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Abstract The efficiency of regional frequency analysis (RFA) is undermined by intersite dependence,
which is usually ignored in parameter estimation. We propose a spatial index flood model where marginal
generalized extreme value distributions are joined by an extreme-value copula characterized by a max-
stable process for the spatial dependence. The parameters are estimated with a pairwise likelihood con-
structed from bivariate marginal generalized extreme value distributions. The estimators of model parame-
ters and return levels can be more efficient than those from the traditional index flood model when the
max-stable process fits the intersite dependence well. Through simulation, we compared the pairwise likeli-
hood method with an L-moment method and an independence likelihood method under various spatial
dependence models and dependence levels. The pairwise likelihood method was found to be the most effi-
cient in mean squared error if the dependence model was correctly specified. When the dependence model
was misspecified within the max-stable models, the pairwise likelihood method was still competitive relative
to the other two methods. When the dependence model was not a max-stable model, the pairwise likeli-
hood method led to serious bias in estimating the shape parameter and return levels, especially when the
dependence was strong. In an illustration with annual maximum precipitation data from Switzerland, the
pairwise likelihood method yielded remarkable reduction in the standard errors of return level estimates in
comparison to the L-moment method.

1. Introduction

Natural extremes, such as extreme rainfall or extreme temperature, have profound impact on both the
environment and the society. Regional frequency analysis (RFA) is widely used in characterizing the fre-
quency of the extreme events. It is a technique that based on the regionalization concept that trades
space for time to obtain adequate estimation of model parameters based on data from a low-density
network with short record length [see e.g., Ouarda, 2013, for a recent review]. It uses data from a num-
ber of sites that are identified to be in a homogeneous region in certain sense (see section 2 for specific
definition) to estimate the quantiles of the variables of interest at each site in the region. That is, short
records from different sites within a homogeneous region are pooled to improve the estimation effi-
ciency. Widely used in water resources research, the RFA approach has various models and has been
extended to accommodate temporal nonstationarity [e.g., Ouarda et al., 2006; Cunderlik and Ouarda,
2006; Leclerc and Ouarda, 2007] and multivariate analysis [e.g., Ouarda et al., 2000; Javelle et al., 2002;
Chebana and Ouarda, 2009]. Nevertheless, our focus is the stationary index flood model with marginal
generalized extreme value (GEV) distributions. We improve the efficiency of this type of RFA by incorpo-
rating spatial dependence and compare its performance with competing methods to better understand
its advantages and limitations.

In an index flood model, the marginal distributions are identical apart from a site-specific scaling factor.
Two popular methods are available for parameter estimation, neither of which needs to specify the
intersite dependence. The L-moment method [e.g., Hosking and Wallis, 1997] estimates the parameters
by solving the equations that match the sample L-moments with the population moments. It first esti-
mates the site-specific scaling factor with at-site data, and then uses it to scale the data at each site.
The scaleless data are then pooled to estimate the parameters of the shared scaleless distribution by
matching the L-moments. Properties of the L-moments were studied by Hosking [1990]. L-moments are
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more robust to sampling variability than conventional moments, and their existence only requires exis-
tence of the mean. The second method is the independence likelihood method that adds up the mar-
ginal loglikelihood from all sites, ignoring the intersite dependence, and then maximizes it (R. L. Smith,
Regional estimation from spatially dependent data, University of Chapel Hill, unpublished data, 1990b).
The independence likelihood method in RFA gives the most efficient estimator for larger samples, and it
can incorporate covariates into model parameters [e.g., Buishand, 1991; Northrop, 2004], which is neces-
sary in many cases where temporal or spatial nonstationarity is present. Both the L-moment method
and the independence likelihood method are robust to intersite dependence at the cost of low effi-
ciency when the dependence is strong.

The impact of intersite dependence on many aspects of RFA is a fundamental issue that has been actively
investigated. Intersite correlation does not introduce bias but increases the variance in predicting regional
mean or moments [e.g., Matalas and Langbein, 1962; Stedinger, 1983]. For index flood models, Hosking and
Wallis [1988] reported similar findings in predicting flood quantiles. Intersite dependence was found in gen-
eral to increase the variance of the estimator in other contexts such as estimation of regional exceeding
probability of a flood level [Troutman and Karlinger, 2003] or a regional envelope curve [Castellarin et al.,
2005]. Intersite correlation is part of the model in probabilistic regional envelope curves [Castellarin, 2007;
Viglione et al., 2012]. It has been used in regression analysis with generalized least squares to estimate the
parameters of a model of the target quantity as a function of basin characteristics [Griffis and Stedinger,
2007]. For testing regional homogeneity with the heterogeneity measures of Hosking and Wallis [1993],
intersite dependence reduces the power of the tests [Castellarin et al., 2008]. Most of the existing simulation
studies generated data from meta-Gaussian models, which essentially use the normal copula for the
dependence structure [e.g., Hosking and Wallis, 1988]. For extreme observations, however, the Pearson cor-
relation coefficient may not be a good dependence measure [Embrechts et al., 2002] and the normal copula
may not be a good dependence model [Genest and Favre, 2007; Gudendorf and Segers, 2010]. Smith (unpub-
lished data, 1990b) reported a study where the intersite dependence was modeled with an extreme-value
copula, but it was an exchangeable Gumbel copula which does not allow the dependence to weaken as the
distance between two sites increases.

Spatial extreme modeling has made progress recently in the statistics literature; see Davison et al. [2012] for
a recent review. Max-stable processes extend the multivariate extreme value distribution to the infinite
dimensional setting [de Haan, 1984], with marginal distribution of any dimension being multivariate
extreme-value. These models provide a natural modeling framework for spatial extremes. A pairwise likeli-
hood approach has been used in parameter estimation due to the unavailability of the joint multivariate
density function [e.g., Padoan et al., 2010; Davison and Gholamrezaee, 2012]. The pairwise likelihood
approach has a robust feature that its validity in inference only needs the correct specification of the bivari-
ate joint density of all the pairs, instead of the full joint density. A spatial index model retains the marginal
GEV distributions and uses a max-stable process model for the dependence structure. The pairwise likeli-
hood approach with pairwise bivariate generalized extreme value distributions can potentially increase the
efficiency for marginal GEV parameter and return level estimation. Similar efficiency improvement with
max-stable process model has recently been reported in detection of nonstationarity in precipitation
extremes [Westra and Sisson, 2011].

