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Pyruvate kinase M2 (PKM2), as the terminal and last rate-limiting enzyme of the

glycolytic pathway, is an ideal enzyme for regulating metabolic phenotype.

PKM2 tetramer activation has shown a protective role against diabetic kidney

disease (DKD). However, the molecular mechanisms involved in diabetic

tubular have not been investigated so far. In this study, we performed

transcriptome gene expression profiling in human renal proximal tubular

epithelial cell line (HK-2 cells) treated with 25 mM high D-glucose (HG) for 7

days before the addition of 10 mM TEPP-46, an activator of PKM2

tetramerization, for a further 1 day in the presence of HG. Afterwards, we

analyzed the differentially expressed (DE) genes and investigated gene

relationships based on weighted gene co-expression network analysis. The

results showed that 2,902 DE genes were identified (adjusted P-value ≤ 0.05),

where 2,509 DE genes (86.46%) were co-expressed in the key module. Four

extremely downregulated DE genes (HSPA8, HSPA2, HSPA1B, and ARRB1) and

three extremely upregulated DE genes (GADD45A, IGFBP3, and SIAH1)

enriched in the downregulated endocytosis (hsa04144) and upregulated p53

signaling pathway (hsa04115), respectively, were validated by qRT-PCR

experiments. The qRT-PCR results showed that the relative expression levels

of HSPA8 [adjusted P-value = 4.45 × 10-34 and log2(FC) = -1.12], HSPA2

[adjusted P-value = 6.09 × 10-14 and log2(FC) = -1.27], HSPA1B [adjusted P-

value = 1.14 × 10-11 and log2(FC) = -1.02], and ARRB1 [adjusted P-value = 2.60 ×

10-5 and log2(FC) = -1.13] were significantly different (P-value < 0.05) from the

case group to the control group. Furthermore, the interactions and predicted

microRNAs of the key genes (HSPA8, HSPA2, HSPA1B, and ARRB1) were

visualized in networks. This study identified the key candidate transcriptomic

biomarkers and biological pathways in hyperglycemic HK-2 cells responding to

the PKM2 activator TEPP-46 that can highlight a possibility of PKM2
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tetramerization reshaping the interplay among endocytic trafficking through

the versatile networks of Hsp70s and rewiring the crosstalk between EGFR

signal transduction circuits and metabolic stress to promote resilience, which

will be valuable for further research on PKM2 in DKD.
KEYWORDS

transcriptomic analysis, human renal proximal epithelial tubular cells, high D-glucose,
TEPP-46, diabetic kidney disease
Introduction

Diabetic kidney disease (DKD) is continuing to impose the

highest burden and the strongest correlation with mortality due

to the increasing diabetes incidence globally (1). The

presentation of DKD in the clinic shows an extreme

phenotypic heterogeneity (2). Patients with diabetes will not

always develop clinically evident DKD even in the setting of poor

glycemic control. This heterogeneous clinical cohorts derived

the impetus to uncover endogenous protective factors against

the development of DKD (3). The ratio between the tetramer

and dimer structure of pyruvate kinase M2 (PKM2) mediates

cellular glycolytic reshuffling and metabolic phenotype through

its precise allosteric regulation, acting as a keystone in cellular

glycolytic remodeling (4, 5). Tetrameric PKM2 has shown a

protective role against the progression of DKD and chronic

kidney disease (CKD) in type 1 and type 2 diabetes from clinical

individuals, partly by rewiring the plethora of carbon

compounds to catabolism, reducing toxic glucose metabolites,

and thereby circumventing energy consumption and redox

stress from synthesis (3, 6). The small-molecule allosteric

agent TEPP-46 could transfer the dimeric PKM2 from a loose

state (T-state) to a stable and compact state (R-state) to form a

tetramer by binding to a pocket of the PKM2 subunit interface

(5, 7). PKM2 tetramerization by TEPP-46 possesses high PK

enzyme activity and blocks its nuclear translocation (5). TEPP-

46 could restore hyperglycemia-induced glomerular and tubular

metabolic phenotypes, further inhibiting fibrosis progression in

DKD (3, 8).

Recently, the clinical relevance of decreased proximal

reabsorption and hyperfiltration by sodium glucose

cotransporter 2 inhibitors (SGLT2i) to improve the renal

outcomes in patients with diabetes revolutionized the

treatment of DKD and CKD, further establishing the core

status of the renal proximal tubular center (9). Proximal

tubular epithelial cells (PTECs) are metabolically active to

impose a high energy demand for its reabsorption and

transport processes. Due to its physiologic role, PTECs are

susceptible to nutritional stress such as in the diabetic context.

Increased reabsorption of glucose and sodium in PTECs under
02
chronic hyperglycemic stress triggers renal hyperfiltration and

exacerbates hypoxia, playing a crucial role in preserving the

diabetic state and renal injury (10, 11). Compared with other

metabolically active cells such as cardiomyocytes or skeletal

muscle cells, PTECs show a relatively low metabolic flexibility

toward glycolysis and mainly rely on fatty acids as energy source

(12). Glycolytic adaptation or maladaptation of PTECs couples

metabolic resilience to cell fate and the process of DKD, which

remains poorly understood.

