
Application of Optimal Designs to Item Calibration
Hung-Yi Lu*

Department of Statistics and Information Science, Fu Jen Catholic University, New Taipei City, Taiwan

Abstract

In computerized adaptive testing (CAT), examinees are presented with various sets of items chosen from a precalibrated
item pool. Consequently, the attrition speed of the items is extremely fast, and replenishing the item pool is essential.
Therefore, item calibration has become a crucial concern in maintaining item banks. In this study, a two-parameter logistic
model is used. We applied optimal designs and adaptive sequential analysis to solve this item calibration problem. The
results indicated that the proposed optimal designs are cost effective and time efficient.
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Introduction

Computerized adaptive testing (CAT) has received much

attention over the past 2 decades. Recently, CAT has become

increasingly critical and has been applied to numerous standard-

ized tests, such as the Graduate Record Examinations (GRE) test,

the Graduate Management Admission Test (GMAT), and the Test

of English as a Foreign Language (TOEFL). In conventional

paper-and-pencil testing, all examinees are presented with the

same set of items. In adaptive testing, an individual set of test

items, rather than a common set of test items, is given to a

particular examinee. The items that constitute the individual sets

are selected from an item pool according to information regarding

the ability of the examinee, which is obtained during the testing

process, and the test proceeds until several information criteria are

satisfied. In CAT, items can be adaptively selected using the

assistance of high-speed computing technology according to the

optimal set of criteria for estimating the latent trait levels of the

examinee. CAT can provide more efficient estimates of examinees’

latent trait levels by reducing testing time and maintaining a high

level of estimate precision [1–4].

The item pool used in CAT is a collection of items that have

been calibrated to enable the routine testing of examinees. The

items chosen for an examinee in CAT are adaptively based on the

responses of the examinee to previously administered items. Thus,

items are selected sequentially during the course of the test.

Certain item selection procedures can yield more accurate

estimates and are more efficient than random selection based on

testing time (test length), and numerous item selection procedures

have been proposed [5–7]. Empirical studies have demonstrated

that using item selection procedures in which Fisher information is

maximized results in the overexposure of items with high

discrimination and the underexposure of those with low discrim-

ination [8], [9]. Because examinees participating in CAT are

presented with various sets of items drawn from an item pool, the

attrition speed of the items is extremely fast compared with that of

traditional tests; therefore, replenishing the item pool is essential in

CAT. To replace the previous items with new items, calibrating

the item parameters of the new items is necessary. In addition to

education studies, in sociology and psychology, researchers usually

use questionnaires. After the aim of the study are decided,

researchers need to estimate the parameters for each question,

which means item calibration, and then researchers can design the

questionnaires based on the aim of the study. With the different

aims of studies and the changes of the society, we have to

introduce new questions to meet the researching requirements;

that is, calibration is a process of setting a measuring device in

order to conform with a reference standard. Therefore, item

calibration is an important issue in sociological and psychological

researches. This causes the problem of item calibration to occur,

which involves estimating item parameters based on item response

models before adding the items to the item pool. This subsequently

prompts the concern as to how examinees are selected based on

the new items, which is typically an extremely expensive and time-

consuming process [10], [11]. The problem of item calibration

involves selecting examinees for new items. Online calibration is

commonly used to calibrate new items. Online calibration refers to

estimating the parameters of new items through active testing by

presenting new items to examinees during the course of a test

designed to estimate their latent trait levels. In other words, the

latent trait levels used for calibrating new items are selected and

estimated during an operational test.

The optimality problem involves choosing the desired values of

variables for estimating the unknown parameters. Several optimal

criteria, such as A-, D-, and E-optimality, have been proposed in

the literature. In linear models, optimal designs are independent of

the parameters of interest, but in nonlinear models, the optimal

designs typically depend on the unknown parameters [12–15].

Sequential or multistage procedures can be used to solve the

problem of unknown item parameters [16–19].