The rest of the article is organized as follows. The index flood model with GEV distributions is reviewed in
Section 2, along with two existing estimation methods: L-moment and independence likelihood. Spatial
extreme models, their application in RFA with index flood model, and parameter estimation with a pairwise
likelihood method are introduced in Section 3. A large scale simulation study that compares the perform-
ance of proposed method with the L-moment method and the independence likelihood method is
reported in Section 4. All three methods are illustrated in an example of Swiss annual maximum daily pre-
cipitation in Section 5. A discussion concludes in Section 6.

2. Index Flood Model With GEV Distribution

2.1. Model
The index flood model is a widely used RFA model with the homogeneity assumption being that all the
sites have an identical distribution up to a site-specific scaling factor known as the index variable. It
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originated from applications to flood data in hydrology, but the method can be used with any kind of data
[Hosking and Wallis, 1997, p. 6]. Examples of application to precipitation are Kysely and Picek [2007] and
Ngongondo et al. [2011]. Let Qsð�Þ be the quantile function of the distribution at site s; i.e.,
QsðuÞ5inf fy 2 R : u � FsðyÞg, where Fs is the distribution function at site s. The index flood procedure
assumes that for all site s in a homogeneous region, QsðuÞ5csqðuÞ, where cs is a site specific index variable,
and qð�Þ is called the regional growth curve, the scale-free quantile function shared by all sites. Within the
region, the T-year return level at any site s which is the upper 1=T-quantile, is proportional to the return
level of the scale-free distribution: Qsð121=TÞ5csqð121=TÞ.

The GEV distribution is often used to model the regional growth curve. It can be obtained as the limit distri-
bution of properly normalized maximum of a sequence of independent and identically distributed random
variables. The cumulative distribution function of a GEV distribution is

Fðy; l; r; nÞ5
exp f2 11n y2lð Þ=r½ �21=ng; 11n y2lð Þ=r > 0; n 6¼ 0;

exp f2exp 2 y2lð Þ=r½ �g; n50;

(
(1)

where l, r and n are the location, scale and shape parameters, respectively. Let GEV ðl; r; nÞ denote this
distribution. The shape parameter n controls the tail behavior of the distribution. The distribution is known
as the Gumbel distribution when n 5 0. The case with n > 0 has heavy tail is of most interest since real data
of extreme events often exhibits heavy tail. The quantile function of GEV ðl;r; nÞ is the inverse function of F
in (1):

Qðu; l; r; nÞ5
l1ðr=nÞfð2ln uÞ2n

21g; n 6¼ 0;

l1rf2ln ð2ln uÞ21g; n50:

(
(2)

The T-year return level is then Qð121=TÞ.

When the GEV distribution is used in a index flood model, the location parameter can be used as the
index variable. In particular, let cs5ls and let Z be a GEV ð1; c; nÞ variable. It is straightforward to show
that the distribution of Ys5csZ is GEV ðls;lsc; nÞ. Therefore, the homogeneity for this index flood model
means that the ratio of the scale parameter to the location parameter of the GEV parameters is a con-
stant (c), and that the shape parameters at all sites are the same [e.g., Buishand, 1991; Hanel et al.,
2009]. Note that the index flood model only specifies the marginal GEV distributions; no spatial depend-
ence is specified.

2.2. Existing Estimation Methods
Suppose that we observe annual maxima of a variable of interest at m sites over n years. Let Ys;t; s51; . . . ;m
and t51; . . . ; n, be the record in year t from site s. The data from year to year are assumed to be independ-
ent, but within the same year, spatial dependence exists across the sites. For ease of presentation, the nota-
tions are for balanced data where all sites have the same length of records, but the methods can be easily
adapted to use varying length of records. Let ls, rs5lsc, and ns be the location, scale, and shape parame-
ters, respectively, of the GEV distribution at site s. The parameters to be estimated are b5ðl1; . . . ; lm; c; nÞ.
Two existing estimation methods are the L-moment method [Hosking and Wallis, 1988] and the independ-
ence likelihood method [Hanel et al., 2009; Smith, unpublished data, 1990b], neither of which requires the
specification of the spatial dependence. As both methods target small samples, asymptotic variance estima-
tor of the parameter estimator is not expected to work well, which is observed in our simulation studies in
Section 4. A parametric bootstrap procedure with preserved spatial dependence is used to assess the uncer-
tainty of the estimator.

2.2.1. L-Moment
The L-moment method proceeds as follows. First, for each site s, estimate the GEV parameters ðls;rs; nsÞ
using data from this site with the L-moment method, and let l̂s be the estimate of ls. Then use l̂s to scale
the data at each site s by letting Xs;t5Ys;t=l̂s. Apply the L-moment method to the pooled, scaled data
Xs;t; s51; . . . ;m; t51; . . . ; n, to fit a GEV distribution with location 1, scale c and shape n. The only extra diffi-
culty in the last step is that the location parameter of the GEV distribution is restricted to be 1. With two
unknown parameters ðc; nÞ, the estimating equations match the first two sample L-moments (l1, l2) with
their population counterparts:
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l1512cf12Cð12nÞg=n;

l252cð122nÞCð12nÞ=n;

where n < 1. The solutions to the equations are the L-moment estimates ðĉ; n̂Þ. The implicit restriction
n < 1 is required for the existence of the L-moments (finite mean), which makes the L-moment method
more efficient than the likelihood method for small samples when n < 1 is true [e.g., Coles and Dixon, 1999].
When the homogeneity assumption is not valid, bias may be introduced, but RFA may still be more accurate
than single site analysis [Lettenmaier et al., 1987; Hosking and Wallis, 1997].