In our study, we explored the transcriptomic changes and

mechanisms in response to PKM2 activator TEPP-46 in the

hyperglycemic human renal proximal epithelial tubular cell line

(HK-2 cells) in vitro to reveal the pathophysiological networks

involved in the glycolytic reprogramming of hyperglycemic

PTECs and thus to update and reshape the prevention strategy

for DKD. A total of six independent replicates of HK-2 cells with

three replicates in the case/control groups were used. We

conducted a genome-wide transcriptome study in HK-2 cells

cultured with high D-glucose (HG) for 7 days with (case group)

or without (control group) the addition of TEPP-46 for another

1 day in the presence of HG to reveal differentially expressed

(DE) genes; meanwhile, the gene co-expression network

relationships are constructed by the weighted gene co-

expression network analysis (WGCNA) tool (13) because the

co-expressed genes with similar expression patterns across

samples are controlled by the same transcriptional regulatory

programs (14, 15). A DE gene-related biological enrichment

analysis was subsequently performed to identify the potential

functions in the major module of co-expression networks to

reveal the candidate biomarkers to provide new mechanistic

opportunities to remodel the cell resilience of PTECs.
Materials and methods

Cell culture and transcriptomic
sequencing

Cultured HK-2 cells were obtained from Beijing Beina

Chuanglian Biotechnology Research Institute, where they were
frontiersin.org
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cultured in Dulbecco’s modified eagle medium with low glucose

(Sigma-Aldrich Inc., St. Louis, MO, USA) supplemented with 10%

fetal bovine serum (Sigma-Aldrich, St. Louis, MO, USA), 10 units/

ml penicillin, and 10 mg/ml streptomycin and maintained in a

continuous culture at 37°C in a humidified atmosphere (5% CO2)

in an incubator. The growthmediumwas shifted every 2 or 3 days,

and the cells were sub-cultured until further measurements at 80%

colony confluency. The obtained HK-2 cells were exposed to 25

mM HG medium as the hyperglycemic condition for 7 days.

Thereafter, three replicates of cells exposed to HG were separately

treated with (case group) or without (control group) 10 mM
TEPP-46 for 1 day. We extracted 2 mg RNA per cell replicate

sample for the RNA sample preparation, generated the sequencing

libraries using NEBNext Library Prep Kit (NEB, USA) following

the manufacturer’s recommendations, and sequenced these on the

Illumina Hiseq X Ten platform to generate the 150-bp paired-end

reads step by step.
Quality control, alignment, and
differentially expressed analysis

Quality control of raw data was done based on three criteria:

the contaminated reads for adapters (> 5 bp adapter sequences),

low quality reads (Phred quality value ≤19 more than 15%), and

reads with Ns (Ns >5%). The filtered clean reads were then

aligned to the human reference genome GRCh38.p13 (Genome

Reference Consortium Human Build 38) using HISAT2 software

(version 2.1.0) (16). Afterwards, the fragments per kilobase

million mapped reads (FPKM) (Supplementary File S1) (17,

18) were calculated based on the read counts derived for each

gene using HTSeq software (version 0.6.0) (19). We used R

package DESeq2 (version 1.30.0) for DE gene analysis (20–22)

and then calculated the P-value by Wald’s test and corrected the

multiple testing by the Benjamini–Hochberg method to achieve

the adjusted P-value. In this study, we considered the analyzed

genes of adjusted P-value ≤0.05 as the DE genes and those log2
(FC) >0 and log2(FC) <0 as upregulated and downregulated

genes, respectively.
Major module of the co-expression
network and their associations with
TEPP-46 treatment

We constructed the gene co-expression network for the

similarity measurement between the gene expression profiles

by Pearson correlation coefficients of the matrix using R package

WGCNA (13). A total of 21,067 genes were filtered out of 29,483

genes that were used for DE analysis based on the median

absolute deviation ≥0.01 in this study. The b power parameter

(soft threshold) was equal to 5 when the R2 of the free-scale
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topology was equal to 0.8 (Supplementary Figure S1). The

modules whose eigengenes are correlated above 0.75 were

merged, as the cut height for the modules was set to merge at

0.25. Module association between the module eigengenes and

the TEPP-46 treatment status (i.e., 0, 0, 0, 1, 1, 1 for the control

and case groups, respectively) was calculated for the relevant

module identifications. The module significance (MS) was

calculated to evaluate the correlations, i.e., the module with the

highest MS score belongs to the key module (13), where top MS

genes in the association analysis (P-value < 0.1) were assigned

for functional enrichment analysis.
Biological pathway enrichment
analysis of differentially expressed
genes in the key module

The biological Kyoto Encyclopedia of Genes and Genomes

(KEGG) pathway analysis was investigated for the important

enrichments in the associations between the top MS genes and

the gene-related biological functions. R package clusterProfiler

(version 3.6) (23) was applied to test the statistical enrichments

of KEGG pathways with DE genes in the key modules with high

MS scores.
Protein–protein interactive analysis and
predicted microRNAs based on the
candidate differentially expressed genes

Based on the STRING database (https://string-db.org) (24),

the interaction scores were calculated and the protein–protein

interactions (PPIs) were predicted for the candidate DE genes.

The PPI networks were built according to the known

interactions of human species and visualized by the Cytoscape

software (version 3.5.1) (25). The target microRNA (conserved

sites) predictions of the candidate DE genes were performed

using TargetScan software (version 7.0) that provided the ranks

based on the predicted regression according to the cumulative

weighted context++score (CWCS) (26).
Experimental validations

Qualitative reverse transcription polymerase chain reaction

(qRT-PCR) was used to validate candidate DE genes using the

re-cultured and re-treated cells. The method of 2−DDCt was used

to calculate the relative gene expression levels. Glyceraldehyde-

3-phosphate dehydrogenase (GAPDH) was chosen as the

internal gene for qRT-PCR experiments, and 2× SYBR Green

qPCR Master Mix (High ROX) (Servicebio, Wuhan, China) was

used to perform the qRT-PCR experiments. All the primers for
frontiersin.org
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the qRT-PCR experiments are shown in Supplementary

Table S1.
Results

Statistics of quality control
and alignment

After quality control, the average of 45,781,340 (96.75%)

clean reads were filtered from 47,317,956 raw reads by removing

1,160,096 (2.45%) adapter polluted reads, 251,479 (0.53%) low-

quality reads, and 125,041 (0.27%) ploy-N reads. The

7,097,693,400 raw bases were also filtered to 6,867,201,000

clean bases, while the percentage of the Q30 bases increased to

93.13 from 92.84% (Table 1). Afterwards, 44,472,637 of them

were uniquely mapped to the human reference genome with a

mapping rate of 97.14%, where 18,261,167 (41.06%) and 902,185

(2.03%) uniquely mapped reads were located in the exon and

intron regions, respectively (Table 1).
Identified differentially expressed genes

