adjusted for starting age, self-rated health, and smoking).

Analysis Data Intercept Linear change Quadratic change Start age Start age × LC Smokea SRHa 1Z/10y

Crystallized intelligence (women)

MLM All −6.68 [−7.91, −5.38] 0.14 [0.12, 0.15] −0.01 [−0.01, −0.01] −0.27 [−0.31, −0.23] 0.02 [0.02, 0.02] −1.55 1.67 −0.104

MLM Dec −7.20 [−8.82, −5.49] 0.15 [0.12, 0.16] −0.01 [−0.02, −0.01] −0.26 [−0.32, −0.21] 0.02 [0.02, 0.03] −1.57 1.64 −0.066

Joint All −0.27 [−0.56, 0.03] 0.16 [0.05, 0.27] −0.01 [−0.01, −0.01] −0.28 [−0.32, −0.24] 0.02 [0.01, 0.02] 0.00 0.00 −0.108

Crystallized intelligence (men)

MLM All −3.64 [−5.54, −1.70] 0.17 [0.15, 0.19] −0.01 [−0.02, −0.01] −0.29 [−0.35, −0.23] 0.02 [0.02, 0.03] −0.27 1.40 −0.101

MLM Dec −3.19 [−5.54, −0.99] 0.19 [0.16, 0.22] −0.02 [−0.02, −0.02] −0.34 [−0.42, −0.27] 0.03 [0.02, 0.03] −0.45 1.24 −0.126

Joint All 1.93 [1.44, 2.42] 0.19 [0.00, 0.37] −0.01 [−0.02, −0.01] −0.30 [−0.36, −0.24] 0.02 [0.01, 0.02] 0.02 0.00 −0.104

Fluid intelligence (women)

MLM All −7.00 [−8.31, −5.74] 0.23 [0.21, 0.25] −0.03 [−0.03, −0.03] −0.77 [−0.81, −0.73] 0.04 [0.04, 0.04] −2.25 1.74 −0.525

MLM Dec −7.03 [−8.53, −5.65] 0.23 [0.21, 0.25] −0.03 [−0.03, −0.03] −0.78 [−0.83, −0.72] 0.04 [0.04, 0.05] −2.22 1.59 −0.508

Joint All −0.50 [−0.75, −0.26] 0.23 [0.16, 0.29] −0.03 [−0.03, −0.03] −0.76 [−0.80, −0.73] 0.04 [0.04, 0.04] −0.01 0.00 −0.554

Fluid intelligence (men)

MLM All −3.90 [−5.81, −2.07] 0.24 [0.21, 0.27] −0.03 [−0.03, −0.03] −0.79 [−0.86, −0.73] 0.04 [0.04, 0.05] −1.57 1.78 −0.539

MLM Dec −3.89 [−5.93, −1.84] 0.24 [0.21, 0.28] −0.03 [−0.04, −0.03] −0.81 [−0.88, −0.72] 0.05 [0.04, 0.06] −1.06 1.62 −0.537

Joint All 2.70 [2.26, 3.12] 0.23 [0.13, 0.33] −0.03 [−0.03, −0.03] −0.78 [−0.84, −0.72] 0.04 [0.04, 0.05] 0.02 0.00 −0.567

MLM, multilevel model with age as time metric; Joint, joint longitudinal-survival model using age as time metric. For all models, time was scaled in years. All, using data
from all participants; Dec, using data from decedents; Start Age, participant age at start of study, offset from 65; SRH, self-rated health; 1Z/10y, linear change per decade
in the respective standardized cognitive scores. Brackets indicate 95% CI.
aCI for Smoker and SRH are not shown due to space considerations; The italicized values indicate credible intervals overlapping 0.

mortality risk were robust across both analytical frameworks.
Scaled hazard ratios (i.e., risk reduction per + 1SD better
cognitive performance) were 10–29% more pronounced
when estimated using a joint vs. two-stage procedure. These
outcomes were in general the result both of increased
predictive strength and improved accuracy (narrower 95%
CI) in cognition-mortality associations modeled jointly
vs. using a two-stage procedure. These results align with

those from the only other study we know of to report
cognition-mortality associations for both two-stage and
joint procedures, which showed that cognition-mortality
associations were significant only in joint models (Ghisletta
et al., 2006). However, in this earlier study, cognitive abilities
were examined simultaneously in two-stage analyses but
independently in joint analyses. Here, cognitive abilities were
examined singularly across both methodologies. Thus, to our
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TABLE 6 | Random effects from quadratic change models (adjusted for starting age, self-rated health, and smoking).