2.2.2. Independence Likelihood
Denote fs;tð�; bÞ as the probability density function of the GEV distribution at site s in year t. The independ-
ence likelihood method estimates b by maximizing the log-likelihood function pretending that the sites are
independent. That is, b̂ is the maximizer of

LI;nðbÞ5
Xn

t51

Xm

s51

log fs;tðYs;t; bÞ: (3)

Similar to the L-moment method, this method only assumes correct specification of the marginal GEV distri-
bution at each site. No spatial dependence is taken into account in the point estimation. For large samples,
the variance of the estimator has a sandwich form under certain regularity conditions and can be consis-
tently estimated by a sandwich estimator (Smith, unpublished data, 1990b). The sandwich variance adjusts
for the unspecified spatial dependence. For small samples, however, a bootstrap procedure that preserves
the spatial dependence can be used [Heffernan and Tawn, 2004]. Modification of the likelihood method to
improve its small sample performance has been obtained by adding a penalty on the shape parameter
[Coles and Dixon, 1999] or, equivalently, imposing a prior distribution on it [Martins and Stedinger, 2000]. We
do not consider them here because they introduce the complexity of penalty form selection or prior
specification.

3. Spatial Index Flood Model

Spatial extreme models have gained much focus in the statistics literature. Can one exploit spatial extreme
modeling in RFA to improve efficiency? If so, the spatial dependence can be used in a positive way for bet-
ter efficiency instead of as nuisance that reduces the efficiency.

3.1. Max-Stable Process
By Sklar’s Theorem, the distribution function H of a p-dimensional continuous random vector ðX1; . . . ; XpÞ
with marginal distribution F1; . . . ; Fp, respectively, can be uniquely represented as

Hðx1; . . . ; xpÞ5CfF1ðx1Þ; . . . ; FpðxpÞg; ðx; . . . ; xpÞ 2 Rp:

where C : ½0; 1�p ! ½0; 1�, called a copula, is a p-dimensional distribution function with standard uniform
marginals [Sklar, 1959]. When H is a multivariate extreme value distribution, the corresponding copula C
must be an extreme-value copula, which satisfies a max-stable property [Gudendorf and Segers, 2010]. If all
the margins are transformed to unit Fr�echet distribution with distribution function GðxÞ5e21=x , the max-
stable property means

Pr ðZ1 � kz1; . . . ; Zp � kzpÞk5Pr ðZ1 � z1; . . . ; Zp � zpÞ; zi > 0; i51; . . . ; p; k > 0:

Max-stability is a defining property for max-stable processes whose marginal copula in any dimension is an
extreme-value copula.

In a recent review, Davison et al. [2012] gave a spectral characterization of max-stable processes that
unifies the characterizations in de Haan [1984] and Schlather [2002]. Consider a spatial domain X � R2.
Let fWðxÞ : x 2 Xg be a nonnegative stationary stochastic process on X with EfWðxÞg51 and W1;W2; . . .

be independent copies of W. Let f1; f2; . . . be the points of a Poisson process on R1 with intensity s22ds.
Then,
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ZðxÞ5 max
j

fjWjðxÞ; (4)

is a stationary max-stable process on X with unit Fr�echet marginal distributions. Different forms of W(x)
lead to different parametric max-stable models.

It is often desirable to measure the extremal dependence of m sites. The extremal coefficient is such a mea-
sure. Consider a max-stable process Z defined in (4) at sites fx1; . . . ; xm 2 Xg. The extremal coefficient of
the m sites is

Pr ½Zðx1Þ � z; . . . ; ZðxmÞ � z�5exp 2
hm

z

� �
: (5)

It can be interpreted as the effective sample size of the m variables. The upper bound of hm is m, meaning
complete independence, while the lower bound is 1, meaning complete dependence. Specifically, for two
sites x1 and x2, a bivariate extremal coefficient function hðhÞ can be defined as

Pr ½Zðx1Þ � z; Zðx2Þ � z�5exp 2
hðhÞ

z

� �
; (6)

where h5x12x2 [Schlather and Tawn, 2003]. In a spatial context, the bivariate extremal coefficient of two
sites is often modeled to increase from 1 to 2 as the distance jjhjj between the two sites increases from
zero to infinity. When hðhÞ5hðjjhjjÞ— the dependence measure depends only on distance instead of direc-
tion — the model is isotropic.

3.2. Parametric Max-Stable Models
We consider three isotropic models that are used in the simulation study. The first model is obtained by tak-
ing X5R2 and WjðxÞ5gðx2XjÞ, where g is a bivariate density function and X1; X2; . . . are the points of a
homogeneous Poisson process with unit rate on X . The special case where g is the normal density with
mean zero and covariance matrix R is known as the Smith model (R. L. Smith, Max-stable processes and spa-
tial extremes, University of Surrey, unpublished data, 1990a). The bivariate marginal distribution function at
two sites xi and xj is

Pr ½ZðxiÞ � zi ; ZðxjÞ � zj�5exp 2
1
zi

U
a
2

1
1
a

log
zj

zi

� �
2

1
zj

U
a
2

1
1
a

log
zi

zj

� �� �
; (7)

where U is the cumulative distribution function of the standard normal variable, a25D>R21D, and
D5xi2xj . The bivariate density function can be obtained by differentiating the distribution function [e.g.,
Padoan et al., 2010]. The bivariate extremal coefficient function is hðhÞ52Uð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h>R21h
p

=2Þ, with range from
1 to 2, providing full range of dependence level. A limitation of the Smith model is that the storms gener-
ated from it have shapes that are too regular compared to the reality.