The most commonly applied theory in standardized testing is

the item response theory (IRT). IRT is a psychometric model that

describes the item characteristic curve (ICC), which is the

probability of an examinee answering a particular item correctly,

given a latent trait level and the parameters of the item. Several

IRT models have been developed using psychological and

educational measurements, such as the latent linear [20], normal

ogive [21], and logistic models [22–26]. Among these models,
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logistic-type models are the most often used. IRT models are

typically nonlinear, and the optimal design depends on the

unknown parameters of interest. Consequently, no fixed sample

size procedure is available for achieving the optimal design

without acquiring further information regarding the unknown

parameters. The sequential method is the most commonly used

statistical method for both providing the optimal design and

controlling estimation accuracy [27]. Item selection is essential in

designing a test, and in this study, we reversed the perspective of

item parameters and latent traits. The item calibration problem

involves estimating the item parameters of given items by

administering these items to the selected examinees with known

latent trait levels. However, inviting additional examinees to

participate in the item calibration increases the cost of calibration.

In this paper, several optimal designs for item calibration are

discussed, and the performance of these designs is evaluated based

on estimation accuracy and efficiency regarding the number of

examinees used for calibration such that the item parameter

estimate can achieve the prefixed accuracy.

Optimal Designs Used in Item Calibration
The logistic model is one of the most commonly used models for

analyzing binary response data. It describes the relationship

between a dichotomous response variable Y and a set of

explanatory variables X according to

log
P(Y~1DX )

P(Y~0DX )
~X 0b, ð1Þ

which implies that

P(Y~1DX )~
exp (X 0b)

1z exp (X 0b)
: ð2Þ

Consider X~(1,x)0 and b~(d,c)0; a logistic model for an

explanatory variable x can be written as.

P(Y~1Dx)~
exp (dzcx)

1z exp (dzcx)
: ð3Þ

A sampling design for logistic models contains a vector of m
design points ½x1,x2, . . . ,xm� and the corresponding sample sizes

½n1,n2, . . . ,nm�. The sample size of the design is equal to n~
Xm

i~1

ni

and ni=n is replaced with wi to obtain
Xm

i~1

wi~1. Thus, the design

can be described as D~f(xi,wi), i~1,2, . . . mg. Therefore, the

information matrix for the joint estimation of d and c is

I(d,c)~

Xm

i~1

wi
e{(dzcxi )

(1ze{(dzcxi ))2

Xm

i~1

wixi
e{(dzcxi )

(1ze{(dzcxi ))2

Xm

i~1

wixi

e{(dzcxi )

(1ze{(dzcxi ))2

Xm

i~1

wixi
2 e{(dzcxi )

(1ze{(dzcxi ))2

0
BBBB@

1
CCCCA
ð4Þ

The design problem that subsequently occurs depends on the

unknown parameters of interest b. Specifically, the Fisher

information matrix of b depends on both the design X and the

unknown parameter b.

Item response theory models
Item response theory models describe the probability of an

examinee answering a particular item correctly, given a latent trait

level and the parameters of the item. Logistic models are the most

frequently used models. A three-parameter logistic model (3-PL

model) is formulated as

P(Y~1Dh)~gz(1{g)
eD:a(h{b)

1zeD:a(h{b)
ð5Þ

where the response Y = 1 or 0 denotes that whether the answer is

correct or incorrect, respectively. The notation D is a constant (for

convenience, we assumed D = 1 in this study), and parameters a, b,
and g are designated as discrimination, difficulty, and pseudo

guessing parameters respectively. If g = 0, it is called a two-

parameter logistic model (2-PL model). If all of the discrimination

parameters a equal a fixed positive constant, or all of the items in

the item bank are assumed to have the same item discrimination

parameter, the logistic model becomes a Rasch model [26].

Optimal designs for a 2-PL model
The problem of item calibration involves estimating the

parameters of given items by administering these items to selected

examinees with known latent trait levels. Supposing that a 2-PL

model is used, to apply the results in a regular logistic regression

model, several reparametrization schemes are used for conve-

nience.

Let X~(1,h)0 and b~({ab,a)0; a 2-PL model can be rewritten

as a regular logistic model. Thus, the item calibration process used

in a 2-PL model becomes a design problem in a regular logistic

model.

The optimality problem involves choosing the desired values of

variables for estimating unknown parameters. Several optimal

criteria, such as A-, D- and E-optimality, have been proposed in

the literature [28]. Optimal design theory is widely used in

educational testing, and has been developed for efficient param-

eter estimation [29–31].