Analysis Data Intercept Linear change r (I,LC) Residual

Crystallized intelligence (women)

MLM All 73.60 [70.40, 76.97] 0.01 [0.00, 0.01] 0.67 [0.59, 0.77] 1.03 [0.99, 1.08]

MLM Dec 73.94 [70.08, 77.99] 0.01 [0.01, 0.01] 0.56 [0.46, 0.67] 0.98 [0.93, 1.04]

Joint All 68.35 [65.31, 71.49] 0.32 [0.30, 0.34] 0.07 [0.03, 0.10] 1.10 [1.04, 1.15]

Crystallized intelligence (men)

MLM All 71.40 [66.44, 76.51] 0.01 [0.01, 0.01] 0.63 [0.49, 0.76] 0.98 [0.91, 1.05]

MLM Dec 72.52 [67.07, 78.60] 0.01 [0.01, 0.01] 0.62 [0.50, 0.76] 0.95 [0.87, 1.03]

Joint All 64.31 [59.67, 69.40] 0.44 [0.40, 0.48] 0.06 [0.01, 0.12] 1.05 [0.97, 1.14]

Fluid intelligence (women)

MLM All 53.55 [51.14, 56.16] 0.05 [0.04, 0.05] 0.04 [−0.01, 0.09] 0.86 [0.82, 0.91]

MLM Dec 52.13 [49.21, 55.36] 0.06 [0.05, 0.06] −0.03 [−0.10, 0.04] 0.90 [0.84, 0.97]

Joint All 52.78 [50.44, 55.33] 0.08 [0.07, 0.09] 0.04 [−0.01, 0.08] 0.80 [0.76, 0.84]

Fluid intelligence (men)

MLM All 59.70 [55.51, 64.34] 0.06 [0.05, 0.07] 0.07 [−0.01, 0.15] 0.93 [0.86, 1.02]

MLM Dec 59.05 [54.64, 63.95] 0.07 [0.06, 0.08] 0.04 [−0.05, 0.12] 0.97 [0.88, 1.08]

Joint All 58.26 [54.17, 62.58] 0.12 [0.11, 0.13] 0.05 [−0.02, 0.12] 0.85 [0.79, 0.92]

MLM, multilevel model with age as time metric; Joint, joint longitudinal-survival model using age as time metric. For all models, time was scaled in years. All, using data
from all participants; Dec, using data from decedents; r(I,LC), correlation between intercept and linear change. Brackets denote 95% CI.

knowledge, this is the first study allowing for direct comparison
of cognition-mortality associations across two-stage and joint
longitudinal-survival frameworks.

That Gc was only significantly predictive of mortality
risk in joint models4 may have important substantive
implications. White and Cunningham (1988) asserted that,
compared to Gf, Gc would be less affected by aging and
more markedly affected by end-of-life processes. To date
there has been little support for this hypothesis (Bäckman
and MacDonald, 2006), but the current results indicate
that the longitudinal association between Gc and mortality
risk may be underestimated when not modeled jointly (i.e.,
when mortality-related dropout remains unaccounted for).
This is probably due to the increased statistical efficiency
(Rizopoulos, 2012, 2016) of joint models, where missingness
in longitudinal scores is directly accounted for by observed
differences in mortality risk, and missingness in mortality
information (right censored time-of-death for survivors)
is accounted for by observed differences in longitudinal
performance. Additionally, the growing literature on cognitive
reserve (Stern, 2009) suggests that well developed crystallized
abilities (e.g., verbal intelligence, lifestyle skills, cultural and
relational learning) may buffer against the deleterious impacts
of neurodegenerative diseases. Just how well-preserved such
crystallized abilities are in later life, and by extension their
utility as compensatory factors for protecting against declines
in abilities more prone to neurodegenerative conditions, may
possibly be overestimated when not conditioned on differences

4We previously showed that intercept for Gc was negatively associated with
mortality risk in MLSC participants using a two-stage procedure (Aichele et al.,
2015). Mortality information for the current study was updated to a more recent
census and thus provided more information on decedents. This may explain why
the association between Gc intercept and mortality risk was not observed in the
current two-stage procedures.

in mortality risk. This point bears consideration for future
research in this domain.

Limitations
In joint models, longitudinal parameter estimates were adjusted
for death-related dropout. However, study attrition can
occur for other reasons: E.g., moving for a new job or
retirement, or due to mobility problems unrelated to more
serious health issues. We were not able to conduct a more
extensive analysis of dropout-related missingness as we
lacked information about participants’ reasons for leaving.
However, prior work has identified value in modeling other
sources of informative dropout for estimating cognitive
decline (e.g., Sliwinski et al., 2003). We encourage future
researchers to consider such variables in addition to mortality
risk. Further, we did not consider differences in cognitive
declines with respect to specific cause of death, notably
related to dementia, because these data were not available
at the 2012 MLSC mortality census, which we used here.
Dementia-related deaths reported at an earlier 2008 census
constituted approximately 3% of all deaths in this sample
(well beneath the U.K. population average in persons over
65 years of age).

On a technical level, at the time of analysis, JMBayes
required output from standalone multilevel models estimated
with maximum likelihood (ML) to obtain starting values
for MCMC estimation. This approach encouraged us to test
for the best model parameterizations (e.g., intercept-only vs.
intercept plus linear slope models) in a standalone MLM
framework. In hindsight, it would have been preferable to
re-test model parameterization within the joint longitudinal-
survival framework (a) given that we observed some relative
improvements in the accuracy of longitudinal parameters under
joint estimation, (b) because a simpler subset of longitudinal
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TABLE 7 | Cognition-survival associations (all participants).

