
sensors

Article

Fast Classification of Geographical Origins of Honey
Based on Laser-Induced Breakdown Spectroscopy and
Multivariate Analysis

Zhangfeng Zhao 1, Lun Chen 1, Fei Liu 2 , Fei Zhou 3,* , Jiyu Peng 1 and Minghua Sun 4

1 Key Laboratory of E & M, Zhejiang University of Technology, Ministry of Education & Zhejiang Province,
Hangzhou 310014, China; i12fly@163.com (Z.Z.); 15857185317@163.com (L.C.); jypeng@zjut.edu.cn (J.P.)

2 College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China;
fliu@zju.edu.cn

3 College of Standardization, China Jiliang University, Hangzhou 310018, China
4 Hangzhou Landa Science and Technology Co., Ltd., Hangzhou 310030, China; landast@126.com
* Correspondence: feizhou@cjlu.edu.cn; Tel.: +86-15068829030

Received: 7 February 2020; Accepted: 26 March 2020; Published: 28 March 2020
����������
�������

Abstract: Traceability of honey is highly required by consumers and food administration with the
consideration of food safety and quality. In this study, a technique named laser-induced breakdown
spectroscopy (LIBS) was used to fast trace geographical origins of acacia honey and multi-floral honey.
LIBS emissions from elements of Mg, Ca, Na, and K had significant differences among different
geographical origins. The clusters of honey from different geographical origins were visualized with
principal component analysis. In addition, support vector machine (SVM) and linear discrimination
analysis (LDA) were used to quantitively classify the origins. The results indicated that SVM
performed better than LDA, and the discriminant results of multi-floral honey were better than
acacia honey. The accuracy and mean average precision for multi-floral honey were 99.7% and 99.7%,
respectively. This study provided a fast approach for geographical origin classification, and might be
helpful for food traceability.

Keywords: honey; geographical origin; multivariate analysis; classification; laser-induced
breakdown spectroscopy

1. Introduction

Honey is a natural sweet product produced by bees from the nectar of flowers [1], which mainly
consists of carbohydrates, water, proteins, minerals, amino acids, phenols, and vitamins, etc. Because of
its high nutrients and healthy benefits, honey has been considered as an important health product
around the world, especially in China. It has been demonstrated that honey can improve immune
systems and oral health, prevent side effects linked with cancers treatment, heal wounds, etc. [2,3].
However, the constitutes of honey has regional features, and it is likely influenced by the climate,
altitude, and other environmental factors [4,5]. Hence, the supplemental information concerning the
geographical origin should be given according to Food Safety Law of the People’s Republic of China.

In order to determine the geographical origins of honey, some analytical methods have
been proposed by researchers. Chemical analysis methods including high performance liquid
chromatography–mass spectrometry/mass spectrometry [6], isotope ratio mass spectrometry [7],
inductively coupled plasma optical emission spectroscopy [8–10], and gas chromatography mass
spectrometry [9] were used to discriminate the geographical and botanical origins of honey.
Regional and botanical differences in chemical substances contribute to the discrimination. However,
the sample preparation of these methods is time-consuming, and lots of reagents are needed.
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Recently, some fast detection methods were also utilized to classify honey origins, which including
Terahertz time-domain attenuated total reflection spectroscopy [11], electronic tongue [12,13], electronic
nose [13,14], infrared spectroscopy [13,14], Raman spectroscopy [14,15], etc. These methods might
provide novel approaches for in-line detection, whereas further study is still needed to improve the
detection accuracy and stability.

Laser-induced breakdown spectroscopy (LIBS) is a laser-based spectroscopy, which can obtain
the fingerprint information of samples by analyzing the emission spectra. Because of the advantages
of fast detection, environment-friendly feature, and multi-element analytical capability, LIBS has
gained continuous attention in industrial [16], environmental [17], and food safety applications [18].
Based on the regional differences in elemental concentration, the geographical origins of honey might be
differentiated by LIBS. As so far, no relevant study concerning the application of LIBS for discriminating
honey geographical origins has been published. In addition, multivariate methods have been proven
as an effective tool in extracting valuable information from raw data and establishing models for
discrimination. A review concerning the application of multivariate methods for prediction of botanical
and geographical origin of honey has been recently published [19].