D-optimality. Let ci~dzcxi and the set f(ci,wi)g be the

optimal design in this study. The criterion of the D-optimal design

is to maximize the determinant of the Fisher information matrix of

Table 1. Coverage frequency of parameters.

parameter D-optimal A-optimal E-optimal Random design

c~a 0.9990 0.9994 0.9993 0.9992

d~{a|b 0.9925 0.9924 0.9920 0.9917

doi:10.1371/journal.pone.0106747.t001
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the parameter of interest. Mathew and Sinha showed that the

symmetric design f(c,1=2),({c,1=2)g maximizing the determi-

nant of the Fisher information matrix of I(d,c), where c = 1.5434,

is obtained by maximizing c2e2c=(1zec)4 [32]. In the 2-PL model

case, the design points are placed evenly on h1~({1:5434=a)zb

and h2~(1:5434=a)zb, where a and b are the parameters of an

item.

A-optimality. The A-optimal design can be obtained by

minimizing the trace of the inverse of the Fisher information

matrix. No explicit solution to the A-optimality problem exists

under logistic models, the solution can be performed numerically

[32], [33]. In the field of symmetric designs, Sitter and Wu

demonstrated that the A-optimal design is obtained using

f(c,1=2),({c,1=2)g [34], where c minimizes

(1ze{c)2

e{c
½1z

1

c2
�, ð6Þ

where c can be demonstrated to be approximately 1.3 and 21.3.

E-optimality. The purpose of the E-optimal design is to

maximize the minimum eigenvalue of the information matrix.

Therefore, the problem is to identify the optimal value of c that is

the minimization of

max½(1ze{c)2

c2e{c
,
c2(1ze{c)2

c2e{c
� ð7Þ

Sequential Estimation Procedure
This section introduces the sequential optimal design procedure

for item calibration. Sequential estimation has been studied by

many authors [29], [35], [36]. The sequential optimal design

procedure was combined with sequential estimation of parameters.

The procedure is begun with an initialization phase and is

complete when a stopping criterion is satisfied in the sequential

estimation phase [29], [37], [38].

Initialization phase
(1) Select an initial set of uniformly distributed design points

h(0)~½h1,h2, . . . ,hN(0) � with sample size N (0), and

Y (0)~½Y1,Y2, . . . ,YN(0) � are the corresponding responses. The

initial estimates a and b can then be obtained: âaN0
and b̂bN0

. (To

calibrate an item, suitable examinees must be selected to ensure

that estimates of item parameters satisfied certain properties

typical of a sequential design problem. Because item parameters

are unknown in the initialization phase, examinees with various

Table 2. Mean square error of âa.

D-optimal A-optimal E-optimal Random design

Mean square error of âa stratified by a

a = 0.5 0.0057 0.0087 0.0113 0.0096

(0.0012) (0.0044) (0.0069) (0.0018)

a = 1.0 0.0091 0.0096 0.0108 0.0111

(0.0059) (0.0062) (0.0082) (0.0046)

a = 1.5 0.0117 0.0110 0.0106 0.0124

(0.0093) (0.0090) (0.0082) (0.0080)

a = 2.0 0.0139 0.0132 0.0117 0.0140

(0.0127) (0.0121) (0.0103) (0.0114)

a = 2.5 0.0148 0.0130 0.0135 0.0149

(0.0135) (0.0118) (0.0127) (0.0135)

Mean square error of âa stratified by b

b = 23 0.0041 0.0039 0.0037 0.0061

(0.0004) (0.0003) (0.0003) (0.0011)

b = 22 0.0068 0.0070 0.0069 0.0085

(0.0012) (0.0004) (0.0008) (0.0006)

b = 21 0.0142 0.0142 0.0147 0.0147

(0.0048) (0.0017) (0.0013) (0.0033)

b = 0 0.0278 0.0280 0.0293 0.0278

(0.0142) (0.0102) (0.0068) (0.0127)

b = 1 0.0139 0.0139 0.0155 0.0152

(0.0052) (0.0017) (0.0016) (0.0028)

b = 2 0.0067 0.0069 0.0070 0.0089

(0.0011) (0.0008) (0.0006) (0.0009)

b = 3 0.0040 0.0039 0.0038 0.0057

(0.0004) (0.0002) (0.0003) (0.0012)

*() standard error based on 1000 trials.
doi:10.1371/journal.pone.0106747.t002
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abilities were uniformly selected to examine and estimate item

parameters. To review similar procedures, please refer to [29] and

[36]).

