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Abstract 

Background:  Capnography waveform contains essential information regarding physiological characteristics of the 
airway and thus indicative of the level of airway obstruction. Our aim was to develop a capnography-based, point-of-
care tool that can estimate the level of obstruction in patients with asthma and COPD.

Methods:  Two prospective observational studies conducted between September 2016 and May 2018 at Rabin 
Medical Center, Israel, included healthy, asthma and COPD patient groups. Each patient underwent spirometry test 
and continuous capnography, as part of, either methacholine challenge test for asthma diagnosis or bronchodilator 
reversibility test for asthma and COPD routine evaluation. Continuous capnography signal, divided into single breaths 
waveforms, were analyzed to identify waveform features, to create a predictive model for FEV1 using an artificial neu-
ral network. The gold standard for comparison was FEV1 measured with spirometry.

Measurements and main results:  Overall 160 patients analyzed. Model prediction included 32/88 waveform fea-
tures and three demographic features (age, gender and height). The model showed excellent correlation with FEV1 
(R = 0.84), R2 achieved was 0.7 with mean square error of 0.13.

Conclusion:  In this study we have developed a model to evaluate FEV1 in asthma and COPD patients. Using this 
model, as a point-of-care tool, we can evaluate the airway obstruction level without reliance on patient cooperation. 
Moreover, continuous FEV1 monitoring can identify disease fluctuations, response to treatment and guide therapy.

Trial registration:  clinical trials.gov, NCT02805114. Registered 17 June 2016, https://​clini​caltr​ials.​gov/​ct2/​show/​
NCT02​805114
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Introduction
Lung function measurement with a spirometer is con-
sidered the gold standard for assessment of asthma and 
chronic obstructive pulmonary disease (COPD) [1, 2]. 
Two important values measured by the spirometer, the 

value of Forced Expiratory Volume in 1  s (FEV1) and 
the ratio of FEV1 to forced vital capacity (FVC) are used 
to assess the severity of airway obstruction. The meas-
ured FEV1 and FVC are normalized by the predicted 
FEV1 and FVC values, which depends on the patient’s 
age, height, gender and ethnicity, and hence referred 
to as percent predicted FEV1 (%FEV1) and FVC [3, 4]. 
Spirometry can also be used to diagnose airway hyper-
responsiveness (AHR); the methacholine challenge test 
(MCT) evaluates AHR by measuring FEV1 before and 
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after the introduction of an increasing concentration of 
methacholine, an airway provoking agent, which in cases 
of AHR will cause a decrease in FEV1 of more than 20% 
[5]. However, spirometry requires cumbersome equip-
ment, patient cooperation and technician experience 
[4], therefore, methods to evaluate lung function that are 
not reliant on patient cooperation and have reduced test 
retest variability are constantly being sought.

Capnography is a waveform display of CO2 concentra-
tion in a gas mixture. It is often measured in intubated 
patients to confirm tracheal tube position and also to 
evaluate patient ventilation [6–8]. Capnography can also 
be measured in non-intubated patients using side-stream 
capnography; while the patient is breathing into a can-
nula, exhaled air is sampled and transferred through a 
long tube for processing. Graphic display of CO2 con-
centration over time depicts a distinct waveform, with 3 
phases (Fig. 1). Phase I (points A to B) reflects dead space 
ventilation in non-respiratory bronchi, which is normally 
devoid of carbon dioxide. Phase II (points B to C) reflects 
the arrival of gas from the respiratory bronchioles and 
alveoli. Gas diffusion of oxygen and CO2 occur in these 
parts of the respiratory system; hence CO2 concentration 
rises in the waveform. Phase III (points C to D) reflects 
the alveolar plateau, arrival of CO2-rich gas from the 
alveoli. Point D represents the end tidal CO2 (EtCO2), 
marks the end of expiration and the beginning of the 
inspiratory downstroke [9–11]. While capnography is 
currently used to monitor respiration rate and EtCO2, 

the CO2 waveform also contains essential information 
regarding physiological characteristics of the respira-
tory system. Several studies that investigated different 
utilization of the capnography waveform have shown a 
correlation between the waveform of the capnography 
curve and ventilation/perfusion mismatch, airway diam-
eter and level of airway obstruction [12–16] (Fig. 1). The 
aim of this study was to develop a capnography-based 
prediction model, to be used as a point-of-care tool that 
can evaluate the airway obstruction level in asthma and 
COPD patients.