The second model we consider is the Schlather model [Schlather, 2002]. It is obtained by taking
WðxÞ5max f0; 2

ffiffiffi
p
p

�ðxÞg, where �ðxÞ is a stationary Gaussian process with unit variance and correlation
function q, a function of the euclidean distance between two sites xi and xj. The bivariate marginal distribu-
tion function is

Pr ½ZðxiÞ � zi ; ZðxjÞ � zj�5exp 2
1
2

1
zi

1
1
zj

� �
11

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
122½qðhÞ11� zizj

ðzi1zjÞ2

s0
@

1
A

8<
:

9=
;; (8)

where h5jjxi2xjjj. The bivariate extremal coefficient is hðhÞ511
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð12qðhÞÞ=2

p
, with a range from 1 to

11
ffiffiffiffiffiffiffiffi
1=2

p
, or about 1.707. Therefore, the Schlather model does not provide full range. It cannot be used to

model sites that are completely independent. Models of correlation function are standard in spatial statistics
[e.g., Banerjee et al., 2004, Table 2.1], and contain parameters that characterizing the strength of the spatial
dependence.

The third model we consider is a geometric Gaussian process obtained by taking WðxÞ5exp fd�ðxÞ2d2=2g,
where �ðxÞ is again a stationary Gaussian process with unit variance and correlation function q, and d2 > 0
is the variance of W(x) on the log scale [Davison et al., 2012, p. 172]. The bivariate marginal distribution is
the same as (7) for the Smith model, except that a252d2ð12qðhÞÞ. The bivariate extremal coefficient
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function is hðhÞ52Uðd
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð12qðhÞÞ=2

p
Þ. The range of hðhÞ is from 1 to 2Uðd=

ffiffiffi
2
p
Þ. The upper bound is 1.96,

quite close to 2, if d258. As d!1; hðhÞ approaches 2 for any q.

3.3. Application to RFA
3.3.1. Spatial Index Flood Model
To incorporate the spatial dependence in the index flood model, we assume that the dependence structure
among the sites is an extreme-value copula described by a max-stable process model. This assumption is in addi-
tion to the homogeneity assumption for the index flood model with GEV margins in Section 2. We keep using
Ys;t; s51; . . . ;m; t51; . . . ; n, as the observed data at site s in year t. The spatial index flood model completely
specifies the joint distribution of fYs;t : s51; . . . ;mg for each t. As seen from Sklar’s theorem, it is sufficient to
specify the marginal models and the spatial dependence structure. Under the setup of index flood model, the
marginal distribution at each site s is still GEV ðls;lsc; nÞ. The extreme-value copula is specified by a parametric
max-stable process with dependence parameter a. Although the model is fully specified and easy to understand,
the joint density is unavailable except for lower dimensions (m 5 2, 3) for certain parametric models. The bivari-
ate marginal density of two sites depends on a in addition to the marginal GEV parameters. Let Fsð�; bÞ be the
cumulative distribution function of the GEV distribution at site s, let G be the cumulative distribution function of
the unit Fr�echet distribution, and let G21 be the inverse function of G. The bivariate density of site i and j, fi;j , is

fi;jðyi; yj; b; aÞ5gi;j zi; zj; a
� �

jJðyi ; yj; bÞj;

where gi;jðzi; zj; aÞ is the bivariate marginal density of the max-stable process model with unit Fr�echet mar-
gins, zi5G21fFiðyi; bÞg, and

jJðyi; yj ; bÞj5
				 d

dyi
G21 Fiðyi; bÞf g d

dyj
G21 Fjðyj; bÞ


 �				:
3.3.2. Pairwise Likelihood Estimation
Inferences about max-stable process models have been mostly based on the composite likelihood approach
[Padoan et al., 2010; Davison and Gholamrezaee, 2012]. The composite likelihood approach constructs an
objective function, known as the composite likelihood, by putting together pieces of tractable likelihood,
such as lower dimensional marginal densities [Lindsay, 1988]. The composite likelihood is maximized to give
the maximum composite likelihood estimator (MCLE) as if it were a likelihood. Under mild conditions, cor-
rect specification of the pieces in the composite likelihood leads to consistency and asymptotic normality of
the MCLE. It has wide applications where the full joint distribution is unavailable or intractable but lower-
order marginal or conditional distributions are known [e.g., Varin, 2008; Varin et al., 2011]. When the pieces
in the composite likelihood are pairwise bivariate densities, the composite likelihood is also called pairwise
likelihood. The independence likelihood in Smith (unpublished data, 1990b) is also a composite likelihood
constructed from the univariate marginal GEV distributions.

The dependence parameter a and marginal parameter b are estimated jointly in the pairwise likelihood method.
The pairwise likelihood is constructed with the bivariate density of all the site-pairs within the same years:

LP;nðb; aÞ5
Xn

t51

Xm21

i51

Xm

j5i11

log fi;jðYi;t; Yj;t; b; aÞ: (9)

When the record lengths are different across sites, it can be constructed from all the available pairs within
each year. Let ðb̂n; ânÞ be the maximizer of the pairwise log-likelihood (9). Under certain regularity condi-
tions, ðb̂n; ânÞ is consistent to the true parameter vector and is asymptotically normally distributed [e.g.,
Padoan et al., 2010]. The variance of ðb̂n; ânÞ can be estimated by a sandwich estimator, which can only
give valid inference when the sample size n is large. For small to moderate sample sizes, as is often the case
with RFA, a bootstrap variance estimator is preferred. Heffernan and Tawn [2004] proposed a bootstrap pro-
cedure that preserves the dependence structure for multivariate extremes. This procedure has been applied
in a nonstationary index flood model [Hanel et al., 2009], and is used here.

4. Simulation Study

A simulation study was conducted to compare the performance of the three estimation methods for index
flood model: L-moment, independence likelihood, and pairwise likelihood. Unlike the other two methods,

Water Resources Research 10.1002/2013WR014849

WANG ET AL. VC 2014. The Authors. 9575



which do not need to specify spatial dependence, the pairwise likelihood method incorporates spatial
dependence through the extra specification of an extreme-value dependence model. It has the potential of
being more efficient when the dependence model is correctly specified, but risks severe bias otherwise. The
L-moment method has been found to be unbiased regardless of the spatial dependence [Hosking and
Wallis, 1988]. Nevertheless, existing studies all used normal copulas, which provide no extremal depend-
ence, in generating data. The performance of the L-moment method for data with extremal dependence as
generated from max-stable processes has not previously been assessed. Our simulation design reflects
these needs.