Proportional hazards HR (scaled)

Model re.I re.LC Start age Smokera SRHa re.I re.LC Start age Smoker SRH

Crystallized intelligence in women (N = 4197, Deaths = 2978)

2stage −0.008 [−0.021, 0.004] −0.466 [−2.590, 1.749] 0.931 0.977

2st.cov 0.001 [−0.014, 0.015] −1.632 [−3.804, 0.521] −0.037 [−0.043, −0.031] 0.484 −0.243 1.005 0.914 0.769 1.622 0.824

Joint −0.009 [−0.014, −0.005] −0.234 [−0.410, −0.042] 0.924 0.877

Jnt.cov −0.013 [−0.017, −0.007] 0.049 [−0.172, 0.278] −0.044 [−0.051, −0.038] 0.499 −0.248 0.901 1.028 0.745 1.647 0.825

Crystallized intelligence men (N = 1757, Deaths = 1475)

2stage 0.004 [−0.014, 0.021] −1.932 [−4.342, 0.590] 1.036 0.890

2st.cov 0.010 [−0.008, 0.027] −2.292 [−4.389, 0.122] −0.037 [−0.046, −0.029] 0.197 −0.250 1.083 0.861 0.772 1.218 0.813

Joint 0.000 [−0.006, 0.008] −0.755 [−1.003, −0.460] 0.999 0.596

Jnt.cov −0.009 [−0.017, −0.001] 0.082 [−0.268, 0.390] −0.042 [−0.051, −0.032] 0.188 −0.265 0.930 1.056 0.763 1.207 0.806

Fluid intelligence women (N = 4191, Deaths = 2973)

2stage −0.007 [−0.011, −0.002] −0.980 [−1.262, −0.702] 0.946 0.886

2st.cov −0.013 [−0.018, −0.007] −0.909 [−1.184, −0.634] −0.038 [−0.044, −0.031] 0.473 −0.245 0.914 0.885 0.765 1.604 0.822

Joint −0.005 [−0.010, −0.001] −1.294 [−1.526, −1.058] 0.960 0.683

Jnt.cov −0.012 [−0.018, −0.007] −1.036 [−1.304, −0.790] −0.046 [−0.053, −0.040] 0.495 −0.265 0.916 0.745 0.735 1.641 0.814

Fluid intelligence men (N = 1754, Deaths = 1473)

2stage −0.009 [−0.016, −0.003] −0.854 [−1.202, −0.502] 0.924 0.885

2st.cov −0.015 [−0.022, −0.008] −0.756 [−1.104, −0.419] −0.038 [−0.047, −0.030] 0.181 −0.253 0.894 0.889 0.768 1.198 0.810

Joint −0.010 [−0.017, −0.002] −1.266 [−1.561, −0.974] 0.922 0.642

Jnt.cov −0.016 [−0.024, −0.009] −0.986 [−1.249, −0.684] −0.045 [−0.056, −0.036] 0.185 −0.278 0.883 0.714 0.745 1.203 0.797

2stage = two-stage survival analysis with only cognitive predictors. Joint = joint longitudinal-survival analysis with only cognitive predictors. 2st.cov and Jnt.cov are the
corresponding analyses with additional predictors (T1age, smoking status, and self-reported health). re.LC = random effect for linear change. Start Age = age in years
(offset from 65) at study induction. HR (scaled) is the hazard ratio for a + 1SD difference in the corresponding predictor. For smoker, HR is just the effect of smoking vs.
not smoking. Brackets denote 95% CI.
a95% CI for Smoker and SRH are not shown due to space considerations; None of these overlapped zero.

parameters may have been preferred after conditioning on
survival status, and (c) because model comparison under ML
differs from that under MCMC.

Although our primary substantive focus was in the area
of cognitive epidemiology (i.e., cognition as predictive of
mortality risk), we also compared effects on cognitive trajectories
when estimated in standalone MLM vs. when estimated
conditionally on mortality risk. It has been argued that
these group-average trajectories pertain to “immortal cohorts”
and should be interpreted accordingly. A more recently
developed joint modeling approach (Li and Su, 2018) now
appears to allow for closed-form estimation of longitudinal
changes valid for inferences to mortal (i.e., non-decedent)
populations. We look forward to using this approach in
future research.

CONCLUSION

Cognition-mortality associations were more prominent when
estimated with joint longitudinal-survival models vs. using
a two-stage estimation procedure. This may have particular
significance for detecting associations between crystallized
abilities (e.g., verbal skills) and mortality-related processes.
For applications wherein only the longitudinal component
(e.g., cognitive change) is of substantive interest, inclusion of
survival-related covariates in standalone multilevel models may

provide estimates of declines similar to those obtained from a
joint modeling approach.
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