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Tetrahedron beam computed tomography (TBCT) performs volumetric imaging using a stack of fan beams generated by amultiple
pixel X-ray source.While the TBCT systemwas designed to overcome the scatter and detector issues faced by cone beam computed
tomography (CBCT), it still suffers the same large cone angle artifacts as CBCT due to the use of approximate reconstruction
algorithms. It has been shown that iterative reconstruction algorithms are better able to model irregular system geometries and
that algebraic iterative algorithms in particular have been able to reduce cone artifacts appearing at large cone angles. In this paper,
the SART algorithm is modified for the use with the different TBCT geometries and is tested using both simulated projection data
and data acquired using the TBCT benchtop system.Themodified SART reconstruction algorithms were able tomitigate the effects
of using data generated at large cone angles and were also able to reconstruct CT images without the introduction of artifacts due
to either the longitudinal or transverse truncation in the data sets. Algebraic iterative reconstruction can be especially useful for
dual-source dual-detector TBCT, wherein the cone angle is the largest in the center of the field of view.

1. Introduction

Image-guided radiation therapy (IGRT) is essential to ensure
proper dose delivery to the target while sparing the sur-
rounding tissue [1, 2]. Cone beam CT (CBCT) is a popular
online imaging modality used for LINAC-based IGRT [3, 4].
Although CBCT is convenient to use, the performance of
CBCT systems is less than ideal. The image quality for the
CBCT is significantly degraded due to excessive scattered
photons [5–8] as well as suboptimal performance of the
flat panel detector [9]. These issues limit the use of CBCT
for certain advanced radiation therapy techniques such as
online adaptive radiotherapy [8, 10]. It is also well known
that at large cone angles, there are artifacts caused by using
approximate reconstruction methods that appear in CBCT
reconstructions [11], but this issue has largely been ignored
in IGRT because the scatter and detector issues are the
dominant factors in the degradation of CBCT image quality.

Tetrahedron beam computed tomography (TBCT) is a
novel volumetric CT modality that overcomes the scatter
and detector problems of CBCT [12, 13]. A TBCT system
is composed of a minimum of one linear source array with
one linear detector array positioned opposite and orthogonal
to it. In TBCT, scattered photons are largely rejected due to
the fan-beam geometry of the system. A TBCT system also
uses the same high performance detectors that are used for
helical CT scanners. Therefore, TBCT should be equivalent
to diagnostic helical CT with regard to scatter rejection and
detector performance. However, similar to CBCT, the data
sufficiency condition [14, 15] is not satisfied with a single
axial TBCT scan. TBCT still suffers from the same large cone
angle artifacts that are present in CBCT images reconstructed
using the conventional Feldkamp-Davis-Kress (FDK)-type
approximate filtered backprojection (FBP) algorithm [16].
More importantly, in a TBCT system that is composed
of two source arrays and two detector arrays, the cone
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Figure 1: Single-source single-detector TBCT geometry (a). Dual-source dual-detector TBCT geometry (b).

reconstruction artifact is most significant in the center of the
field of view (FOV).Therefore, reducing cone artifacts ismore
important for this arrangement.

Owing to the rapid improvement in computational
power, it has become practical to use iterative reconstruction
methods in the clinic. Iterative imaging reconstructionmeth-
ods have been proven to be capable of reducing imaging dose
[17, 18], increasing image resolution [19, 20], and reducing
artifacts [21, 22]. Most CT vendors provide different itera-
tive image reconstruction solutions for their diagnostic CT
scanners. The algebraic reconstruction technique (ART) [23]
and the simultaneous ART (SART) [24] algebraic iterative
methods, in particular, have been shown to reconstruct
cone beam data with minimal artifacts at large cone angles
[21].

In order to further improve TBCT image quality and
reduce reconstruction artifacts at larger cone angles, we
implemented iterative algebraic reconstruction methods for
different TBCT geometries in this study. We evaluated the
performance of these algorithms using various numerical
phantoms as well as digitally-projected patient images. The
patient reconstruction results were then compared to the
reconstructed images produced using a fan-beam reconstruc-
tion method that was considered to be the ground truth for
this study.