Hence, LIBS combined with multivariate methods were used to discriminate the geographical
origins of honey. The specific aims of this study are (1) to analyze the LIBS spectral features of different
geographical origins of honey; (2) to reduce the data dimension and determine feature variables that
contributing regional difference; (3) to establish models for classification of honey origins based on
multivariate methods.

2. Materials and Methods

2.1. Sample Preparation

Honey from different geographical origins were collected from local producers. According to
the varieties of nectar of flowers, honey can be divided into uni-floral honey and multi-floral honey.
And acacia honey is one of high-valuable and representative uni-floral honeys. Hence, two different
honey categories (acacia honey and multi-floral honey) were used in this experiment. Each honey
category had three different geographical origins, and the sample number for each group is 40.
The general information of honey samples is listed in Table 1.

Table 1. General information of honey samples.

Variety Sample Code Origin No. of Samples

Acacia honey
A1 Shaanxi 40
A2 Shanxi 40
A3 Jilin 40

Multi-floral honey
M1 Shanxi 40
M2 Qinghai 40
M3 Hubei 40

2.2. LIBS Measurement

Before LIBS analysis, the honey samples (8 g) were added in 12-well plates. No other sample
preparation was needed. A laboratory-assembled LIBS device was used to analyze samples, the detailed
of which has been introduced in previous research [20]. In this experiment, a laser (Vlite 200, Beamtech,
Beijing, China) was used to ablate samples at the second-harmonics wavelength (532 nm), with
ablation energy of 80 mJ and frequency of 1 Hz. The focal length of lens is 100 mm, and the
lens-to-sample-distance (LTSD) in this case was 99 mm. The plasma light was collected by a UV-NIR
achromatic mirror system (CC52, Andor, Belfast, UK), and transferred to an Echelle spectrograph
(ME 5000, Andor, Belfast, UK), finally detected by an intensified charge coupled device (ICCD,
DH334T-18F-03, Andor, Belfast, UK). The delay time, integration time, and relative gain of ICCD were 2
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µs, 10 µs, and 26, respectively. Before experiment, the intensity of ICCD was calibrated by a deuterium
tungsten halogen source (DH-2000-BAL-CAL, Ocean Optics, Largo, FL, USA), and the wavelength
of spectrograph was calibrated with a mercury argon lamp (HG-1, Ocean Optics, Largo, FL, USA).
LIBS measurement was performed by single shot scanning in an ablation region of 10 × 10 mm with a
resolution of 1 mm. Hence, 100 successive shots were performed for each sample, and 100 spectra
were collected.

2.3. Multivariate Analysis

All spectra from the same origin were used for representing regional characteristics. A total of
4000 spectra were obtained for each origin. In order to establish and verify discriminant model, thirty
samples (3000 spectra) were randomly assigned to a calibration set, and the rest (1000 spectra) were in
the prediction set. In this study, principal component analysis (PCA) was used to quantitively visualize
the distribution of honey (the calibration samples) with score plots, and linear discriminant analysis
(LDA) and support vector machine (SVM) were used for quantitatively classifying geographical
origins. PCA, LDA, and SVM analysis was done in the MATLAB (v2018, The MathWorks Inc., Natick,
MA, USA).

PCA is an unsupervised cluster algorithm which reduces data dimensions through projecting
variables into some principal components (PCs) with maximal variations [21]. It can serve as a useful
first step before classification of samples [22]. Because the number of original variables was large (more
than 20,000), and lots of them were redundant variables. Hence, the first few principal components
could be used to visualize sample distribution in score plots and represent the majority of spectral
information. In addition, the loadings represent the contributions to PCs, which could be used to
determine feature variables. In PCA model, LIBS spectra were used as inputs.