Methods
Design
We conducted two observational prospective studies 
from September 2016 until May 2018 in Rabin Medical 
Center, Israel. The first cohort included healthy or asth-
matic patients undergoing MCT for AHR evaluation. The 
second cohort included asthma and COPD patients with 
various levels of obstruction severity attending a routine 
ambulatory clinic. Each patient underwent a broncho-
dilator reversibility testing that is routinely performed 
for ambulatory asthma and COPD patients at the clinic 
evaluation. Both studies included adult patients who 
signed an informed consent form. Exclusion criteria were 
pregnancy, oxygen requirement of more than 5 L/min, 
lobectomy within the last year or patients who could not 
perform spirometry or capnography testing. The study 

Fig. 1  A Phases of CO2 Waveform. Capnography waveform readings during a positive methacholine challenge test. B Normal waveform without 
airway obstruction. C Capnography waveform after FEV1 decrease
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was approved by the institutional review board (RMC-
16-0412) clinical trial registry—NCT02805114.

Study protocol
Methacholine challenge test
The first stage included baseline spirometry and capnog-
raphy measurements. After each stage of methacholine 
treatment [5] two minutes of capnography recordings 
were performed followed by spirometry. Patients that 
showed an obstructive response to the methacho-
line, defined as FEV1 values of 80% from baseline, were 
treated with a bronchodilator and the test was stopped.

Ambulatory clinic spirometry with bronchodilator 
reversibility
Included patients had a diagnosis of asthma or COPD, 
given by the treating pulmonologist and had a FEV1 of 
less than 80%. First, baseline spirometry and capnogra-
phy were recorded, followed by treatment with a single 
dose of a short acting bronchodilator. After bronchodila-
tor treatment, the patient was evaluated with capnogra-
phy, followed by spirometry at 2, 4, 9, 12 and 15 min.

Data collection and processing
Capnography data was collected with the Smart Cap-
noLine® nasal canola connected to Capnostream 20p 
device. The equipment was supplied by Medtronic LTD 
(Dublin, Ireland) specifically for this study. Spirom-
etry test were performed by a certified technician using 
a spirometry device at Rabin Medical Center. For data 

collection the capnography waveforms were continuously 
recorded. For data processing the continuous recording 
of multiple breaths were segmented into single breath 
signals. For each segment of breath signals, the FEV1 
at the end of the segment was considered as the gold 
standard reference value for obstruction level, under the 
assumption that the obstruction level did not significantly 
vary between capnography measurement time window 
and the following spirometry time window (Fig.  2). To 
improve classification accuracy, 7000 breaths signals 
were manually examined and the shape of the waveform 
was classified according to 8 features, as valid or non-
valid. The data acquired manually was then used to create 
an artificial neural network (described below) classifier to 
exclude non-valid breaths in the entire data set. Breath 
segments were also evaluated; since all breaths in a seg-
ment were considered to have the same obstruction level, 
the waveform features of breaths in a segment should 
also be stable. Therefore, segments with a high number of 
breaths with extreme values or slops were removed. All 
data processing and analysis was conducted using MAT-
LAB (R2016b, Mathworks ®). To evaluate the model per-
formance in patients treated with supplemental oxygen 
paired T test was used.

Prediction model
Artificial neural network
An artificial neural network (ANN) is a general math-
ematical computing method that models the operations 
of biological neural systems. ANN is used for medical 

Fig. 2  Data collection: For each segment of breath signals, the FEV1 at the end of the segment was considered as the gold standard reference 
value for obstruction level
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research in multiple disciplines, it is very useful for image 
recognition, decision making and model generation [17–
20]. The basic unit in the network is called a neuron (or 
node) and it consists of two parts: the net function, which 
determines how the inputs are combined inside the 
neuron, and a non-linear mathematical function, called 
activation function. The network, comprised of many 
neurons, is organized in an interconnection structure, 
consists of input layer that includes the features or vari-
ables assumed to be the predicting factors, one or more 
hidden layers that manipulate the values according to the 
nodes’ functions and the output layer that gives a value 
that predicts the actual value given by the gold stand-
ard [21, 22]. The network learning is an iterative process 
that comprises of forward and back propagation; each 
forward propagation computes an output which is then 
compared to the actual value, the difference between the 
predicted and actual values is called the error function. 
Each back-propagation updates the weight of the nodes 
in a way that minimize the error function. After several 
cycles the ANN readjusts to compute the best predictive 
value. If the network architecture is too complex, e.g., has 
too many hidden units, or too many input features, then 
it may fit the noise and outliers, leading to overfitting. 
Such models perform well on the training set but poorly 
on new input [23]. To avoid overfitting, model parame-
ters must be chosen correctly, with appropriate regulari-
zation technique.

Model generation
For each breath signal, 88 features representing different 
characteristics of the waveform were extracted, based on 
the assumption that they may be responsive to the level 
of obstruction. Features of a specific breath waveform 
were extracted from either single breath features or mul-
tiple breaths features, from up to 10 consecutive breaths.