The kth iteration
(2) Compute two design points hk~½hN(k{1)z1,hN (k{1)z2� based

on the previous estimates obtained from a different design scheme

and their respective responses Yk~½YN(k{1)z1,YN (k{1)z2�. Subse-

quently, update the estimates of bk~½âak,b̂bk� by using all of the

design points h(k)~fh(k{1),hkg and their responses

Y (k)~fY (k{1),Ykg.
(3) If the stopping criterion is satisfied, the procedure is stopped,

and b̂b~bk and N~N (k). Otherwise, set N (kz1)~N (k)z2, and

repeat the iteration until the stopping criterion is satisfied.

Sequential Fixed Accuracy Estimate. In this study, we

constructed a sequential confidence set for the regression

parameter b with the prescribed accuracy and precision. Chang

and Martinsek considered fixed size confidence ellipsoids for

parameters of a logistic regression model, and they showed that

their stopping rule is asymptotically efficient when the size of the

region is small [35]. Define

Rn~fb [ R2 : (b̂bn{b)0ŜSn(b̂bn{b)ƒC2
ag, ð8Þ

where C2
a is a prefixed constant satisfying P(x2(2)§C2

a ), and ŜSn is

the estimated Fisher information matrix of the true parameter b.

The set Rn is a confidence ellipsoid of b with a coverage frequency

equal to 1{a, asymptotically; in other words,

lim
n??

P(b [ Rn)~1{a: ð9Þ

If the maximum axis of Rn must be no greater than 2d when d.0,

the equivalent is obtained 2(C2
a=lmin(n))1=2

ƒ2d, where lmin(n) is

the minimum eigenvalue of ŜSn. This implies that

t~td~ inffn§1 : lmin(n)§
C2

a

d2
g ð10Þ

for estimating b. If the stopping rule td is applied, when the

sampling stops, b̂bt and Rt are used as the final estimate and the

confidence ellipsoid of b, respectively. This demonstrates that b̂bt is

highly consistent, and

lim
d?0

P(b [ Rt)~1{a: ð11Þ

Table 3. Mean square error of b̂b.

D-optimal A-optimal E-optimal Random design

Mean square error of b̂b stratified by a

a = 0.5 0.1213 0.0843 0.0498 0.1871

(0.0291) (0.0426) (0.0455) (0.0273)

a = 1.0 0.0179 0.0167 0.0132 0.0258

(0.0102) (0.0109) (0.0106) (0.0077)

a = 1.5 0.0058 0.0064 0.0078 0.0070

(0.0046) (0.0047) (0.0054) (0.0050)

a = 2.0 0.0020 0.0031 0.0038 0.0026

(0.0017) (0.0025) (0.0030) (0.0022)

a = 2.5 0.0009 0.0015 0.0019 0.0012

(0.0008) (0.0013) (0.0017) (0.0011)

Mean square error of b̂b stratified by b

b = 23 0.0184 0.0084 0.0027 0.0410

(0.0363) (0.0138) (0.0022) (0.0797)

b = 22 0.0300 0.0185 0.0079 0.0463

(0.0567) (0.0317) (0.0087) (0.0888)

b = 21 0.0375 0.0344 0.0253 0.0433

(0.0637) (0.0546) (0.0365) (0.0724)

b = 0 0.0389 0.0381 0.0322 0.0412

(0.0582) (0.0528) (0.0374) (0.0586)

b = 1 0.0375 0.0307 0.0288 0.0476

(0.0627) (0.0482) (0.0441) (0.0801)

b = 2 0.0266 0.0185 0.0074 0.0513

(0.0491) (0.0312) (0.0077) (0.1011)

b = 3 0.0182 0.0081 0.0028 0.0424

(0.0357) (0.0134) (0.0024) (0.0812)

*() standard error based on 1000 trials.
doi:10.1371/journal.pone.0106747.t003
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Because of reparametrization, the accuracy of b cannot be

transferred to the accuracy of the item parameters of interest, a
and b, directly. Therefore, because we are interested in the item

parameters, rewriting the accuracy of the b estimate based on the

accuracy of the item parameters of interest is crucial. The

relationship between the accuracy of b and the accuracy of the

item parameters is described in the following section.

Accuracy of Item Parameters. Let b~({ab,a)0, as before.

As defined in Chang [39], the sequential confidence ellipsoid of b
has a maximum axis no greater than 2d ( = h) and a coverage

probability equal to 1{a, asymptotically, for a given a [ (0,1) and

a prescribed width d.0.