2. Material and Methods

2.1. TBCTGeometries. TheTBCT system geometry is flexible
enough to incorporate multiple source and detector arrays if
the need arises. Figure 1 shows a comparison of the geome-
tries for the [single-source single-detector] TBCT system
and for the dual-source dual-detector TBCT system. With
the dual-source dual-detector geometry, the length of the
detector and source arrays can be reduced while still being
able to achieve the same FOV. However, for a TBCT system
that uses two detector arrays, the approximate reconstruction
artifacts would be most prominent in the central transverse
plane of the image instead of at the top and bottom of
the image. Therefore, reducing the cone artifact is especially
important for the [dual-source dual-detector] TBCT system.

2.2. Algebraic Reconstruction Algorithms. Detector projec-
tion measurements during a CT scan are represented by the
linear system equation

p = Ax, (1)

where x = (𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑁
) represents the image to be

reconstructed and p = (𝑝
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, 𝑝
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) represents the

measured projection data. 𝑀 and 𝑁 are the total number
of line integral measurements and total number of image
voxels, respectively. The total number of measurements,𝑀,
is the product of the number of detectors and the number
of projections per detector. The system matrix A ∈ R𝑀×𝑁

has matrix elements 𝑎
𝑖𝑗
≥ 0 that map the image voxel 𝑖 onto

the projectionmeasurement 𝑗. In iterative reconstruction, the
image voxel values are treated as unknowns in the system of
equations given by (1). For a 3D CT scan, the dimensions of
the system matrix A are enormous. Both𝑀 and𝑁 could be
in the order of hundreds of millions.

To calculate the elements of the system matrix, we
implemented the distance-driven method introduced by De
Man and Basu [25]. For this method, the boundaries of the
detectors and voxels are mapped onto a common plane. The
lengths of overlap of the detector and voxel boundaries along
each of the axes of the plane are then calculated. These two
values are then multiplied together to determine the value of
the system matrix elements.

This system of equations cannot be solved directly due to
the ill-posedness of the problem, the noise in the data, and
the immense size of the system matrix, but it can be solved
iteratively using an algebraic approach. Iterative methods
begin with an initial guess of the image voxel values, which
is then forward projected using the systemmatrix to produce
an estimate of the projection data. The differences between
the estimated and measured projection data are calculated
and used to determine correction terms which are then
back projected onto the image. This process is iteratively
repeated until some convergence criteria have been satisfied
or a preset number of iterations has completed. For this
study, we have chosen to implement the well-known SART
algorithm [24] which has been shown to converge to the
weighted least squares solution from any initial guess [26].
It has also been demonstrated in previous studies that the
convergence of algebraic methods could be improved by
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varying the order inwhich projections are processed [27], and
so we implement the SART both with and without the use of
the multilevel access ordering scheme (MAS) developed by
Guan and Gordon [27].

2.2.1. Simultaneous Algebraic Reconstruction Technique. The
forward projection of each measurement is calculated using
𝑝
𝑗
= ∑
𝑖
𝑎
𝑖𝑗
𝑥
𝑖
and then compared to the measured projection

value𝑝
𝑗
.The difference between these values is thenweighted

and backprojected over the image. For the SART algorithm,
all projection measurements collected at a single projection
image are used to simultaneously update each image voxel
value. The update term is given by
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where 𝑛 is the update step, i is the image voxel index, j
is the projection data index, 𝜆 is the relaxation parameter,
and 𝐴 and 𝐵 are the indices of the first and last projection
data elements used for the 𝑛th update step. These values
are defined by 𝐴 = (𝑛 − 1)𝐾 and 𝐵 = 𝑛𝐾 where 𝐾
is the number of projection data elements that make up a
single projection image. One iteration is completed after all
projection images have been used to update the image. The
image x converges to a stable solution after a few iterations.
The relaxation parameter value that was chosen for this study
was 0.08, whichwas selected by trial and error and falls within
the range suggested in the literature [28, 29].