4.1. Design
We considered data from m sites over n years in a study region X5½0; 10�2. Data from different years
were independent, but within the same year, data from different sites were generated with spatial
dependence. The center point (5, 5) is included so that parameter estimates and return level estimates
are compared at this point across scenarios. The additional m21 sites were randomly generated in the
region. The marginal distribution at site s is GEV ðls; lsc; nÞ with c50:3; n50:2;ls537 for s5ð5; 5Þ, and ls

for other sites randomly generated from a normal distribution Nð43:0; 4:42Þ and rounded to an integer.
The parameters of this normal distribution were the sample mean and sample variance of the L-moment
estimates of the ls’s from an extreme rainfall data in Southern Ontario analyzed in Wang et al. [2014]. The
values of ls ranged from 33 to 51.

Four factors were considered in the experimental design: the spatial dependence model, the spatial
dependence level, the number of sites m, and the length of the record n. Four spatial dependence models
were used to generate data, including three extreme-value models and one nonextreme-value model. The
three parametric isotropic extreme-value models were the Smith model, the Schlather model, and the geo-
metric Gaussian model, abbreviated as SM, SC, and GG, respectively. The nonextreme-value model is a
Gaussian copula, which is also known as meta-Gaussian model, abbreviated as GA. For each model, three
levels of dependence were used: weak, moderate, and strong, abbreviated as W, M, and S, respectively. The
SM model had R5sI2, where I2 is the identity matrix of dimension 2, with s chosen to be 4, 16, and 64 for
the W, M, and S dependence, respectively. Observations at two sites with distance over 2s1=2 would be close
to independent. In our study region, these choices correspond to the cases where two sites are almost inde-
pendent if their distance exceeds 4, 8, and 16, respectively. The SC model had a Gaussian correlation func-
tion qðhÞ5exp ½2ðjjhjj=/Þ2� with range parameter / > 0 chosen such that the resulting bivariate extremal
coefficient function matches that from the SM model as close as possible. It is a special case of the power
exponential correlation family with smooth parameter fixed at 2 as in the R package SpatialExtremes [Riba-
tet and Singleton, 2013]. Through nonlinear least squares, the values of / were tuned to be 2.942, 5.910 and
13.153 for W, M, and S dependence, respectively. For the GG model, a bigger d2 offers fuller range of
dependence level for two sites, but the data generating function for this model in the R package SpatialExt-
remes works well only for d2 < 10. As a compromise, d2 was fixed at 8. The GG model also had a Gaussian
correlation structure, and similarly through nonlinear least squares, the range parameter was set to be
7.134, 14.780, and 31.149 for W, M, and S dependence, respectively. For the GA model, an exponential corre-
lation function qðhÞ5exp ½2ðjjhjj=/Þ� was used with range parameter / to be 6, 12, and 20, which were
chosen so that the fitted exponential correlation curves of the empirical correlation of the score functions
of l and n are close to those of SM model. Two levels of m were considered, m 2 f10; 20g. When m 5 20,
10 additional sites were generated and added to those sites used in the case of m 5 10. Finally, two levels
of n, n 2 f10; 25g, were considered. This design led to 48 scenarios.

For each scenario, we generated 1000 data sets. For each data set, we estimated the GEV parameters and
T-year return level QT for T 2 f50; 100; 500g. The three methods, L-moment, independence likelihood, and
pairwise likelihood, are abbreviated as LM, IL, and PL, respectively. In optimization, the IL estimator used the
LM estimators as starting values, and the PL estimator used the IL estimators as starting values. Given the
large number of parameters in the model, we maximized the likelihood with an iterative procedure that
maximizes the objective function with respect to one parameter at a time while the other parameters are
held constant. The procedure is iterated over all parameters until convergence. It was reported to give bet-
ter estimation when the number of parameters is large [Blanchet and Davison, 2011]. In contrast to the LM
and IL method, the PL method needed to specify a dependence model, which may be correct or incorrect.
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We studied its performance under correct specification and misspecification of the dependence structure
within the spatial extreme model and with nonextreme-value copula (GA model).

4.2. Results
The center site [5,5] which was presented in all replicates was used to do the comparison across various sce-
narios. As the results from the three spatial extreme models were similar, we use the GG model to represent
the three extreme-value models. Since sample size n 5 10 was too small for the likelihood methods to be
numerically reliable, the results for n 5 10 were based on trimmed data where 2% from each tail were
excluded in the summary. The results for n 5 25 were stable and included all 1000 replicates. The PL
method had correct specification of the dependence model for data generated from the extreme-value
models (SM, SC, and GG). For data generated from the GA model, the PL method was obtained under the
specification of a GG model with Gaussian correlation structure. For each method, we report the relative
bias and the relative root mean squared error (RMSE) for the GEV parameters and return levels at the center
point.

4.2.1. When PL Is Correctly Specified
We first look at the results for data generated from extreme-value dependence models (Figure 1 for the GG
model). The bias decreases for all methods as n goes from 10 to 25. At n 5 25, the bias of the PL method is
quite small, with the largest relative magnitude of 7.8%. The bias of the LM method, however, remains high,
and it is bigger especially with stronger dependence level. More sites did not help, especially for strong
dependence. The relative bias is 17.5% for n and 20.6% for Q500 under strong dependence level and
m 5 20. This behavior of the LM method is in contrast to the existing result that intersite dependence does
not introduce bias in RFA [Hosking and Wallis, 1988]. It may be explained by that the simulation here was
done with data generated from max-stable processes, which ensures that all marginal copulas are extreme-
value copulas. In existing studies, however, data were generated mostly with normal copulas, which is not
an extreme-value copula.