In addition to waveform features, age, gender and 
height were also attributed to each breath signal, as 
features.

ANN was trained, using a backpropagation algorithm, 
with training set features, to fit each breath to its %FEV1 
value, representing the level of obstruction. Seventy per-
cent of the data was randomly selected as the training 
set, leaving the remaining 30% for validation. Multiple 

combinations of parameters were formed with differ-
ent values for each parameter. The network was trained 
according to each combination, using the back-propaga-
tion algorithm, to predict %FEV1. The process repeated 
itself several times, using Monte-Carlo cross validation 
process [24]. Each time different training and validation 
sets were randomly chosen. Each design, in each iteration 
was evaluated by the Mean square error (MSE) of the test 
set, between the model score and the %FEV1. MSE was 
averaged for each design over all iterations, and the best 
architecture was chosen as the one that achieved mini-
mal MSE.

Results
Overall, 160 patients were included in the analysis. In the 
MCT study, 60 patients were included, mean age was 47 
(range 20–74), 29 patients (48%) were male, 29 patients 
were diagnosed with AHR after the MCT. The broncho-
dilator reversibility study included 100 patients, mean age 
was 45 (range 20–86), 59 patients were male, 38 patients 
had asthma, 51 COPD and 11 patients had asthma and 
COPD overlap (Table  1). Disease severity was variable, 
the range of %FEV1 was 30–90 and 10–90 percent pre-
dicted for asthma and COPD, respectively (Fig. 3). Of the 
88 possible features for model prediction, 32 waveform 
features and three demographic features (age, gender and 
height) were included (Table  2). The model was gener-
ated with 1 hidden layer, 23 nodes and sigmoid activa-
tion function. Average scores from breaths during 5 min 
prior to spirometry were calculated (Fig.  4). The model 
showed excellent correlation with %FEV1 (R = 0.84), the 
R2 achieved was 0.7 with MSE of 0.13 (Fig. 5). Difference 
in the error distribution between asthma and COPD was 
evaluated and found non-significant (p = 0.08) (Fig.  6). 
The model was consistent across all levels of obstruc-
tion severity: with MSE of 0.06, 0.12, 0.11 and 0.15 for 
very severe (FEV1 < 30%), severe (FEV1 between 30 and 
50%), moderate (FEV1 between 50 and 80) and mild 
(FEV1 > 80%) obstruction, respectively.

Supplemental oxygen
Oxygen insertion through the cannula may lower the 
CO2 concentration and lead to a significant error in 
FEV1 prediction. An analysis was made to investigate 

Table 1  Demographic and clinical characteristics

MCT methacholine challenge test, BRS bronchodilator reversibility test; COPD: chronic obstructive pulmonary disease

Study N Age
(Mean [range])

Male gender (%) Diagnosis

Healthy Asthma COPD Astma + COPD

MCT 60 47 [20–74] 29 (48) 31 29

BRS 100 45 [20–86] 59 (59) 0 38 51 11
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the effect of O2 on the model results, in thirteen patients 
who had waveform recordings with and without oxy-
gen supplementation. Overall, oxygen supplementation 
did not cause a significant difference in predicted values 
(P = 0.058).

Discussion
In this study we have developed an automated method to 
evaluate the FEV1 of asthma and COPD patients, based 
on capnography waveforms. This method is based on 
quantitative characterization of waveform features and 
model generation with ANN. The model provides an 
output score that corresponds to the percent predicted 
FEV1 score measured with spirometry. Good correla-
tion between the model results and actual %FEV1 was 
achieved. The creation of this model was challenging due 
to significant variance between waveforms detected dur-
ing data collection; indeed, a large number of features 
was needed to detect such minimal changes, yet also be 
balanced with over fitting of the model. We found that 
the optimal number of features was 35, while higher 
numbers of features had resulted in over-fitting and less 
optimal model performance. Using this number of fea-
tures allowed to identify minor changes in the waveform 
and provide high resolution in prediction. In addition, 
using demographic features, such as age, gender and 
height, provided additional information and improved 
prediction and model performance.

Several previous studies have shown the correlation 
between CO2 waveform and obstructive disease. You 

et al. analyzed the correlation between waveform features 
to spirometry indices. However, they performed manual 
waveform analysis on a small sample of 30 asthmatic 
patients and 10 healthy subjects [12]. Three other stud-
ies that used computerized methods, analyzed smaller 
sample sizes to differentiate between healthy, obstructive 
lung disease and chronic heart failure patients [13–16]. 
This is the first study that offers a method to predict 
the actual FEV1 value with a sample size adequate for 
validation.