2.2.2. Multilevel Projection Ordering Scheme. The MAS
ordering system was developed for algebraic reconstruction
algorithms in order to minimize the correlation between
sequential projection images that are used to update the
image [27]. This leads to an improvement in the convergence
speed of the algebraic methods. This method has been evalu-
ated and compared against alternate ordering systems andhas
been shown to provide the greatest benefit in improving the
efficiency of the reconstruction algorithms [30]. For a system
with 𝑉 projection views ordered sequentially as 0, 1, . . . , 𝑉 −
1, this system determines a number of levels according to
𝐿 = log

2
𝑉. If 𝑉 is not a power of two, then one is added

to the number of levels. The levels are ordered so that any
two sequential views are chosen for maximum orthogonality
between them.The order of the indices in the first level is set
as 0 (0∘) followed byV/2 (90∘).The second level again has two
elements and the indices are set asV/4 (45∘) followed by 3V/4
(135∘). The order of the indices in the third level is V/8, 5V/8,
3V/8, and then 7V/8.The value of the index is rounded down
to the nearest integer if the division results in a decimal. This
process is repeated until all 𝐿 levels are complete.This system
was originally developed for a set of projections that covers
the range 0 to 180∘. For the projection set that covers a full
rotation, the scheme would be used to calculate the order for
the projections that cover the first 180∘.The indices for the set
of projections that cover the 180 to 360∘ range can be found
by adding 180 to the set of indices covering the first 180∘. No
change needs to bemade to (2) when using theMAS ordering

scheme. To implement the MAS scheme, only the indices 𝐴
and 𝐵 need to be redefined so that 𝐴 = (V − 1)𝐾 and 𝐵 = V𝐾
where V is the projection view index determined according to
the MAS scheme.

2.2.3. Image Reconstruction for Dual-Source Dual-Detector
TBCT. In the dual-source dual-detector configuration, four
projection images are generated at each rotation angle. Each
of the projection images collected at a given rotation angle
is truncated both longitudinally and transversely as can be
seen in the diagram shown in Figure 1(b). This leads to the
center region of the FOV being covered by more than one
source array detector array pair. Sequentially, backprojecting
equally weighted correction terms calculated from each of
the four projection images will cause artifacts. Instead, the
correction terms from each of the four projection images are
first weighted and then simultaneously backprojected onto
the image. The weights applied to the correction terms for
image voxel 𝑖 are given by
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where 𝑤
𝛼,𝛽,𝑖

is the weight applied to the update term from
the projection set collected using source array 𝛼 and detector
array 𝛽. 𝑥

𝑖
is the transverse position of voxel 𝑖 in the rotated

reference frame, 𝑧
𝑖
is the longitudinal position of voxel i, 𝑘

𝑥


is a constant used to vary the rate at which the transverse
contribution fades out, and 𝑘

𝑧
is the constant used to vary

the rate at which the longitudinal contribution fades out.
Therefore, the new expression for the update term for the
SART reconstruction method using the dual-source dual-
detector configuration is
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where 𝑤
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Figure 2: Transverse (a) and coronal (b) views of the spherical phantom.

2.3. Evaluation Method

2.3.1. System Parameters. We employed the same geometry
that was used in our TBCT benchtop system [13]. The
reconstructed images had dimensions 256 × 256 × 128 with
an isotropic voxel size of 1mm. A total of 360 projections
were generated at one degree intervals. For a TBCT system
that incorporates a multirow detector array, each TBCT
projection is a 3D matrix whose dimensions correspond to
the number of sources, the number of detector columns,
and the number of detector rows. Therefore, the TBCT
projection data dimensions for our system containing 75
field emission X-ray sources and five detector rows with 275
detector columns per row were 75 × 275 × 5. The X-ray
source spacing was 4mm, and the isotropic detector pixel
sizewas 2.54mm.These projectionswere reconstructed using
a modified FDK filtered backprojection algorithm and the
SART algorithm both with and without the MAS ordering
scheme.

2.3.2. Phantom. The three-dimensional Shepp-Logan phan-
tom [31] was used to test the performance of the recon-
struction algorithms. The parameters were taken from this
reference except that the density values of the ellipsoids
were magnified to increase the contrast. Patient projection
data were also generated by forward projecting the CT
image of a real patient. The same matrix that was used for
image reconstruction was also used to forward project the
patient image for generation of the patient projection set.The
resolution of the reconstructed image was 1mm × 1mm ×
1.5mm.