The RMSE for all methods decreases as n increases as expected. Between m 5 10 and m 5 20, little differ-
ence was observed in RMSE. We have also tried m 5 5 (not reported here) and found that the relative RMSEs
did decrease when m increased from 5 to 10. This indicates that increasing the number of sites helps
increase the efficiency for smaller m, but only up to a certain point, an observation consistent with the find-
ings in Hosking and Wallis [1988]. As the dependence gets stronger, the RMSE increases for all methods, but
the magnitude of the change is the smallest for the PL method. This is because under correct specification,
the PL method incorporates spatial dependence in the estimation while the other two methods do not. For
both sample sizes, the PL method is a clear winner among the three. The comparison between the LM
method and the IL method is mixed. For n 5 25, the LM method is less efficient in parameter estimates but
more efficient in some return level estimates than the IL method. This is possible because the return levels
are nonlinear transformations of the parameters; see equation (2). For n 5 10, the LM performs better than
the IL method in most of the return level estimates, even though it is less efficient in estimating c and com-
parable in estimating l and n. Further investigation revealed that the variance of the LM estimator is much
smaller than that of the IL estimator, which compensates the larger bias (especially in n) of the LM estima-
tor. This makes sense since it is known that L-moment estimator has a restriction n < 1, which makes it
more efficient than the likelihood method for small samples when the restriction is true. In an earlier version
under a slightly different simulation design, we had n 2 f50; 100g (not reported here) and found that for
large sample sizes, the efficiency order was PL, IL, and LM from the highest to the lowest. Among the three
GEV parameters, the efficiency gain of the PL method relative to the IL method was always the greatest for
the shape parameter n (in one case it was as large as 2.76); the RE for the l and c were close to 1. That is,
the efficiency gain of the PL method is mostly realized in n, which controls the tail behavior of the GEV dis-
tribution. This leads to the efficiency gain of the PL method in estimating the return levels, especially for
longer return periods such as 500 years.

4.2.2. Misspecification of PL Within Spatial Extreme Models
The efficiency gain in the PL method relative to the IL method comes with a cost: one needs to specify the
spatial dependence model. We first look at the results for cases where misspecification is within the class of
spatial extreme models; that is, one max-stable model is misspecified as another max-stable model. Figure
2 summarizes the relative efficiency (RE) in mean squared error of the PL method in estimating the GEV
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parameters and return levels, using the IL method as the reference (RE is the ratio of MSE of IL over MSE of
PL), under both correct specification and misspecification within spatial extreme models for n 5 25 and
m 5 10. When a SM model was misspecified as a GG model, or vice versa, the resulting estimator was
almost as efficient as that under correct specification, and was much more efficient than the IL estimator.
This is because the SM model and the GG model are very similar models, as evident from their similar bivari-
ate distributions given in Section 3.2. When a SM or GG model was misspecified as a SC model, the resulting
PL estimator is comparable with the IL estimator for weak dependence, but more efficient than the IL esti-
mator for moderate or strong dependence. This is as expected, because in contrast to the other two models,
the SC model does not provide full range of dependence and, therefore, cannot accommodate weak
dependence or close to independence. When a SC model was misspecified as a SM or GG model, the result-
ing PL estimator remained competitive compared to the IL estimator, especially for the cases with stronger

Figure 1. Relative bias (%) and relative RMSE (%) for three methods with data from the GG model.
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spatial dependence. Among the three parametric models, both the SM model and GG model offer full range
of dependence level and high efficiency under misspecification, but since the SM model gives too regular
shapes of extreme observations to be observed in practice [e.g., Schlather, 2002], we recommend using the
GG model. This is also why we presented the results for data generated from the GG model only in the
main text.

4.2.3. Misspecification of PL Under Nonextreme-Value Model
What if the true dependence model is a nonextreme-value copula but we fit an extreme-value dependence
model? Figure 3 summarizes the results for data generated from the GA model, with the PL method speci-
fied under a GG model. The misspecified PL estimator has small bias in l and c, but large bias in n (as high
as 50% for m 5 20 and n 5 25), which is much larger than that of the LM estimator or IL estimator. The bias
increases as the dependence level gets stronger, and having more sites do not help. This large bias played
a major part in the RMSE of the PL estimator; the RE for n and all return levels are as small as 0.51. The LM
estimator is better than the IL estimator for all return levels. The performance of the LM method is similar to
what was reported in Hosking and Wallis [1988]—its relative bias is only alarmingly noticeable (9.8% for
Q500) under the strong dependence level. This is reasonable because this scenario is the closest to the data
generation scheme of Hosking and Wallis [1988], where a relative bias up to 5% for Q1000 was reported.
Therefore, the spatial dependence does not affect the LM estimator under normal copula as much as it
does under extreme-value copulas. For instance, the bias of the LM estimator in estimating Q500 with data
from the GG model is about twice as much as that with data from the GA model: 33.6% versus 17.5% when
n 5 10 and 20.6% versus 9.8% when n 5 25.

In summary, incorporating spatial dependence in the index flood model through max-stable processes may
improve the efficiency of RFA, but at the cost of having to specify the dependence model. The LM method
and the IL method do need to do so, which makes them attractive when no evidence supports extreme-
value dependence. Misspecification of the PL method can lead undesired large bias. If, however, extreme-
value copulas are known to correctly specify the dependence structure or provide adequate fit to the data
through a goodness-of-fit test, then the PL method may be preferred by exploiting the dependence struc-
ture to give more efficient RFA. Essentially, it is still a story of bias-variance trade-off. To reap the potential
efficiency gain in practice, one must check the goodness-of-fit of max-stable processes, which has been

Figure 2. Relative efficiency (RE) of PL method (with the IL method as reference) under correct specification and misspecification within
the class of extreme-value dependence models with n 5 25 and m 5 10. The grouped variable is the model that generated the data, and
the line in each panel represents the corresponding fitted model.
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studied recently [Kojadinovic et al., 2014], in addition to the goodness-of-fit tests for the marginal GEV mod-
els and the homogeneity assumption on the GEV parameters.