This implies that, at a probability equal to 1{a,

j ab
^
{abjv2d~h

and

Dâa{aDv2d~h ð13Þ

Assume that n is sufficiently high that âa{hw0, which implies that

âaw0. If awEw0 for Ew0, a sufficiently low h exists that âa{hw0
for a high n. This condition is mild because we assume that the

discrimination parameter a is bounded away from 0, according to

IRT.

Define b̂b~ ab
^
=âa. Thus, âab̂b~ ab

^
. Subsequently, based on (12)

and (13),

âajb̂b{bjƒj ab
^
{abjzjab{âabjƒhzjbjjâa{ajƒhzjbjh

This implies that

Db̂b{bDƒ
h(1zDbD)

âa
ð15Þ

A Simulation Study
In this study, we used a 2-PL model to describe and compare

the performance of various designs. The discrimination parameter

a ranged from 0.5 to 2.5 with an increase equal to 0.5, and the

difficulty parameter b ranged from 23 to 3 with an increase equal

to 1. Therefore, 35 combinations of item parameters were

considered in the simulations.

At the initial stage, no prior information on the parameters of

interest is available. Therefore, all of the possible latent trait levels

should be considered. A suitable choice of design points is a set of

uniformly distributed design points derived from the range of

latent trait levels [23.6, 3.6]. At the design stage, two design points

are computed based on the initial estimates, and the estimates of

parameters a and b are updated with the new responses. In this

study, we assume that all selected latent trait levels for calibration

can be specified. The sequential procedures proposed here are

based on the maximum likelihood estimates. The procedure stops

when the stopping criterion is satisfied. The length of the

maximum axis of the confidence ellipsoid was d = 0.5 and the

target coverage frequency was 95%. The initial sample size was 50

and each item was run 1000 times. All of the simulations were

Figure 1. Stopping time (sample size) of items.
doi:10.1371/journal.pone.0106747.g001

(12)

(14)
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performed on an Intel personal computer, using Matlab 7.0

software.

Results

Table 1 lists the coverage frequencies for various optimal

designs. The coverage frequencies of all of the designs were over

99%, indicating that all of the cases achieved the prespecified 95%

precision target.

Chang and Martinsek considered fixed size confidence ellipsoids

for parameters of a logistic regression model and suggested a

stopping rule for constructing a confidence ellipsoid that features a

‘‘maximum axis no greater than 2d’’ and the prespecified coverage

probability [35]. In other words, after stopping sampling based on

this stopping rule, the errors of all parameters are smaller than 2d.

Hence, this stopping rule is conservative and the coverage

probability is typically higher than the prespecified probability.

To review similar results, please refer to [36].

The original design is that of a regular logistic model with

parameter b~ {ab,að Þ, such that the estimate of b has the desired

properties. However, in the 2-PL model, the item parameter is (a,

b). We adopted a reparameterized form of the 2-PL model such

that the design problem of the item calibration process becomes

the design problem of the regular logistic model. The accuracy of

the transformed item parameters a and b is obtained using (13) and

(15). The results differ for various values of a and b. The simulation

results are listed in Tables 2 and 3.

The mean square error of parameter a stratified according to

the values of a and b is summarized in Table 2. We observed that

the MSE of âa increased as a increased, and decreased as |b|
increased for every design (except for the results of the E-optimal

design in which the value of a was low). The increased a led to the

slope of the item characteristic function to increase and the range

near the true b to narrow; consequently, the Fisher amount of

information revealed by the function decreased. Table 3 summa-

rizes the mean square error of b̂b. The MSE of b̂b decreased as the

discrimination parameter a increased, and decreased as |b|
increased; thus, when discrimination parameter a increases, ability

can be more clearly distinguished.

In summary, the parameters of the calibrated items were

estimated at a prespecified precision of d = 0.5 and a = 0.05. No

significant difference occurred when estimating parameter a by

using the various methods. In comparison with estimating

parameter b by using these distinct methods, the precision levels

for estimating parameter b ranked from high to low were E-

optimal, A-optimal, D-optimal, and a random design when

discrimination parameter a was low. However, when discrimina-

tion parameter a was high, the precision of estimating parameter b
by using D-optimal and A-optimal designs was more favorable

than that estimated using the E-optimal and random designs.