LDA and SVM were two popular multivariate analysis algorithms, both of which has been widely
used in solving classification problems [23,24]. LDA is a supervised classification algorithm based on
Bayes’ formula, which linearly transforms the samples into a lower dimensional space, so that the
samples belong to the same class cluster together [25]. The objective of LDA is to determine the best fit
parameters for classification. It is simply to carry out and can be computed fast enough for in-line
application. Hence, spectral sensors combined with LDA has been widely applied in food quality
control [26,27], and produce good results. However, because of the strong dependence of assumption
in its derivation, factors such as noise, non-Gaussian data distribution, and outliers might have a
detrimental effect on LDA’s performance [28]. Hence, SVM that performed good in discrimination was
also used to classify the geographical origins of honey.

SVM is a supervised non-parametric statistical learning algorithm, which has been used for
solving complex separations [23]. There is no assumption made on the data distribution. First, kernel
function was used to map the data into a higher dimensional feature space which is separable with
linear algorithms. Then, a hyperplane with maximum margin was determined to separate different
classes. In order to solve multi-class separations in this case, one-against-one multiclass method
was used.

In contrast to PCA, the dependent variables (group labels) are also considered in LDA and SVM
when modeling. In this case, the independent variables (X) were the first few PCs, the dependent
variables are the group labels of geographical origins. Moreover, 10-folds cross validation were used to
avoid overfitting.

In addition, confusion matrix, accuracy, mean average precision (MAP), precision, and recall
of each model were used to evaluate model quality. Confusion matrix is a commonly used tool
representing classification results. On a confusion matrix, the row corresponds to the output class,
and the column corresponds to the target class. Each cell represents the number of samples belongs to
target class whereas classified as predicted class. Hence, the diagonal cells correspond to observations
that are correctly classified. The off-diagonal cells correspond to incorrectly classified observations.
Other figures of merit including accuracy, MAP, precision, and recall could be calculated from confusion
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matrix. Accuracy and MAP measure average performance of multiclass results, whereas precision
and recall correspond to the performance for each class. Accuracy is the measure of the true results.
Precision measures the correctly classified number in each output class. Recall measures the correctly
classified number in each target class. These figures of merit present values in the range from 0 to 1.
The values of being 1 for accuracy, MAP, precision, and recall indicate the best model. The equations
were as follows:

Precision = true positives/number of positive (1)

Recall = true positive/(true positive + false negative) (2)

Accuracy = (true positive + true negative)/(true positive + true negative +

false positive + false negative)
(3)

2.4. One-Way ANOVA Test

In order to examine the regional difference of LIBS emissions, one-way ANOVA test was performed.
In this case, 33 of peak intensity of main emissions was considered as dependent variables, and the class
label was considered as independent variable. The main emission lines can be identified according
to National Institute of Standards and Technology (NIST) database [29]. Values were reported as the
mean ± standard deviation (SD), and one-way ANOVA test was performed by SPSS (ver. 25.0, SPSS
Inc., Chicago, IL, USA). Duncan’s test was used to determine the significance level (p < 0.05).

3. Results and Discussion

3.1. Spectral Characteristics of Honey

The LIBS spectra offer fingerprint data of honey that contains the regional information. Because of
the climate, temperature, and environmental factors, honey from different geographical origins might
have different elemental constitutes [4]. The elemental difference could be visualized through LIBS
spectra. Figure 1 shows the LIBS average spectra of honey from different origins. Two categories (acacia
honey and multi-floral honey) from three different origins were analyzed. Each peak wavelength in
LIBS spectrum represented the specific element that could be identified in NIST database, and the peak
intensity was related to elemental concentration. As shown in Figure 1, the tendency of LIBS spectrum
from different origins was similar. However, slight difference in peak intensity of different honey
origins could be found. The emissions (Mg II 279.55, Mg II 280.27, and Mg I 285.21 nm) from A1 (acacia
honey, Shaanxi) and M3 (multi-floral honey, Hubei) were significantly stronger than those from other
origins. In addition, the emissions (Na I 589.00 and Na I 589.59 nm) from A1 (acacia honey, Shaanxi)
were stronger than those from other origins, which indicated high Na concentration in multi-floral
honey from Hebei. Other differences such as emissions of Ca I 422.67, K I 766.49, and K I 769.90 nm
could also be observed. Due to the variation of constitutes in single group, it was hard to distinguish
the origins with above mentioned rules. Hence, multivariate methods were further used to visualize
the clusters and discriminate the geographical origins.