5. Illustration

For illustration, we applied the index flood model with all three estimation methods to the Swiss rainfall
data that has been analyzed by many authors in modeling spatial extremes [e.g., Davison et al., 2012]. The
data consist of summer maximum daily precipitation (mm) for 51 stations over the years of 1962–2008 in
the Plateau region of Switzerland; it is available in the R package SpatialExtremes [Ribatet and Singleton,
2013]. To make a more realistic RFA, we used only the last 25 years of data from 1984 to 2008 (n 5 25). We

Figure 3. Relative Bias (%) and relative RMSE (%) for three methods with data from the GA model. The PL method using a GG model
specification.
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further filtered the sites in attempt to enhance the chance that the PL method gives reliable inferences. As
we pointed in the discussion of the simulation study, the higher efficiency of the PL method is only achieva-
ble when the bivariate marginal distributions are correctly specified; otherwise, the PL method could lead
to serious bias. The flood-index model we considered assumes that all the marginal distributions are GEV
distributions with the same shape parameter and the same ratio of location parameter and scale parameter.
These assumptions are shared by all three methods, but the PL method assumes additionally that the
dependence structure can be captured by a max-stable (e.g., a geometric Gaussian) process. The goodness-
of-fit of the geometric Gaussian process on this data has been checked graphically [Davison et al., 2012]. A
formal goodness-of-fit test for max-stable process models was not rejected for this data [Kojadinovic et al.,
2014]. The test, however, was applied on the whole region globally, and may have low power in detecting
local lack-of-fit. Therefore, we further applied the test for bivariate extreme-value dependence [Kojadinovic
et al., 2011] on all the pairs.

We filtered the sites by three tests on the model assumptions: (1) the goodness-of-fit of univariate GEV dis-
tribution was not rejected at any single site by a Kolmogorov–Smirnov test; (2) the homogeneity hypothesis
(rs=ls and ns are both constant) was not rejected by a nonparametric bootstrap test procedure which pre-
serves the spatial dependence [Heffernan and Tawn, 2004]; and (3) the hypothesis of bivariate extreme-
value dependence was not rejected for any pair of the sites by a nonparametric test proposed by Kojadi-
novic et al. [2011]. Note that the first two are needed by all three methods, but the other one is only needed
by the PL method. The 3rd test was an additional measure on model specification check given that the geo-
metric Gaussian process has been known to fit this data well [Davison et al., 2012; Kojadinovic et al., 2014].
For a different data set, it will be necessary to run model diagnosis and global goodness-of-fit test too. This
process ended up with 11 sites; see map in Figure 4.

We fitted the index flood model with marginal GEV distribution to the 25 year data of the 11 sites with all
three methods. The PL method was carried out under the same GG model that was used in the simulation
study; that is, it had a Gaussian correlation function with a single range parameter and d258 was fixed. The
standard errors of all the parameter estimates were obtained with a spatial-dependence-preserving boot-
strap procedure [Heffernan and Tawn, 2004] with 1000 bootstrap samples.

Figure 5 summarizes the point estimate and 95% confidence interval (CI) for each parameter and three site-
specific return levels (50, 100, and 500 years) from the three methods. The bounds of the 95% CI were the
2.5% and 97.5% percentiles of the 1000 bootstrap estimates, respectively. The point estimates from the
three methods are similar for ls’s, but quite different for c and n. For c, the estimates are 0.331 (s.e. 0.021),
0.392 (s.e. 0.018), and 0.389 (s.e. 0.018) for LM, IL, and PL, respectively. For n, the estimates are 0.345 (s.e.

Figure 4. Elevation map of Switzerland with the 11 stations that were used in the Swiss rainfall analysis. The 11 stations are marked by tri-
angles, and the dots represent cities in Switzerland.
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0.063), 0.212 (s.e. 0.053), and 0.148 (s.e. 0.054) for LM, IL, and PL, respectively. The shape parameter is esti-
mated to be significantly different from zero regardless of the method, suggesting the tails of the GEV distri-
butions are heavier than the tail of the Gumbel distribution. The differences have a drastic effect on return
level estimates. Consider for example the 11th site. The estimates of Q500 for this site are 228.39 (s.e. 40.17),
171.28 (s.e. 30.44), and 139.27 (s.e. 24.52), respectively, from the LM method, the IL method, and the PL
method. The reduction in the standard error of the PL method is remarkable. The standard error of Q500

from the PL method is about 40% smaller than that from the LM method, and 20% smaller than that from
the IL method. The bounds of the 95% bootstrap CIs are asymmetric around the point estimates, which are
most notable for c and n. The asymmetry appears to be in opposite direction for the LM method and the PL
method, making the overlaps of the CIs to be bigger than those symmetric CIs constructed from the boot-
strap standard errors. The CIs for the return levels have the shortest length from the PL method, followed
by the IL method and then the LM method. We emphasize that the short CIs from the PL method does
come at a cost — we had to specify the dependence model with a geometric Gaussian process with a

Figure 5. Estimated parameters and return levels (in mm) along with their 95% confidence intervals from the bootstrap procedure for the
Swiss rainfall data. The PL method used a geometric Gaussian model with a Gaussian correlation function for the spatial dependence.
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Gaussian correlation structure. The estimate of the range parameter in the dependence model is /̂5

2377:44 (s.e. 92.31). We have gone through the extra steps in filter the sites to be included in the analysis
beyond the known model checking in the literature on this data, which turned out to be worth it.

The systematically lower return level estimates from the PL method than those from the LM method may
be explained from two perspectives. First, the return level is a function of all three parameters of the GEV
distribution but is most sensitive to the shape parameter. The location parameter estimates are similar
across different methods. The scale parameter estimates and the shape parameter estimates, however, tend
to compensate each other: higher scale parameter estimate is accompanied with lower shape parameter
estimate. The LM method has lower ĉ, hence lower scale estimate, and higher n̂, which led to the higher
return level estimates. Second, the shape parameter seems to have the most room for efficiency improve-
ment as seen in the simulation (Figure 2 in the manuscript). The efficiency gain of the PL method, assuming
that the PL is correctly specified, is only on average if replicates were available. For a single data set, the
truth is unknown, and the lower point estimate of the shape parameter from the PL method than that from
the IL method is quite likely, noting that the 95% bootstrap confidence intervals from the two methods
overlap by large.