Table 4. Stopping time (sample size) of items.

D-optimal A-optimal E-optimal Random design

Stopping time stratified by a

a = 0.5 222.7 338.5 1233.6 170.3

(77.462) (226.453) (1151.069) (45.408)

a = 1.0 529.3 568.1 697.0 576.1

(339.862) (385.647) (495.113) (397.618)

a = 1.5 941.5 885.6 891.0 1661.8

(647.129) (604.804) (589.397) (1476.011)

a = 2.0 1547.1 1332.0 1377.5 3631.3

(1091.476) (915.258) (935.578) (3508.672)

a = 2.5 2326.1 1941.2 1960.4 6601.3

(1673.482) (1360.741) (1362.429) (6508.008)

Stopping time stratified by b

b = 23 2131.9 1939.0 2445.5 5853.2

(1672.388) (1226.789) (952.1537) (6351.605)

b = 22 1121.3 1015.9 1220.2 1974.5

(861.126) (669.150) (510.860) (1965.825)

b = 21 510.9 470.6 521.2 782.1

(336.537) (285.124) (257.421) (709.516)

b = 0 264.4 231.5 249.0 367.3

(133.608) (104.540) (111.238) (274.093)

b = 1 512.5 472.6 519.5 784.3

(340.011) (289.079) (260.272) (712.051)

b = 2 1121.7 1016.4 1222.5 1979.9

(861.658) (670.321) (511.934) (1966.257)

b = 3 2130.7 1945.6 2445.3 5956.0

(1677.501) (1227.314) (955.251) (6519.601)

*() standard error based on 1000 trials.
doi:10.1371/journal.pone.0106747.t004
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Overall, optimal design estimations produced more precise results

than random design estimations did.

The estimations obtained using these four methods were not

significantly different because the same stopping criterion was

used. We also compared the efficiency of these four methods by

determining the item calibration sample sizes. Table 4 and

Figure 1 show the item calibration sample sizes of various items.

When parameter a increased, the sample size increased. The same

phenomenon occurred in |b|. When comparing the sample size

used in the various methods, the sample size used in random

design was greater than the sample size used in the other optimal

designs. The reason for this is that examinees are not appropriately

chosen in random designs. Therefore, less Fisher information is

provided to fulfill the predefined stopping criterion. However,

when parameter a was extremely low, the sample size used in the

random designs was the smallest among the four methods because

the ICC curve for random designs is flatter than the ICC curve of

the other designs, and the appropriate examinee in the random

designs is then chosen at a higher probability. When discrimina-

tion parameter a was low, the sample sizes used in the optimal

designs, ranked from low to high, were D-optimal, A-optimal, and

E-optimal. When discrimination parameter a was high, the sample

sizes used in the optimal designs, ranked from low to high, were A-

optimal, E-optimal, and D-optimal. Overall, the A-optimal design

produced the most favorable results. The D-optimal design

produced the second most favorable results, and the E-optimal

design produced the least favorable results.

Discussion and Conclusion

In CAT, the cost increases when describing a process for item

calibration. Achieving correctness and efficiency in item calibra-

tion is a crucial concern. In this study, we estimated the design

points for various optimal designs to discuss the accuracy and

efficiency of item calibration in fully sequential analysis. Because

the same stopping criterion was used for these four methods, we

determined that no significant difference in the estimating

parameters existed. However, the sample size used in the optimal

designs was smaller than that used in random design. Further-

more, the A-optimal design produced the most favorable results

compared with those of the other optimal designs.

Based on these results, we offer the following suggestions:

1. This study employed symmetric design to limit A-optimal and

E-optimal, so the findings are restricted. We thus call for more

future research to investigate optimal design without the

assumption of symmetric design to bring more insights.

2. In this study, we assume that all selected latent trait levels for

calibration can be specified. In online calibration, the latent

trait levels used for calibrating new items are selected and

estimated during an operational test. Thus, the selected latent

trait levels for calibration are typically subject to measurement

errors. For further details regarding measurement error

problems in online calibration, please refer to [36].

3. In this study, we used a sequential estimation procedure. In this

procedure, only two new design points are included in each

iteration. This is fully sequential sampling, and the number of

iterations and time required for item calibration increase. In

practice, multistage sequential sampling, in which samples are

selected only at several stages and the time for item calibration

decreases, can be considered [40], [41].
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