Table 2 shows the peak intensity of main emissions of honey. One-way ANOVA test was performed
for six different groups. The emission marked in bold showed that the peak intensity had significant
difference among at least five groups. It indicated that the emissions of Mg I 285.21, Ca II 393.37, Na I
589.00, Na I 589.59, K 766.49, and K I 766.90 nm might have distinguished differences among the five
groups, which played an important role in discrimination. Moreover, the peak intensity of emission of
Na I 589.00 nm has significant difference among the six groups. It might be considered as a feature
emission for geographical and varietal classification. The significant differences of these emissions
might provide fundamental signatures for the multivariate classification of honey origins.
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Figure 1. Spectral fingerprints of honeys from different geographical origins. Figure 1. Spectral fingerprints of honeys from different geographical origins.
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Table 2. Peak intensity of the main emissions from honey.

No.
Observed

Wavelength
(nm)

Ritz
Wavelength

(nm)
Emissions

Peak Intensity (×103, Counts) *

A1 A2 A3 M1 M2 M3

1 247.88 247.86 C I 255.28 ± 78.77a 235.05 ± 30.74a,b 224.46 ± 25.66b,c 203.69 ± 36.67c,d 195.31 ± 42.15d 190.38 ± 59.54d

2 279.58 279.55 Mg II 33.68 ± 11.60a 5.27 ± 1.09b 11.92 ± 2.89c 10.81 ± 3.83c 11.33 ± 4.07c 50.35 ± 26.26d

3 280.28 280.27 Mg II 17.90 ± 6.32a 3.03 ± 0.61b 6.40 ± 1.62c 6.04 ± 2.18c 6.28 ± 2.15c 29.26 ± 115.02d

4 285.23 285.21 Mg I 5.14 ± 1.39a 1.26 ± 0.19b 2.10 ± 0.48c 2.97 ± 0.63d 2.27 ± 0.30c 10.27 ± 1.79e

5 385.07 385.01 CN 4-4 10.49 ± 1.50a 10.28 ± 0.92a 10.27 ± 0.95a 11.71 ± 0.96b 10.99 ± 0.97c 10.32 ± 0.75a

6 385.47 385.44 CN 3-3 10.34 ± 1.47a,b 10.04 ± 0.88a 9.91 ± 0.94a 11.19 ± 0.91c 10.55 ± 0.99b 10.14 ± 0.64a,b

7 386.19 386.15 CN 2-2 12.87 ± 1.59a,b 12.68 ± 1.05a,b 13.18 ± 1.21b 15.00 ± 1.27c 14.11 ± 1.29d 12.38 ± 1.44a

8 387.13 387.12 CN 1-1 19.5 ± 2.78a,b 19.10 ± 1.61a 19.71 ± 2.05a,b 22.07 ± 1.81c 21.19 ± 2.18c 20.07 ±1.40d

9 388.33 388.32 CN 0-0 38.34 ± 4.92a 37.70 ± 3.21a 38.10 ± 3.99a 41.88 ± 3.60b 40.24 ± 4.18b 37.22 ± 3.06a

10 393.37 393.37 Ca II 14.73 ± 3.92a 9.74 ± 3.59b 17.68 ± 5.00c 23.18 ± 5.71d 16.63 ± 5.81b,c 28.48 ± 9.30e

11 396.87 396.85 Ca II 11.70 ± 2.91a 7.94 ± 2.69b 13.39 ± 3.69a 17.90 ± 4.28c 12.59 ± 4.20a 21.25 ± 6.82d