In this study, we identified 2,902 DE genes (adjusted P-

value ≤ 0.05) including 1,413 downregulated DE genes and 1,489

upregulated DE genes. All the details of the 2,902 DE genes with

chromosome positions, gene names, gene descriptions, read

counts for each gene along with different samples, log2(FC)
Frontiers in Endocrinology 04
values, P-values, adjusted P-values, and regulation status are

listed in the Supplementary File S2, where the top 10

downregulated DE genes and upregulated DE genes are

shown in Table 2. We found that the most downregulated DE

gene was HSPA8 [log2(FC) = -1.12], while the most upregulated

DE gene was PPP1R15A [log2(FC) = 1.15]. The log2(FC) values

varied from -1.36 to 1.64 among the top 10 downregulated DE

genes and upregulated DE genes (Table 2). Moreover, 143 out of

2,902 DE genes were recognized as extremely filtered according

to the criterion of |log2(FC)| ≥ 1, where 87 and 56 of them were

the extremely downregulated and upregulated DE genes,

respectively (Supplementary File S2).

The obvious division between the upregulated DE genes

and downregulated DE genes based on log2(FC) values can be

observed, where the range of log2(FC) values reached from -2 to 4

for the downregulated and upregulated DE genes (Figure 1A).

The downregulated and upregulated DE genes were evenly

located on different chromosomes, whereas chromosome 19

appeared to have more upregulated DE genes (n = 111) than

downregulated genes (n = 46) (Figure 1B). On chromosome

13, the upregulated DE genes (n = 14) and downregulated genes

(n = 28) are unevenly distributed as well. With the additional

filtering of |log2(FC)| ≥1, the transformed FPKM values of 143

extremely filtered DE genes were clustered into case/control

groups separately. Meanwhile, in the downregulated status,

the gene expressions of the control group showed apparently

higher levels than the case group and vice versa (Figure 1C). The

top three significant pathways for the 143 extremely DE genes

were prion disease (hsa05020, adjusted P-value = 5.65 × 10-3),
TABLE 1 Statistics of quality control and alignment to human reference genome (GRCh38.p13).

Sample Raw
read

number

Raw base
number
(Q30 base
rate %)

Adapter
polluted
read

number
(%)

Low-
quality
read

number
(%)

Ploy-N
read

number
(%)

Clean
read

number
(%)

Clean base
number
(Q30 base
rate %)

Mapped
clean read
number to
reference

genome (%)

Mapped clean
read number
(%) in exons
of reference

genes

Mapped clean
read number
(%) in introns
of reference

genes

HG1 48,909,654 7,336,448,100
(92.98)

732,722
(1.50)

219,180
(0.45)

70,820
(0.14)

47,886,932
(97.91)

7,183,039,800
(93.20)

46,597,334
(97.31)

19,291,203 (41.40) 806,613 (1.73)

HG2 47,359,384 7,103,907,600
(92.80)

675,864
(1.43)

337,124
(0.71)

83,178
(0.18)

46,263,218
(97.69)

6,939,482,700
(93.13)

44,866,400
(96.98)

18,748,424 (41.79) 818,605 (1.82)

HG3 47,542,838 7,131,425,700
(92.84)

2,126,872
(4.47)

192,338
(0.41)

261,400
(0.55)

44,962,228
(94.57)

6,744,334,200
(93.17)

43,678,133
(97.14)

18,195,761 (41.66) 781,807 (1.79)

HGTEPP1 47,027,902 7,054,185,300
(93.01)

2,045,470
(4.35)

171,772
(0.36)

173,294
(0.37)

44,637,366
(94.92)

6,695,604,900
(93.26)

43,421,950
(97.28)

18,183,221 (41.88) 661,783 (1.52)

HGTEPP2 46,777,790 7,016,668,500
(93.24)

633,516
(1.35)

311,876
(0.67)

88,754
(0.19)

45,743,644
(97.79)

6,861,546,600
(93.55)

44,481,632
(97.24)

17,597,949 (39.56) 1,224,360 (2.75)

HGTEPP3 46,290,168 6,943,525,200
(92.17)

746,130
(1.61)

276,586
(0.60)

72,800
(0.16)

45,194,652
(97.63)

6,779,197,800
(92.44)

43,790,373
(96.89)

17,550,446 (40.08) 1,119,942 (2.56)

Mean 47,317,956 7,097,693,400
(92.84)

1,160,096
(2.45)

251,479
(0.53)

125,041
(0.27)

45,781,340
(96.75)

6,867,201,000
(93.13)

44,472,637
(97.14)

18,261,167 (41.06) 902,185 (2.03)

SD 818,337 122,750,502
(0.33)

656,293
(1.39)

61,247
(0.13)

70,309
(0.15)

1,079,426
(1.43)

161,913,969
(0.34)

1,070,057 (0.16) 612,880 (0.90) 199,841 (0.46)
% indicates the percentage. HGTEPP1, HGTEPP2, and HGTEPP3 indicate the case groups that were treated with 10 mMTEPP-46 in 25 mMHGmedium. HG1, HG2, and HG3 indicate the
control groups that were treated without TEPP-46 in 25 mM HG medium.
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extracellular matrix–receptor interaction (hsa04512, adjusted P-

value = 5.65 × 10-3), and parathyroid hormone synthesis,

secretion, and action (hsa04928, adjusted P-value = 7.74 × 10-3)

in the downregulated category (Figure 1D). In the upregulated
Frontiers in Endocrinology 05
category, they were mineral absorption (hsa04978, adjusted

P-value = 7.20 × 10-5), rheumatoid arthritis (hsa05323, adjusted

P-value = 2.24 × 10-4), and IL-17 signaling pathway (hsa04657,

adjusted P-value = 2.24 × 10-4) (Figure 1D).
TABLE 2 Top 10 downregulated and upregulated differentially expressed genes.