This model has several practical medical uses. First, 
capnography assessment can be performed without reli-
ance on patient cooperation. Second, the equipment 
required are a nasal canula and compatible monitoring, 
as opposed to spirometry, which requires more cumber-
some equipment and an experienced technician. Moreo-
ver, since results, do not rely on patient cooperation, they 
will be repeatable and cannot be manipulated. Third, this 
prediction model allows for continuous monitoring, and 
thus closely following hospitalized patients with severe 
exacerbation, possibly allowing both shortened hospi-
talization and early recognition of deteriorating patients. 
Finally, in regard to the current COVID-19 pandemic, 
this method does not require a technician and can be 
done at tidal volume in an isolated room, thus, COVID-
19 exposure is decreased substantially. Nevertheless, this 
model has several limitations that must be discussed: 
First, the model was not evaluated in pediatric patients, 
patients with severe disease who suffer from hypercapnic 
failure, hospitalized patients and mechanically ventilated 

Fig. 3  Spirometry results for included patients with asthma and COPD
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patients. For model validation in these populations, care-
ful assessment in future studies is needed. Second, the 
dataset included patients with known obstructive dis-
ease. Therefore, the effect of restrictive disease or a mixed 
obstructive-restrictive disease on the model is unknown. 
Consequently, its use is limited to patients with known 
obstructive disease, and it cannot be used for diagnosis 
or evaluation of patients with an unknown diagnosis. 
Third, we did not measure the diffusion capacity (DLCO) 
of participants and since the DLCO has an effect on the 
capnography waveform [25], it may also contribute to 

the model’s prediction ability. Future studies with this 
model should include DLCO to account for its impact. 
Finally, the influence of supplemental oxygen on model 
performance was not well studied. A paired analysis of 
13 patients that required supplemental oxygen, with 
and without oxygen supplementation, did not show a 
difference in model performance (P = 0.058). However, 
the confidence interval was close to statistical signifi-
cance and in a larger sample size a clear difference may 
be seen. Therefore, the model cannot be used in patients 
with supplemental oxygen until the influence of oxygen is 
evaluated in future research.

Table 2  Model features

Feature Description

1 Age

2 Gender

3 Height

4 ‘Curvature of signal from start to D’

5 ‘Hjorth mobility’

6 ‘Ratio of areas from middle of signal to end over start to middle’

7 ‘Time spent in EtCO2 (with error of 0.01)’

8 ‘First index to reach EtCO2 (with error of 0.1) normalized by D’

9 ’Slope for C to D’

10 ‘Exponential Fit—MSE’

11 ‘Angle of the downward slope’

12 ‘Distance of point C from (0,1)’

13 ‘Linear regression from C to D–a’

14 ‘Ratio between time signal rises and time signal descends’

15 ‘Distance from point C to the line connecting (0,0) to point D’

16 ‘Normalized signal at 0.5*D’

17 ‘First index to reach EtCO2 (with error of 0.1)’

18 ‘d2–d1’

19 ‘Amount of times the signal rises’

20 ‘RW score1’

21 ‘Linear regression from 1 to D–R2’

22 ‘Ratio between time until D/time from D to end (upstroke/downstroke)’

23 ‘Angle at C’

24 ‘Normalized signal at 0.45*D’

25 ‘Signal at the point where line from (0,1) to (1,0) crosses the signal’

26 ‘Ratio between signal rises/signal descends (from C to end)’

27 ‘Normalized signal at 0.35*D’

28 ‘Normalized signal at 0.4*D’

29 ‘Normalized signal at 0.55*D’

30 ‘Normalized signal at 0.3*D’

31 ‘Linear regression from C to D–b’

32 ‘Like previous normalized by D’

33 ‘Normalized signal at D/2’

34 ‘Normalized signal at C’

35 ‘Curvature of signal from start to Midpoint’
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Conclusion
In this study we have developed a model to evaluate 
FEV1 in asthma and COPD patients. Using this model, as 
a point-of-care tool, we can evaluate the airway obstruc-
tion level without reliance on patient cooperation. 

Moreover, continuous FEV1 monitoring can identify 
disease fluctuations, response to treatment and guide 
therapy.

Abbreviations
COPD: Chronic obstructive pulmonary disease; FEV1: Forced expiratory 
volume in 1 s; FVC: Forced vital capacity; %FEV1: Percent predicted FEV1; AHR: 

Fig. 4  Model prediction results in two individual patients. black—model results per breath, Red star—5 min average of model results—blue 
triangle dot—spirometry value at the end of the segment
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Fig. 5  Correlation between FEV1 and Capnography Waveform Model

Fig. 6  Error according to underlying disease
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Airway hyperresponsiveness; MCT: Methacholine challenge test; EtCO2: End 
tidal CO2; ANN: Artificial neural network; MSE: Mean square error.
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