It has been shown that the use of the SART algorithm
can mitigate the large cone angle artifacts that are produced
when using approximate reconstruction methods such as
the FDK algorithm [11]. In order to test the effectiveness of
our modified algebraic reconstruction methods at reducing
the cone angle artifacts, a numerical Defrise-like phantom
was created [32]. The seven identical, longitudinally stacked
ellipses of uniform density that compose this phantom pro-
vided a cone angle of 20 degrees.Thephantomwas positioned
at the isocenter, which was set to be equidistant from both

source and detector positions. The distance from the source
to the detector was set at 64 cm.

The linear system of equations when using the disk phan-
tom has a very low rank due to the longitudinal symmetry
of the phantom. We believe that the cone artifacts appearing
in the reconstructions are exaggerated due to the atypical
geometry of the disk phantom. In reality, the symmetry and
shape of the disks do not appear in regular patients’ images.
To test the cone artifact using a phantom with a different
configuration, we created a phantom where each disk was
replaced by a set of nine small spheres. For this configuration,
there is one central sphere and eight spheres equally spaced
in a circle pattern around it as shown in Figure 2. Five sets
of these sphere configurations were stacked longitudinally at
equal intervals and together provided the same 20 degree
cone angle that was provided by the disk phantom. Similar
to the disk phantom, the sphere phantom is also longitu-
dinally symmetric, but while the disk phantom generated
identical projection images at every projection angle, the
sphere phantom generated data that was sinusoidally varying
as a function of projection angle. Figure 3 compares the
sinograms of the central slices for the two phantoms. The
disk and sphere projection data were generated using the
same method that was used to generate the Shepp-Logan
projection data.

2.3.3. Image Evaluation Metrics. The figures of merit (FOM)
chosen for quantitative evaluation of the reconstructed
images are the relative root mean square error (RRME) and
the square Euclidean distance, which are defined by
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where 𝑥ref is the reference image.
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Figure 3: CBCT sinograms for the central slice of the (a) disk phantom and the (b) sphere phantom.

3. Results

3.1. Evaluation of the Algebraic Reconstruction Methods. We
first tested the SART algorithms with data created using
the [single-source single-detector] TBCT geometry. SART
reconstructions of a transverse slice of the Shepp-Logan
phantom after 1, 5, 10, and 15 iterations are displayed in
Figure 4. The results are given for the SART method both
with and without the MAS ordering scheme. The numerical
phantom image and FDK reconstruction are also displayed
for comparison. In Figure 5, the convergence rates of the
algebraic methods are compared using the square Euclidean
distance and RRME. The FOM values for the FDK recon-
struction are displayed as reference lines on the graphs. Both
metrics indicate that the algebraic methods achieved their
best results between four and six iterations and that the FOM
values for the algebraicmethods were comparable to the FDK
results in that region.

The SART method converged at approximately the same
rate whether or not the MAS ordering scheme was used,
but the SART method using the MAS scheme clearly gave
better initial results. After five iterations, the SART method
with the MAS ordering scheme was chosen as the method
for providing the best balance between convergence speed
and image quality. The reconstructions using the FDK and
SART with MAS algorithms were then compared to the
original phantom by evaluating a line integral taken through
different views of the image. As shown in Figure 6, the line
profile results from the sagittal and coronal views show
good agreement between the reconstructed images and the
numerical phantom.

In the images reconstructed using the SART algorithm,
ringing artifacts can be seen at both the top and bottom of
the phantom in both the coronal and sagittal views. This
artifact is a result of using a cubic voxel discretization of
the image space [24, 33–35]. Because of discretization of
the continuous object, the modeled object edges are blurred
and therefore the projection values calculated after forward
projecting the image voxels will not match the measured
values. Ringing artifacts will then result in areas with very
high image gradients because the corrections to these voxels

will be incorrectly weighted, and the resulting overshoot and
undershoot in the voxels at the edges will then propagate
to the neighboring voxels that are under a non-negativity
constraint during further iterations.This effect is usually con-
trolled by selecting a number of iterations that qualitatively
provide the best tradeoff between edge sharpness and ringing
artifact. The simplest way to mitigate this effect is to use a
finer grid size [34], but this would lead to an increase in
the computational expense of the algorithm. Other possible
methods used to reduce these artifacts include the use of a
spherically symmetric basis for the voxels instead of the cubic
basis that is conventionally used [33, 36] and the use of a
smoothing method during reconstruction [35].