Ensembl gene ID Gene name Full description log2(FC) Adjusted P-value Regulation status

ENSG00000109971 HSPA8 Heat shock protein family A (Hsp70) member 8 -1.12 4.45 × 10-34 Down

ENSG00000134369 NAV1 Neuron navigator 1 -1.31 1.83 × 10-20 Down

ENSG00000168497 SDPR Sporulation delaying system autorepressor -1.23 2.38 × 10-18 Down

ENSG00000143375 CGN Cingulin -1.13 3.52 × 10-15 Down

ENSG00000126803 HSPA2 Heat shock protein family A (Hsp70) member 2 -1.27 6.09 × 10-14 Down

ENSG00000135074 ADAM19 ADAM metallopeptidase domain 19 -1.05 5.97 × 10-13 Down

ENSG00000013588 GPRC5A G protein-coupled receptor class C group 5 member A -0.76 1.86 × 10-12 Down

ENSG00000196535 MYO18A Myosin XVIIIA -1.04 5.57 × 10-12 Down

ENSG00000142798 HSPG2 Heparan sulfate proteoglycan 2 -1.36 1.14 × 10-11 Down

ENSG00000204388 HSPA1B Heat shock protein family A (Hsp70) member 1B -1.02 1.14 × 10-11 Down

ENSG00000087074 PPP1R15A Protein phosphatase 1 regulatory subunit 15A 1.51 5.12 × 10-43 Up

ENSG00000255717 SNHG1 Small nucleolar RNA host gene 1 1.48 6.14 × 10-37 Up

ENSG00000169715 MT1E Metallothionein 1E 1.45 9.03 × 10-37 Up

ENSG00000140961 OSGIN1 Oxidative stress induced growth inhibitor 1 1.41 4.76 × 10-30 Up

ENSG00000081041 CXCL2 C-X-C motif chemokine ligand 2 1.08 5.00 × 10-28 Up

ENSG00000170385 SLC30A1 Solute carrier family 30 member 1 1.36 8.76 × 10-28 Up

ENSG00000123689 G0S2 G0/G1 switch 2 1.31 1.97 × 10-26 Up

ENSG00000175197 DDIT3 DNA damage inducible transcript 3 1.64 9.45 × 10-26 Up

ENSG00000101255 TRIB3 Tribbles pseudokinase 3 1.05 5.26 × 10-24 Up

ENSG00000116717 GADD45A Growth arrest and DNA damage inducible alpha 1.06 3.44 × 10-19 Up
A B

C

D

FIGURE 1

Identified differentially expressed (DE) genes. (A) Volcano plots for all genes based on log2(FC) values and adjusted P-values. Genes with
thresholds of adjusted P-value ≤0.05 are identified as DE genes, while genes with thresholds of adjusted P-value ≤0.05 and |log2(FC)| ≥1 are
identified as extremely DE genes. (B) Distribution of DE genes (n = 2,902) on different chromosomes. (C) Heat map cluster for DE genes (n =
143) in downregulated and upregulated status. The colors from green to red indicate the gene expression levels from low to high after the
transform of log10(FPKM + 1). HGTEPP1, HGTEPP2, and HGTEPP3 indicate the three replicate samples in the case groups that were treated with
10 mM TEPP-46 in 25 mM HG medium, while the rest of the three samples are in the control groups that were treated without TEPP-46 in 25
mM HG medium. (D) Significant pathways for extremely DE genes (n = 143) under the downregulated and upregulated categories.
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The key module of the co-expressions
for all genes

The weighted DE gene network of the co-expression

interactions showed a high level of overlap densities among 31

modules that was visualized in the topological overlap matrix

clusters with the assigned module colors using the average linkage

hierarchical clustering algorithm (Figure 2). The case group with

TEPP-46 treatment was clustered with the dark orange module

into a group, which was far from the key clustered turquoise, blue,

and brown modules (Figure 3A). The 31 modules included the

genes with similar co-expressions, where 6,770 genes were

grouped into turquoise module as the key module, followed by

2,112 genes into blue module and 1,717 genes into brown module

(Figure 3B). The module–TEPP relationship results showed that

the TEPP-46 treatment status had a highly negative correlation
Frontiers in Endocrinology 06
with the turquoise module (-0.95, P-value = 0.004) and the

magenta module (-0.81, P-value = 0.05) (Figure 3C).
Significant pathway enrichment
in the key module

Out of 2,902 DE genes, we found that 2,509 of

them (86.46%) were co-expressed in the turquoise module,

while the blue and brown modules only had 141 (4.86%)

and three DE (0.1%) genes, respectively (Table 3). Afterwards,

we used 1,354 (46.66%) downregulated DE genes and 1,155

(39.8%) upregulated DE genes in the turquoise module and

11 (0.38%) downregulated DE genes and 130 (4.48%)

upregulated DE genes in the blue module to perform the

pathway enrichment.
FIGURE 2

Weighted differentially expressed (DE) gene network heat map with assigned modules. The gene dendrogram and module assignment are
shown along the left side and at the top, where the genes were clustered in the dendrogram with dissimilarity based on topological overlap and
the axe colors indicate the different modules. The color intensity inside the heat map represents the overlap degree, where the lighter color
represents a low overlap and the darker red color represents a higher overlap.
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In the downregulated category, the top three significant

pathways in the turquoise module were thyroid hormone

signaling pathway (hsa04919, adjusted P-value = 3.67 × 10-6)

with 28 DE genes, focal adhesion (hsa04510, adjusted P-value =

4.61 × 10-6) with 37 DE genes, and adherens junction (hsa04520,
Frontiers in Endocrinology 07
adjusted P-value = 4.61 × 10-6) with 20 DE genes. In the