12 422.68 422.67 Ca I 10.10 ± 3.16a 7.42 ± 2.08b 10.63 ± 3.04a 17.29 ± 3.45c 9.65 ± 2.18a 19.90 ± 3.19d

13 589.03 589.00 Na I 12.86 ± 3.49a 3.15 ± 1.51b 6.86 ± 2.36c 4.89 ± 0.79d 26.90 ± 3.21e 62.00 ± 7.32f

14 589.60 589.59 Na I 8.67 ± 2.42a 2.26 ± 0.93b 4.38 ± 1.48c 3.28 ± 0.53b,c 18.08 ± 2.31d 44.06 ± 5.54e

15 656.37 656.28 H 92.04 ± 20.31a,b 96.55 ± 19.04b 84.53 ± 17.31a,c 99.55 ± 12.95b 77.03 ± 19.51c 86.41 ± 16.56a

16 715.81 715.67 O I 8.72 ± 3.14a,b 8.67 ± 1.94a,b 8.13 ± 1.96a,c 10.08 ± 1.56d 7.49 ± 2.74c 9.37 ± 1.86b,d

17 742.49 742.36 N I 27.09 ± 9.86a 27.60 ± 6.34a 27.09 ± 6.48a 32.55 ± 4.76b 24.32 ± 8.94a 31.54 ± 6.09b

18 744.30 744.23 N I 55.62 ± 20.48a 56.49 ± 13.02a 55.69 ± 13.34a 66.12 ± 9.64b 49.59 ± 18.07a 66.20 ± 12.67b

19 746.92 746.83 N I 97.98 ± 36.16a,b 99.25 ± 22.13b 97.42 ± 23.14a,b 115.17 ± 16.63c 86.51 ± 31.62a 115.14 ± 22.01c

20 766.57 766.49 K I 11.09 ± 3.25a 11.56 ± 1.82a 15.06 ± 1.74b 23.04 ± 3.59c 19.73 ± 2.73d 6.60 ± 1.14e

21 769.97 769.90 K I 8.67 ± 2.71a 9.19 ± 1.63a 12.11 ± 1.49b 18.71 ± 3.08c 15.93 ± 2.24d 5.17 ± 0.83e

22 777.47 777.19 O I 247.36 ± 86.94a 256.27 ± 57.14a,b 251.38 ± 58.87a 282.16 ± 39.91b 217.06 ± 73.11c 284.15 ± 52.33b

23 818.57 818.49 N I 87.02 ± 32.60a 88.64 ± 20.21a 85.78 ± 20.64a 99.72 ± 14.36b 75.30 ± 27.25c 98.93 ± 19.18b

24 818.86 818.80 N I 100.44 ± 36.69a,b 100.40 ± 21.59a,b 94.75 ± 22.35a,c 111.12 ± 16.03b 83.57 ± 30.02c 111.82 ± 21.10b

25 820.15 820.04 N I 32.89 ± 12.77a 32.97 ± 7.34a 31.25 ± 7.63a,b 37.26 ± 5.29c 27.92 ± 10.19b 37.42 ± 7.27c

26 821.14 821.07 N I 58.82 ± 21.19a,b 56.65 ± 12.37a,b 53.41 ± 12.62a,c 63.39 ± 8.95b,d 47.67 ± 17.13c 63.93 ± 12.38d

27 821.73 821.63 N I 248.81 ± 86.24a 253.70 ± 53.64a,b 244.93 ± 57.61a 285.55 ± 41.05c 215.51 ± 77.86d 278.54 ± 51.68b,c

28 822.28 822.31 N I 54.39 ± 23.15a 53.31 ± 13.41a 52.52 ± 12.38a 62.73 ± 8.90b 47.79 ± 16.98a 70.90 ± 14.55c

29 822.43 Unknown Unknown 60.74 ± 20.81a 59.80 ± 12.69a 57.26 ± 13.28a 70.97 ± 10.30b 53.47 ± 19.36a 68.50 ± 13.32b

30 824.36 824.24 N I 54.59 ± 19.07a 54.14 ± 11.57a 51.45 ± 11.82a 64.01 ± 9.25b 47.99 ± 17.54a 62.25 ± 11.95b