A pig’s head was scanned using our TBCT benchtop
system. The projections were reconstructed using the FDK
and SART algorithms. With no image to use as a ground
truth image, the reconstructions were evaluated qualitatively.
Based on the results of the Shepp-Logan phantom, we used
five iterations of the SART algorithm and used the MAS
projection ordering scheme. A transverse image of the pig’s
head reconstructions is displayed in Figure 7 for compar-
ison. There is close visual agreement between the images
reconstructed using the differentmethods with slightly better
contrast seen in the SART images.

3.2. Evaluation of the Cone Artifact. Projection images of the
Defrise-like phantom were generated for both CBCT and
TBCT geometries. Coronal images of the original phantom
as well as reconstructions produced using the regular FDK
method for CBCT, the modified FDK method for the TBCT,
and the SART with MAS method for TBCT are shown in
Figures 8(a)–8(d). Line profiles taken through the center and
edges of the coronal image are displayed in Figures 8(e)
and 8(f), respectively. When using the FDK method, cone
artifacts appeared in the reconstructions at the larger cone
angles when using either of the TBCT and CBCT geometries.
By contrast, the reconstructions produced using the SART
algorithm did not suffer from large cone angle artifacts.
There was, however, slight elongation of the disks along the
longitudinal axis and a corresponding drop in CT values at
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(a) Phantom (b) FDK

(c) SART w/0 MAS

(d) SART w/MAS

Figure 4: Reconstructions of the (a) Shepp-Logan phantom using the (b) FDK, (c) SART without the MAS ordering scheme, and (d) SART
with the MAS ordering scheme. The four columns in (c) and (d) show reconstructed images after 1, 5, 10, and 15 iterations for the SART
methods. The display window is set to [0.99 1.05].
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Figure 5: Comparison of convergence rates of three algebra reconstructions with (a) square Euclidean distance and (b) RRME.
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Figure 6: Reconstruction of noiseless Shepp-Logandata. (a) Sagittal and (b) coronal views of reconstructed images. (c) Sagittal and (d) coronal
profiles of reconstructed images. In (a) and (b), from left to right are phantom, FDK reconstruction, and SART reconstruction images. For
both the coronal and sagittal SART reconstructions, overshoot artifacts can be observed at the top and bottom edges of the phantom.
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Figure 7: Transverse images of a pig’s head with projections collected using the TBCT benchtop system and reconstructed using the (a) FDK
algorithm and (b) SART algorithm with MAS scheme.
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Figure 8: Comparison of reconstruction of a disk phantom with different methods. (a)–(d) Coronal views of original phantom,
reconstructions using CBCT FDK, TBCT FDK, and TBCT SARTmethods, respectively. (e) and (f) are line profiles taken through the center
and edges, respectively, of the images as indicated by the arrows.

the edges of the disk, though not to the extent experienced by
the FDK reconstructions.

The sphere phantom was reconstructed using the FDK
and SART with MAS algorithms that were modified for
use with the TBCT system. The TBCT system dimensions
that were used for the disk phantoms were also used here.
Figure 9 shows the coronal views of the FDK and SART
reconstructions. Line profiles were taken through the central
column of spheres to verify that there is neither elongation
nor decay in CT values for the spheres along the longitudinal
axis. A slight elongation of the disks could still be observed in
the FDK reconstruction but not in the reconstructed images
produced by the SART algorithm. To check that theCT values
were constant at the borders of the image, a line profile was
also taken through a side column of spheres.The results were
generally consistent with those obtained from the line profile
through the central column, but the FDK reconstructions
showed a slight drop in CT values toward the edges.