upregulated category, ribosome (hsa03010, adjusted P-value =

1.90 × 10-31) with 64 DE genes, coronavirus disease—COVID-19

(hsa05171, adjusted P-value = 4.33 × 10-15) with 56 DE genes, and

Parkinson’s disease (hsa05012, adjusted P-value = 2.72 × 10-14)
A

B

C

FIGURE 3

Co-expressions of differentially expressed (DE) genes. (A) Eigengene dendrogram and adjacency heat map with TEPP-46 treatment
(red rectangle). (B) Module sizes (number of genes) in different colors. (C) Module–TEPP relationship heatmap. Each row indicates
module eigengenes with the correlation coefficients (P-values in brackets), where red and blue colors represent positive and negative
correlations, respectively.
TABLE 3 Number of all differentially expressed (DE) genes in different co-expressed modules.

Co-expression
module

Number of DE genes (%) Number of downregulated DE genes (%) Number of upregulated DE genes (%)

Turquoise 2,509 (86.46) 1,354 (46.66) 1,155 (39.80)

Blue 141 (4.86) 11 (0.38) 130 (4.48)

Brown 3 (0.10) 0 (0) 3 (0.10)

Yellow 2 (0.07) 0 (0) 2 (0.07)

Green 52 (1.79) 0 (0) 52 (1.79)

Red 81 (2.79) 31 (1.07) 50 (1.72)

Black 50 (1.72) 0 (0) 50 (1.72)

Pink 2 (0.07) 0 (0) 2 (0.07)

Magenta 36 (1.24) 8 (0.28) 28 (0.96)

Purple 5 (0.17) 4 (0.14) 1 (0.03)

Midnight blue 5 (0.17) 4 (0.14) 1 (0.03)

Light cyan 3 (0.10) 0 (0) 3 (0.10)

Royal blue 13 (0.45) 1 (0.03) 12 (0.41)

Total 2,902 (100.00) 1,413 (48.69) 1,489 (51.31)
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with 59 DE genes were the three most significant pathways in the

turquoise module. However, no significant pathway was found in

the blue module (Figure 4A).

Notably, 42 downregulated DE genes were enriched in

endocytosis (hsa04144, adjusted P-value = 6.06 × 10-6). Four of

these genes, i.e.,HSPA8 [log2(FC) = -1.12, adjusted P-value = 4.45 ×

10-34], HSPA2 [log2(FC) = -1.27, adjusted P-value = 6.09 × 10-14],

HSPA1B [log2(FC) = -1.02, adjusted P-value = 1.14 × 10-11], and

ARRB1 [log2(FC) = -1.13, adjusted P-value = 2.60 × 10-5] were

extremely downregulated DE genes (Figure 4B and Supplementary

File S2). Similarly, 16 upregulated DE genes were enriched in the

p53 signaling pathway (hsa04115, adjusted P-value = 5.90 × 10-4),

including AIFM2, BBC3, BCL2L1, CCNB2, CDK2, CDKN1A,

CHEK1, COP1, DDB2, GADD45A, GADD45B, IGFBP3, PERP,

SESN2, SIAH1, and TP53I3, where GADD45A [log2(FC) = 1.06,

adjusted P-value = 3.62 × 10-22], IGFBP3 [log2(FC) = 1.00, adjusted

P-value = 3.72 × 10-8], and SIAH1 [log2(FC) = 1.13, adjusted P-

value = 1.14 × 10-7] were the extremely upregulated DE genes

(Figure 4B and Supplementary File S2).

For two other downregulated pathways, adherens junction

(hsa04520, adjusted P-value = 4.89 × 10-6) and regulation of actin

cytoskeleton (hsa04810, adjusted P-value = 1.18 × 10-4) contained

20 and 35 enriched DE genes, respectively (Figure 4B), where six of

these genes were overlapped in both pathways—these were ACTB,

ACTG1, ACTN4, EGFR, IQGAP1, and VCL (Figure 4C). We found

that three downregulated pathways (adherens junction, endocytosis,

and EGFR tyrosine kinase inhibitor resistance) contain IGF1R [log2
(FC) = -0.61, adjusted P-value = 3.96 × 10-5]. Most importantly,

EGFR [log2(FC) = -0.34, adjusted P-value = 2.91 × 10-2] was
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involved in all four downregulated pathways (adherens junction,

endocytosis, EGFR tyrosine kinase inhibitor resistance, and

regulation of actin cytoskeleton). Unfortunately, no overlapped

DE gene was found in the three upregulated pathways (Figure 4C).
Protein–protein interaction networks

The interaction scores of PPIs are listed in Supplementary

File S3, which were calculated based on the STRING database

(24). According to the information of the interaction scores, log2
(FC) values, and regulation statuses, the PPI networks of

extremely downregulated HSPA8, HSPA2, HSPA1B, and

ARRB1 and upregulated GADD45A, IGFBP3, and SIAH1 are

visualized in Figures 5, 6.

In Figure 5, the four downregulated DE genes were

connected using HSPA2 and HSPA8 as nodes with the PPI

scores of HSPA1B-HSPA2, HSPA2-HSPA8, and HSPA8-ARRB1

equal to 0.61, 0.92, and 0.64, respectively, where the connecting

joint for HSPA1B (PPI score = 0.4) and ARRB1 (PPI score =

0.42) was downregulated GSK3B. It also showed thatHSPA8 had

close connections with HSPA1B, HSPA2, and ARRB1 by both

downregulated and upregulated nodes. The extremely

downregulated TUBB4A [log2(FC) = -1.28, adjusted P-value =

2.16 × 10-8) and top one upregulated PPP1R15A [log2(FC) =

1.51, adjusted P-value = 2.16 × 10-43] were also connected with

HSPA8 with PPI scores of 0.57 and 0.47, respectively (Figure 5).