The analysis so far is based on the last 25 years data and the availability of the whole 47 years data enabled
us to compare the performance of the three methods more thoroughly in other ways. We randomly
selected 100 subsets of 25 year data, and for each subset we ran the same analysis as we did for the last 25
years. The same analysis was also repeated on the full 47 years of data. Table 1 summarizes results from
these analyses. Site specific estimates are only presented for two sites with the smallest or the largest l̂s

from the full data analysis. Point estimates and bootstrap standard errors are reported for the full data anal-
ysis. For the 100 subset analyses, we reported the average of the point estimates, the average of the boot-
strap standard errors, and the standard deviation of the point estimates. It is reassuring that the point
estimates from the full data analysis are very close to the average of those from the 100 subset analyses for
all parameters and all three methods. For the estimates of the shape parameter and the return levels, the
PL method always has the smallest standard error while the LM method always has the largest standard
error, regardless of the full data analysis or the average of the subset analyses. This is consistent to the
results from the last 25 years of data. The standard deviation of the 100 subset point estimates of the shape
parameter and the return levels has the same pattern, but the difference in the magnitudes is even more
obvious. For instance, the standard deviation of the 100 subset estimates Q500 is 68.0, 49.3, and 31.9 for LM,
IL, and PL, respectively.

Another interesting finding is about the ratio of the standard errors from the full data analysis and those
from the subset analyses. More data are associated with smaller standard errors in theory. For most parame-
ter estimates and all methods, the ratios of the standard error from the full 47 years data to that from the
average of the 25 years subsets are close to

ffiffiffiffiffiffiffiffiffiffiffiffiffi
25=47

p
� 0:73. This is expected to happen for large sample,

which suggests that the large sample results approximate the finite sample results quite well even for sam-
ple size of 25 in this data analysis. We also studied the ratios of the 95% bootstrap CI lengths, most of which
were higher than 0.73 due to the asymmetry in the CIs.

Table 1. Point Estimate and Bootstrap Standard Error for the Full 47 Years Data Analysis (Abbreviated as Full), the Average Point Estimate and Average Bootstrap Standard Error Based
on 100 Subsets of 25 Years (Abbreviated as Ave), and the Standard Deviation of the 100 Point Estimates

Point Estimate Standard Error
Standard Error of 100

Point EstimatesLM IL PL LM IL PL

Full Ave Full Ave Full Ave Full Ave Full Ave Full Ave LM IL PL

l 20.5 20.7 20.4 20.5 20.5 20.6 0.43 0.55 0.42 0.55 0.41 0.55 1.31 1.28 1.26
26.5 26.6 26.5 26.6 26.4 26.5 0.49 0.65 0.46 0.61 0.45 0.60 1.70 1.61 1.53

Q 50 68.9 67.8 66.0 65.4 61.6 61.3 4.4 6.1 4.0 5.7 3.6 5.3 12.4 12.2 9.2
88.9 87.3 85.7 84.8 79.2 79.0 5.8 8.1 5.4 7.7 4.9 7.1 16.8 15.4 11.6

Q100 84.4 83.7 79.3 78.7 72.5 72.2 6.9 10.1 6.0 8.8 5.4 8.0 19.7 17.6 12.6
108.9 107.8 102.8 102.1 93.2 93.0 9.2 13.2 8.1 11.8 7.2 10.6 26.3 22.5 16.1

Q500 133.9 137.6 119.0 119.8 103.3 103.8 17.8 29.2 14.1 21.6 12.1 18.7 51.5 38.4 24.8
172.8 177.5 154.4 155.3 132.9 133.7 23.5 38.3 18.8 28.6 16.0 24.7 68.0 49.3 31.9

c 0.338 0.327 0.358 0.353 0.355 0.351 0.014 0.021 0.012 0.017 0.012 0.017 0.030 0.026 0.026
n 0.274 0.256 0.223 0.205 0.178 0.168 0.045 0.062 0.037 0.053 0.038 0.053 0.133 0.097 0.071
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6. Discussion

This paper explores the idea of incorporating intersite dependence in RFA with index flood models to
improve the efficiency in estimation. The efficiency gain comes at the cost of having to specifying the
dependence model in addition to the usual specifications such as marginal distributions and the regional
homogeneity assumption. When the dependence model is correctly specified, smaller standard errors and
narrower confidence intervals can be obtained for model parameter and return levels. Misspecification of
the dependence model, however, may result in serious bias, especially when the true dependence model is
not of extreme-value type and the dependence is strong. This makes it important to check the goodness-
of-fit for the dependence structure, in addition to the usual check for marginal goodness-of-fit and regional
homogeneity, to reap the efficiency gain. The L-moment method and the independence method may
sometimes be preferable because they have no need for dependence model specification. The L-moment
method implicitly constrains the shape parameter to be less than 1 for the existence of the L-moments,
which gives efficient estimator for small samples when the constraint does hold. As extreme-value copula
can be very different from nonextreme-value copula (e.g., normal copula), it has more effect on the bias of
the L-moment estimator than does the normal copula for typical record lengths in RFA, a result that has not
previously been reported. The independence likelihood method may have unreasonable estimates in small
samples unless it is modified to impose a similar constraint, but for large samples, it is more efficient than
the L-moment method.

Spatial dependence in RFA is often a nuisance because the goal of an RFA is usually to estimate marginal
return levels. With marginal GEV distributions, it is desirable to improve the efficiency without specifying a
spatial dependence model. Specification and selection of a working dependence model can be avoided by
a combined estimating equation approach based on data contrasts for clustered data [Stoner and Leroux,
2002]. For spatial data, estimating equation approaches have also been applied for marginal models with
no need to correctly specify the dependence structure [Yasui and Lele, 1997; Clayton and Lin, 2005; Lin,
2008, 2010]. The marginal score equations can be combined in certain way to improve the efficiency [Niko-
loulopoulos et al., 2011]. Further research in this direction may benefit not just RFA but general spatial
extreme modeling.
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