We further tested the reconstruction methods using
a patient image that was originally reconstructed using a
diagnostic CT scanner. We generated TBCT projection data
using the systemgeometry parameters of our benchtopTBCT
system. Because the inherent resolution of the original patient
image would be different than that of the TBCT recon-
struction due to the differences in the scanning geometry
used to create our projections as opposed to the scanning

geometry used with the diagnostic CT scanner, we generated
a projection set using a fan-beam geometry that had exactly
the same system dimensions as the central plane of our TBCT
system. The resulting fan-beam reconstruction had the same
inherent resolution as our TBCT system and could therefore
be used for comparison with the TBCT reconstructions. The
projections were reconstructed using the fan-beam filtered
backprojection (FBP) algorithm, the FDK algorithm modi-
fied for the TBCT geometry, and the SART with MAS algo-
rithm for TBCT. The reconstructed images had dimensions
256 × 256 × 123 with voxel dimensions of 2mm × 2mm ×
3mm. Figures 10(a) and 10(d) show the transverse and
coronal images, respectively, of the FBP algorithms using the
simulated helical CT data. The cone angle to the outermost
slices was 25∘. Figures 10(b) and 10(e) show the transverse
and coronal images, respectively, reconstructed using the
modified FDK algorithm on the simulated TBCT data, and
Figures 10(c) and 10(f) show the same two images after five
iterations of the SART algorithm also using the simulated
TBCTdata.No elongation is apparent in the images produced
using either the FDK or SART algorithms. The coronal
images demonstrate that the TBCT reconstructions do not
show any noticeable elongation for objects at higher cone
angles during a patient scan.These results are consistent with
the testing performed on the sphere phantom.
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Figure 9: Coronal views of (a) SART and (b) FDK reconstructions with a (c) line profile taken through the center column. (d) SART and
(e) FDK reconstructions with a (f) line profile taken through a side column.

3.3. Iterative Reconstruction for Dual Source-Dual Detector
TBCT. Thedual source-dual detector TBCT configuration is
preferable for image-guided radiotherapy. However, for this
configuration, the maximum cone angles are in the region of
the central axis, and therefore, the large angle artifacts will
be most significant at the center of the reconstructed image.
Moreover, the detector and source arrays do not cover the
full FOV so that the data is truncated both longitudinally
and transversely. We used the Shepp-Logan phantom and
clinical CT images to test the performance of the TBCT and
SART algorithms that weremodified for the dual source-dual
detector TBCT geometry. The detector array was modified
so that the projection data associated with each source array
detector array pair had dimensions 75 × 200 × 5. The size of
the detectors was kept the same, and the reconstructed image
dimensions were 256 × 256 × 128 with an isotropic voxel
length of 1mm. We performed five iterations of the SART
algorithm while using the MAS scheme and compared the
results with those of the modified FDK algorithm. As seen in
Figure 11, the image was reconstructed without the addition
of significant artifacts that would have been caused by either
longitudinal or transverse truncation.

To further evaluate the performance of the algorithms at
large cone angles, we used the samedisk and sphere phantoms
defined above. The system parameters that were used to
generate the data sets were kept constant. The reconstruction
results are shown in Figure 12. As expected, the cone angle
artifact in the FDK reconstruction increased towards the
center of the image where the angle was the largest, while
no artifact was observed in the SART reconstruction. There
was a slight elongation of the disks that appeared around the
central slice for both algorithms, but it was more pronounced
in the FDK reconstruction.The reconstructions of the sphere
phantom showed neither elongation nor cone artifacts when
using the SART algorithm, but there was a slight elongation
around all the spheres in the reconstructions produced by the
FDK algorithm.

Similarly, a diagnostic CT image was then used to create
the four simulated projection sets that would be produced
by a dual source-dual detector TBCT system. As shown in
Figure 13, there are no significant artifacts introduced into
the image due to the transverse truncation. Because the
inherent resolution of the patient image would again have
been different due to the use of different scanning parameters,
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Figure 10: Reconstructed (top row) transverse images of a patient using the (a) fan-beam, (b) FDK, and (c) SART algorithms. Reconstructed
(bottom row) coronal images using the (d) fan-beam, (e) FDK, and (f) SART algorithms.
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Figure 11: Reconstructions (a) of the (left) Shepp-Logan phantom using the (center) FDK filtered backprojection algorithm and the (right)
SART algorithm with (b) a line profile taken through the reconstructions.
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Figure 12: Transverse images reconstructed using the (a) FBP algorithm on data generated using fan-beam geometry and the (b) SART
algorithm using the dual-source dual-detector geometry. Coronal images were also reconstructed using the (c) FBP and (d) SART algorithms.

we again used the same system parameters that were used
for the central plane of our benchtop system to generate a
fan-beam projection set. The spatial resolution of the image
reconstructed using this new fan-beam projection set was
comparable to that provided by the SART reconstruction.