In Figure 6, it is shown that GADD45A had a strong

relationship with CCNB2 (PPI score = 0.9) in upregulated status
A B

C

FIGURE 4

Significant pathways. (A) Significant pathways for differentially expressed (DE) genes in the turquoise (n = 2,509) and blue modules (n = 141)
under the downregulated and upregulated categories. (B) Boxplot of log2(FC) values for endocytosis and p53 signaling pathway. (C) Venn
diagram for the enriched DE genes of four downregulated and three upregulated pathways.
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and a moderate relationship with ZMAT3 (PPI score = 0.46) in

downregulated status. GADD45A was connected with PERP (PPI

score = 0.45) that was also in a relationship with IGFBP3 (PPI

score = 0.43). IGFBP3 was closely related to upregulated CXCL8

(PPI score = 0.46) and downregulated ACTB (PPI score = 0.59);

meanwhile, the downregulated CTNNB1 was the connecting node

for IGFBP3 (PPI score = 0.54) and SIAH1 (PPI score = 0.99). The

relationship among GADD45A, IGFBP3, and SIAH1 was built by

EP300 with PPI scores equal to 0.94, 0.92, and 0.43,

respectively (Figure 6).
Validated candidate differentially
expressed genes by qRT-PCR experiment

Based on the FPKM values of all samples, the expression

levels of four extremely downregulated DE genes (HSPA8,

HSPA2 , HSPA1B , and ARRB1) and three extremely

upregulated DE genes (GADD45A, IGFBP3, and SIAH1) are

visualized in Figure 7A. It is shown that the samples of

downregulated DE genes had significantly higher expression
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levels in the control group than in the case group and vice

versa (Figure 7A). After the experimental validations by qTR-

PCR, we found that the four downregulated DE genes showed

consistent tendencies with the transcriptomic results, and their

relative expression levels were also significantly different

between the two compared groups (P-value < 0.05). However,

one of the three upregulated DE genes (GADD45A) showed an

inconsistent tendency, and a lower expression level was observed

in the case group (Figure 7B). In addition, the protein expression

levels of HSPA8, HSPA1B and HSPA2 were investigated using

western blotting technique to indicate their protein levels were

significantly different between two groups (P-value < 0.05);

meanwhile, HSPA8, HSPA1B and HSPA2 protein results were

also consistent with qTR-PCR and transcriptomic results

(Supplementary Figure S2).
Discussion

The enzymatic role of pyruvate kinase (PK) is to catalyze the

irreversible conversion of phosphoenolpyruvate (PEP) to
FIGURE 5

Protein–protein interaction (PPI) networks of four extremely downregulated differentially expressed genes (HSPA8, HSPA2, HSPA1B, and ARRB1).
The circles indicate the nodes (genes) with the edges that are solid lines indicating the interaction scores of PPIs. The sizes of circles indicate
the values of |log2(FC)|, while the red and blue colors indicate the upregulated and downregulated statuses, respectively.
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pyruvate by the transfer of a high-energy phosphate from PEP to

ADP to form ATP. In mammals, four different isoforms of PK

(PKM1, PKM2, PKL, and PKR) were identified (4). All isoforms

have a tetrameric form, while only PKM2 has a dimeric form

besides the tetrameric form (4). As the terminal and last rate-

limiting enzyme in the glycolytic pathway, PKM2 with its unique

isoforms plays a crucial role in glycolytic reprogramming, which

reconfigures cellular anabolic requirements and thus potentially

induces metabolic transformation to alter cell identity and fate

(4, 5, 27). The dimer state of PKM2 has low enzymatic activity

and shifts the glycolytic flux into branching pathways, such as

polyol pathway, pentose phosphate pathway, and uronic acid

pathway, thus promoting anabolic function (glycogen synthesis,

glycerol synthesis, nucleotide synthesis, or amino acid

biosynthesis); the main purpose of the tricarboxylic acid

(TCA) cycle is no longer to supply H+ and REDOX

equivalents to the electron transport chain but to provide

carbon source and REDOX equivalents for the subsequent
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anabolic metabolism. Consistent with this concept, the pro-

proliferative role of dimeric PKM2 in proliferating cells, such as

embryos or cancer cells, has been widely known (7, 28). Beyond

the canonical enzymatic function, dimeric PKM2 could be

translocated into the nucleus and act non-glycolysis enzyme

function by regulating gene transcription (8), while PKM2

tetramer is located in the cytoplasm with a higher affinity with

its substrate PEP to play the enzymatic role of PK that is related

to ATP synthesis and catabolism known as PKM2 paradox in

the Warburg effect (28). PKM2 interconnects glycolysis

together with catabolic and anabolic processes, coordinating

with the elaborate complementary metabolism of the TCA

cycle intermediates.

The activation of glycolytic PKM2 by TEPP-46, reducing

PKM2 dimerization, could prevent against fibrosis development

and progression by reducing de novo glycine synthesis

to downregulate collagen synthesis and secretion in

myofibroblasts (29). Dimeric PKM2 located in the nucleus
FIGURE 6

Protein–protein interaction (PPI) networks of three extremely upregulated differentially expressed (DE) genes (GADD45A, IGFBP3, and SIAH1).
The circles indicate the nodes (genes) with the edges that are solid lines indicating the interaction scores of PPIs. The sizes of circles indicate
the values of |log2(FC)|, while the red and blue colors indicate the upregulated and downregulated statuses, respectively.
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would stabilize the transcription hypoxia-inducible factor 1-

alpha (HIF-1a) and directly phosphorylate the signal

transducer and activator of transcription 3 (STAT3) to

activate the transcription of several phosphorylated STAT3-

targeted genes (8). In diabetic HK-2 cells, TEPP-46

decreased HIF-1a and phosphorylated STAT3 accumulations

by decreasing the dimer PKM2 and inhibiting fibronectin,

type I collagen a3, and TGF‐b1 expression, there and then

preventing their downstream hypoxia and fibrosis (8). Here we

intervened HK-2 cells under sustained HG exposition (7 days)

with (case group) or without (control group) the addition

of TEPP-46 for another 1 day and analyzed the genome-wide

transcriptome data from the case and control groups. The results

of our bioinformatics analyses showed the downregulation of the

endocytosis pathway. Consistent with this, three of the top

10 downregulated DE genes (HSPA8, HSPA2, and HSPA1B)

were involved in this pathway. Notably, all of them belong

to the ubiquitous heat shock protein 70 (HSP70) family,

and the downregulation of these three DE genes had been

verified by qTR-PCR experimentsand further by western

blotting experiments (Figure 7 and Supplementary Figure S2).