31 844.73 844.68 O I 183.54 ± 61.68a,b 182.26 ± 36.66a,b 169.94 ± 38.41a,c 198.32 ± 28.27b 153.31 ± 51.96c 201.58 ± 36.31b

32 856.86 856.77 N I 23.77 ± 8.77a 23.73 ± 5.17a 21.86 ± 5.12a,b 27.16 ± 4.05c 20.11 ± 7.24b 26.96 ± 5.20c

33 859.54 859.40 N I 34.89 ± 12.63a,b 32.32 ± 6.30a 28.32 ± 6.42c 36.00 ± 5.57a,b 27.24 ± 10.09c 37.10 ± 7.24b

* The values are expressed as mean ±SD (n = 40). Values marked by different superscript letters within a row are statistically different at the level p < 0.05. A1: acacia honey (Shaanxi); A2:
acacia honey (Shanxi); A3: acacia honey (Jilin); M1: multi-floral honey (Shanxi); M2: multi-floral (Qinghai); M3: multi-floral (Hubei).
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3.2. PCA Analysis

PCA analysis was used to visualize the clusters with scores plots, and determine the important
variables with loadings plots. First, all honey (including acacia honey and multi-floral honey) within
different geographical origins were visualized through PCA analysis. The contribution of the first
three principal components accounted for 88.2% of explained variance, with PC1, PC2, and PC3 of
75.5%, 8.5%, and 4.2%, respectively. Figure 2a shows score plots of six different groups. In general, six
groups entangled with each other. It might be credited to complex reciprocal effect of botanical and
geographical origins. It was hard to distinguish with PCA analysis.
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Therefore, PCA analysis was separately performed for acacia honey and multi-floral honey,
the score plots of which are shown in Figure 2b,c. The contribution of the first three principal
components for acacia honey and multi-floral honey accounted for 89.5% and 88.9% of the explained
variance, respectively. Apparently, the classification result of multi-floral honey was better than that of
acacia honey. The samples from Shanxi, Qinghai, and Hubei provinces clustered more compact, and
could be separated.

The loadings of PCA indicate the contribution of each variable, which can be used to determine
feature variables. The larger absolute value of the loading, the more importance of the variable.
In addition, positive value indicates a positive link, and negative value indicates a negative link.
Because the first three principal components contributed most of the total variance (>85%), their
loadings were used to determine important variables. Figure 3 shows loading plots of the first three
principal components for all honey, acacia honey, and multi-floral honey. Similar trends could be
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observed for these three plots, and the variables with large absolute loadings corresponded to the main
emissions. Most of loadings of PC1 (except spectral range of CN emissions) is positive, which indicated
that there is a positive link between the variable and the information contained in PC1. As shown in
Figure 3, the major elements of C, H, O, and N contributed to the discrimination, as well as the mineral
elements of Mg, Ca, Na, and K.
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3.3. Quantitative Discrimination

Because the variables of full spectrum were over 20,000, it might lead to overfitting and worsen
calculation speed [30]. In this case, principal components after dimensional reducing were used to
construct models. The first few principal components with accumulated variance over 95% were
used to represent the raw variables. The number of PCs for all honey, acacia honey, and multi-floral
honey were 26, 23, and 29, respectively. Then, these variables were used as the inputs of LDA and
SVM models.