4. Discussion and Conclusion

In this paper, the FDK and SARTmethods were implemented
for the TBCT geometry. Data generated using numerical
phantoms and clinical CT images as well as data collected
using our TBCT benchtop system were reconstructed with
these modified methods.The accuracy of the FDK and SART
reconstructions was evaluated using the square Euclidean
distance and the root mean square error FOMs. For small
cone angles, the algebraic SART methods for both TBCT
geometries were able to provide image quality comparable
to that of the analytical FDK algorithm. For large cone
angles, use of the algebraic image reconstruction algorithms
significantly reduced the cone artifacts that were especially

prominent in the FDK phantom reconstructions. This was
especially important for the dual source-dual detector TBCT
geometry as the cone artifacts were most prominent in the
center of the image for this geometry. The results given
by implementing the SART method are promising, and the
algorithm may be implemented in future TBCT systems.

The use of model-based statistical iterative image recon-
struction methods, which can more accurately model the
physics of the system and better take into account sources
of noise and the statistical distribution of that noise, can
potentially further improve the image quality. Because of
their accurate modeling of the system geometry and data
collection process, we expect that model-based statistical
iterative image reconstruction methods can mitigate cone
artifacts in a similar way as the SART method. Therefore, a
model-based statistical reconstruction method that incorpo-
rates an accurate model of the system geometry and physics
into the calculation of the system matrix is planned for a
future study.

The use of the MAS ordering scheme improved the
accuracy of the reconstruction during the first few iterations
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Figure 13: Transverse patient images reconstructed using the (a) FBP algorithm on data generated from fan beam geometry and the (b) SART
algorithm from data generated using the dual source-dual detector geometry. Coronal images were also reconstructed using the (c) FBP and
(d) SART algorithms.

of the SART method, particularly in the first iteration. After
that, the reconstruction results both with and without using
the MAS scheme were almost indistinguishable. One reason
that the MAS scheme did not increase the convergence rate
or accuracy after the initial iterations may be that the scheme
was originally designed for a parallel-beam configuration.
The most straightforward method that could be attempted
to improve the performance of the MAS scheme would then
be to rebin the fan-beam data in order to create a parallel
beam projection data set. However, rebinning the data may
unnecessarily complicate the calculation of the systemmatrix
when we transition to model-based iterative reconstruction.
Therefore, we kept the fan-beam geometry for this study.

The speed of the reconstructionmethodmust improve for
future implementation of the algorithm. The large computa-
tional burden required when employing iterative reconstruc-
tion algorithms is the main reason that it has taken so long
for these methods to be implemented in the clinic. Using this
algorithm, reconstructions would take as long as two hours
to complete. However, the literature shows promising results
from the implementation of iterative algorithms using graph-
ics processing units (GPU). Acceleration in reconstruction
times on the scale of one to two orders of magnitude have
been reported [20, 28, 37, 38]. For these methods, though,
the system matrix is much too large to hold in the GPU’s
memory and, therefore, must be calculated during runtime.
The use of a spherical pixellation scheme has been used to
take advantage of the symmetries of the circular scanning

geometry of the system in order to reduce the storage
requirement of the system matrix and to, therefore, improve
the speed of reconstruction [39]. Therefore, the development
of a cylindrical voxelization scheme in a separate study could
potentially accelerate the reconstruction process on its own
or, by reducing the size of the system matrix, make it feasible
to implement the method on the GPU.

In conclusion, algebraic iterative reconstruction algo-
rithms were successfully implemented for the TBCT system.
The analytical and iterative reconstructions showed similar
image quality for reconstructions at small cone angles, while
the iterative methods were able to mitigate the cone artifacts
that normally appear at large cone angles in analytical
methods.The iterative algorithms were also able to accurately
account for both longitudinal and transverse truncation of
the projection data without introducing new artifacts into the
image.
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