In addition, the four extremely downregulated DE genes

(HSPA8, HSPA2 , HSPA1B, and ARRB1) predicted 65

microRNAs in the conserved sites (Figure 8), with the context
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++score percentiles ranging from 20 to 99 (Supplementary File

S3). Most of the microRNAs (n = 25) were predicted by HSPA8,

while HSPA1B only predicted four microRNAs. We found that

17 and 20 microRNAs were predicted for HSPA2 and ARRB1,

where hsa-miR-377-3p was predicted by these two

downregulated DE genes with a score equal to 87 and 47,

respectively. Two binding sites of hsa-miR-22-3p were

predicted by ARRB1 in the positions of 429–436 and 4176–

4182 in the 3′UTR region with a score equal to 90 and 70,

respectively (Figure 8).

The HSP70 family (Hsp70s) acts in a large variety of cellular

housekeeping functions (30). Hsp70s participates in virtually all

stages of the life of proteins through the allosteric control of their

client substrates, cooperating with various other cellular

machineries to perform the processes of protein folding/

unfolding, membrane translocation, and aggregation/

disaggregation (30, 31). Hsp70s could recognize and bind a

KFERQ-like pentapeptide motif in the substrate proteins,

making them the key proteins required for chaperone-

mediated autophagy (CMA) to deliver cargo to lysosomes.

CMA degrades target soluble proteins in a selective manner

and is the predominant form of autophagy in the tubular system

(32, 33). Hsp70s would regulate autophagic flux through the

ubiquitin-mediated proteasome system and also the
A

B

FIGURE 7

Validations for four extremely downregulated differentially expressed (DE) genes (HSPA8, HSPA2, HSPA1B, and ARRB1) and three extremely
upregulated DE genes (GADD45A, IGFBP3, and SIAH1). (A) Gene expression of FPKM values, where the blue and red colors indicate the
downregulated and upregulated genes, respectively. (B) Experimental validations by qTR-PCR. ** and * indicate P-value <0.01 and P-value <0.05,
respectively, after Student’s t-test.
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autophagosome–lysosome fusion system (34). Hsp70s also take

part in receptor-mediated endocytosis, impacting their

internalization and subsequent delivery to endosomes and

lysosomes for ligand processing and receptor degradation or

recycling (30). Overall, Hsp70s play the orchestrating and

pleiotropic roles in dynamic versatile networks contacting

endocytosis, autophagy, and lysosomes.

HSPA8 was the most downregulated DE gene [log2(FC) = -

1.12] and also one core hub in PPI networks in this study.

Located on chromosome 11q24.1, HSPA8 encodes the human

soluble constitutive 71-kDa heat shock cognate protein, also

known as Hsc70 (35). HSPA8 had been identified as the

uncoating ATPase of clathrin-coated vesicles, which would

disassemble the clathrin cages to modulate the clathrin-coated

vesicle cycle and endocytic trafficking, acting as the essential late

step in clathrin-mediated endocytosis (36). Accumulation of

CMA-related HSPA8 proteins was observed in aged mutant

striatum along with increased GAPDH and clustered lysosomes

(32). Wen et al. (2020) reported that HSPA8 was upregulated in

exosomes derived from high-glucose-treated renal tubular cells

which would stimulate the proliferation and activation of

fibroblasts to progress to fibrosis (37). Johnson et al. (2009)
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reported that HSPA8 could be co-precipitated with pyruvate

dehydrogenase, isocitrate dehydrogenase, and the mitochondrial

protease OMI in the isolated mitochondria of human embryonic

kidney 293 cells, indicating a direct role of HSPA8 in the TCA

cycle (38). HSPA1B and HSPA2, also known as HSP70-1/1B and

HSP70-2/3, locate on chromosome 6p21.33 and 14q23.3,

respectively; both of them encode for the classical Hsp70s

proteins. HSPA1B was adaptively increased under salt stress in

renal tubular and osmotic stress in collecting duct cells of

rodents (39, 40). HSPA2 has prominent roles in the

morphological differentiation of male germ cells as well as

their functional transformation during post-testicular sperm

maturation (41). Zhu et al. (2021) revealed the involvement of

HSPA2 signaling pathway in fibroblast pathologies in diabetic

wounds through integrated bioinformatic analyses (42). To

enable to fulfil their multifarious influences on cell fate,

Hsp70s has similarities in structure and redundancy in

function; meanwhile, they also exhibit their own structural and

biochemical characteristics, exhibiting pleiotropic and context-

dependent roles in cells (30, 43, 44). Hsp70s, including HSPA8,

HSPA2, and HSPA1B, could be either tumor-promoting or

tumor-suppressing depending on cell identity and context
FIGURE 8

Predicted microRNAs (conserved sites) of four extremely downregulated differentially expressed (DE) genes (HSPA8, HSPA2, HSPA1B, and
ARRB1). The circles indicate the context++score percentiles of the predicted microRNAs, where hsa-miR-377-3p is visualized with the score
equal to 87 predicted by HSPA2.
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(45–47). HSPA8 was involved in AQP2 internalization;

coordinately, HSPA1B was likely to play a role in AQP2

trafficking to the apical plasma membrane (48). HSPA1B had

been identified as one disease-relevant molecular target in

advanced-stage Parkinson’s disease (49). Upregulated HSPA2

exerted a neuroprotective effect through its regulation of

endocytosis in a rat middle cerebral artery occlusion model

(50), and inhibition of HSPA8 would protect against spinal

ischemia–reperfusion injury via astrocyte NF-kB/NLRP3

inflammasome pathway (51).