Confusion matrix was used to evaluate the performance (Figure 4). For all honey, the accuracy of
LDA and SVM models were 84.1% and 83.1%, respectively. In LDA model, 93 acacia honey samples
from Shaanxi province was misclassified as Shanxi province, and 531 acacia honey samples from Shanxi
province were misclassified as those from Jilin province. In SVM model, the largest misclassification
was from the samples from Shanxi province; 795 acacia honey samples from Shanxi province was
misclassified as those from Jilin province. The results indicated that it was hard to discriminate
the samples from Shanxi province and Jilin province. For acacia honey, the accuracy of LDA and
SVM models were 74.1% and 82.6%, respectively. The low accuracy was also originated from the
misclassification between Shanxi province and Jilin province. The recall of Shanxi province and
Jilin province in LDA model were 74.8% and 59.9%, whereas 63.0% and 88.3% in the SVM model.
For multi-floral honey, the accuracy of the LDA and SVM models were 98.6% and 99.7%, respectively.
In the LDA model, only 33 samples from Shanxi province were misclassified as those from Qinghai
Province. The performance of the SVM model was better than the LDA model.
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Figure 4. Confusion matrix for origin discrimination of all honey (a) LDA model and (b) SVM model,
acacia honey (c) LDA model and (d) SVM model, multi-floral honey (e) LDA model and (f) SVM
model. The diagonal cells correspond to observations that are correctly classified. The off-diagonal cells
correspond to incorrectly classified observations. Both the number of observations and the percentage
of the total number of observations are shown in each cell. The column on the far right of the plot shows
the percentages of all the examples predicted to belong to each class that are correctly and incorrectly
classified. These metrics are often called the precision and false discovery rate, respectively. The row
at the bottom of the plot shows the percentages of all the examples belonging to each class that are
correctly and incorrectly classified. These metrics are often called the recall and false negative rate,
respectively. The cell in the bottom right of the plot shows the overall accuracy.
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In addition, a comparison of modeling performance in three classifications is listed in Table 3.
Accuracy and mean average precision were used to evaluate the performance. In general, the SVM
model performed better than the LDA model. The accuracy for all honey, acacia honey, and multi-floral
honey were 83.1%, 82.6%, and 99.7%, and the mean average precision were 79.3%, 89.5%, and 99.7%.
The discrimination performance of all honey was worse than acacia honey or multi-floral honey.
The geographical origin of multi-floral honey was well classified, with accuracy and mean average
precision of 99.7% and 99.7%. Great differences have been found among these three origins, which
were mainly caused by the botanical difference. The flowers in Qinghai Province were mainly rhodiola
rosea, chrysanthemum, codonopsis pilosula, and hippophae rhamnoides, etc. The flowers in Shanxi
Province were mainly chaste, jujube, and acacia, etc. The flowers in Hebei Province were mainly
Chinese medical plants, such as goldthread, chrysanthemum, etc. The constituents of honey might be
affected by the regional difference of botanical variety.

Table 3. Discriminant results of honey origins.

Sample Model Accuracy Mean Average Precision

Mixture of acacia honey
and multi-floral honey

LDA 84.1% 80.1%
SVM 83.1% 79.3%

Acacia honey LDA 74.1% 86.9%
SVM 82.6% 89.5%

Multi-floral honey LDA 98.6% 95.1%
SVM 99.7% 99.7%

4. Conclusions

Laser-induced breakdown spectroscopy was successfully used to discriminate the geographical
origins of honey. Spectral intensity of emissions from Mg, K, Ca, and Na showed slight difference
among different origins. One-way ANOVA test indicated emissions from Na I 589.00 nm had significant
difference among six groups, which might be considered as feature emission for geographical origin
discrimination. Different clusters of origins in multi-floral honey could be separated in PCA score
plot, whereas the samples from all honey (including acacia honey and multi-floral honey) and acacia
honey were entangled with each other. Emissions from major elements C, H, O, and N as well
as Mg, Ca, Na, and K had large loading values, which indicated the importance in each principal
component. In addition, the geographical origins of all honey, acacia honey, and multi-floral honey
were quantitatively discriminated with LDA and SVM. In general, the SVM model performed better
than the LDA model. For acacia honey, the accuracy and mean average precision were 82.6% and 89.5%.
Some deep learning methods such as convolutional neural networks might be used to further improve
the performance. Excellent discriminant result was achieved in multi-floral honey, with accuracy and
mean average precision of 99.7% and 99.7%, respectively. It might be credited to the regional difference
in botanical variety. The results indicated the feasibility of the utilization of LIBS for discriminating the
geographical origins of honey, which might provide an approach for food traceability.
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