The endocytosis pathway controls the orchestra of myriad

and specialized transport systems in PTECs; thus, it gates the

internalization of extracellular substances and cell surface

proteins, participates in processes including nutrient uptake,

ion transport, junction formation, cellular properties, and signal

transduction, and affects renal disease progression and

multisystem complications (52, 53). The endocytosis pathway

seems to function as a double-edged sword in PTECs: on one

hand, endocytosis plays a vital role in the efficient reabsorption

of excess ultra-filtered ions and solutes; on the other hand, it

leads to the susceptibility of PTECs to excess nutrients and

environmental stress. Under diabetic stress, the sustained

activation of endocytosis would be uncoordinated with

impaired energy metabolism and excessive oxidative stress,

which further promotes and sustains dominos of pathological

injuries. Excessive mobilization of membrane phospholipids

associated with enhanced endocytosis would overwhelm the

degradation capacity of the autophagy–lysosome system in

PTECs (54).

The endocytic cycle, together with HSP70s, integrates

pleiotropic and dynamic cellular roles in response to the

internal and external environment . In Drosophi la

melanogaster, clathrin-uncoating ATPase Hsc70-4 could

interact genetically with the activated mechanistic target of

rapamycin (mTOR) signaling, leading to an increase in bulk

endocytosis and a decrease in the targeted endocytic degradation

of excess nutrient importers in cells and together increasing the

intracellular nutrient burden (55). mTORC1 regulated

endocytosis and nutrient transport in rodent proximal tubular

cells and played a central role in the pathophysiology of DKD (9,

56). In diabetic proximal tubular cells, the increased mTORC1

activity and relevance of enhanced amino acid transport and

probably decreased branched-chain amino acid degradation

accelerated fibrogenesis (9). Recently, the activation of

mTORC1 had been tied to intracellular glycolysis state.

Orozco et al. (2020) reported that mTORC1 sensed

metabolites downstream of aldolase and upstream of the

GAPDH-catalyzed steps of glycolysis and pinpointed

dihydroxyacetone phosphate (DHAP) as the key and sufficient

metabolite to activate mTORC1 even in the absence of glucose

(57). Thus, here we deduced that decreased mTORC1 activity by

reducing the accumulation of glycolytic intermediate DHAP

responding to TEPP-46 might be partly tied to the
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downregulation of Hsp70s (HSPA8, HSPA2, and HSPA1B)

network and certain endocytosis pathways in hyperglycemic

HK-2 cells, which would circumvent metabolic stress and

remodel homeostasis between enhanced intracellular transport

and impaired metabolic capacity to the natural potency.

The coordination of cellular metabolic remodeling and

endocytic pathways represents an important feature of tubular

cellular plasticity and adaptive homeostasis (52). Our

bioinformatics analyses showed that the epidermal growth

factor receptor (EGFR) was simultaneously involved in four

downregulated pathways (adherens junction, regulation of

actin cytoskeleton, endocytosis, and EGFR tyrosine kinase

inhibitor resistance). EGFR trafficking is a key regulator in cell

proliferation, differentiation, division, and survival, and EGFR

internalization occurs via endocytosis by its recruitment into

clathrin-coated pits (58, 59). Numerous studies had

demonstrated that transient activation of the EGFR pathway

was required for promoting kidney recovery from acute injury,

whereas sustained activation of EGFR in PTECs under

diabetogenic stimuli was sufficient to induce epithelial–

mesenchymal transition and cause spontaneous and

progressive renal tubulointerstitial fibrosis (10, 60). Here we

proposed that PKM2 activator TEPP-46 could alter the

intracellular trafficking of EGFR signaling cascade partly

through its impact on endocytos i s , in which the

downregulated Hsp70s (HSPA8, HSPA2, and HSPA1B) were

involved, presenting a new perspective on remodeling cellular

mechanics and dynamics through metabolic phenotypes.

However, functional research is still required for the candidate

genes in this study to validate their molecular mechanism of in

vitro reprogramming under hyperglycemic stress that

orchestrates HK-2 cell functions.
Conclusions

Our study treated hyperglycemic HK-2 cells with PKM2

activator TEPP-46 and conducted genome-wide transcriptome

analysis for the case/control group. Finally, we identified 2,902

DE genes including 87 and 56 extremely downregulated and

upregulated DE genes (adjusted P-value ≤ 0.05 and |log2(FC)| ≥

1). In addition, 2,509 DE genes among them (86.46%) were co-

expressed in the key module. Four extremely downregulated DE

genes (HSPA8, HSPA2, HSPA1B, and ARRB1) and three

extremely upregulated DE genes (GADD45A, IGFBP3, and

SIAH1) enriched in the downregulated endocytosis (hsa04144)

and upregulated p53 signaling pathway (hsa04115), respectively,

were validated by the qTR-PCR experiments, where the relative

expression levels of four extremely downregulated DE genes

were significantly different (P-value < 0.05) between the case

and control groups. Here we shed light that Hsp70s (HSPA8,

HSPA2, and HSPA1B) are the key transcriptomic biomarkers

responding to the PKM2 activator TEPP-46. Our results
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together highlight a possibility that PKM2 tetramerization

induced by TEPP-46 in hyperglycemic HK-2 cells would

reshape the interplay among endocytic trafficking, dynamics of

protein folding–unfolding, and autophagy–lysosome system

through the versatile networks of Hsp70s, rewiring the

crosstalk between EGFR signal transduction circuits and

metabolic stress to promote resilience.
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