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Purpose: To elucidate the role of copper (Cu) metabolism in the progression of colon adenoma (CA) to colorectal cancer (CRC) and 
to identify potential biomarkers and therapeutic targets through comprehensive bioinformatics analysis.
Patients and Methods: Datasets associated with colon adenoma were retrieved from the Gene Expression Omnibus (GEO) 
database. Differentially expressed genes (DEGs) between CA samples and normal controls (NC) were intersected with genes related 
to copper metabolism (CMRGs) and DEGs between CRC and CA. Five machine-learning algorithms were employed to identify 
biomarkers. The degree of immune infiltration was evaluated using single-sample Gene Set Enrichment Analysis (ssGSEA), and the 
expression profiles of these biomarkers across various cell types were further characterized using single-cell RNA sequencing 
(scRNA-seq). The expression levels of the identified genes were validated using quantitative polymerase chain reaction (qPCR) and 
data from the Human Protein Atlas (HPA) database.
Results: Five biomarkers were identified: ZEB1, ABCA1, SLC24A3, CAV1, and FLNA. Functional enrichment analysis revealed 
significant pathway alterations in the low-expression groups of CAV1 (eg, phagosome pathway) and FLNA (eg, ribosome pathway). 
Significant differences in the infiltration abundance of macrophages and mast cells were observed between CA and NC. scRNA-seq 
analysis demonstrated that these biomarkers were expressed in fibroblasts, lymphocytes, goblet cells, B cells, and macrophages. The 
consistency of gene expression between patient samples and public datasets was confirmed through qPCR and HPA data.
Conclusion: This study explores the role of copper metabolism in colon adenoma progression using bioinformatics. Five genes 
(ZEB1,ABCA1, SLC24A3, CAV1, FLNA) were identified as potential biomarkers. These genes correlate with immune infiltration and 
may serve as diagnostic and therapeutic targets. Further clinical validation is needed.
Keywords: copper metabolism, colon adenoma, machine learning, biomarkers, single-cell RNA sequencing

Introduction
Colorectal cancer (CRC) ranks as the third most frequently diagnosed malignant tumor globally and remains a major 
contributor to cancer-related deaths.1 As of 2019, the global incidence of CRC has risen to 2.19 million cases, with 
Chinese patients comprising approximately 30% of the worldwide CRC population.2 According to recent projections, the 
annual number of new CRC cases is expected to rise to 2.5 million by 2035, posing a growing public health challenge 
worldwide.3 The treatment of CRC imposes a significant financial burden, with direct medical costs estimated at 
$106.4 billion, accounting for 62.4% of the total economic impact.4 The rapid increase in cases and high economic 
costs highlight the urgent need for effective prevention, early detection, and treatment. The progression from normal 
colonic epithelium to adenoma and invasive carcinoma, driven by acquired molecular events, usually takes 5–10 years.5,6 

Colonic adenoma (CA) is a benign epithelial tumor arising in the colon’s inner lining, marked by abnormal cell 
proliferation and the formation of small masses. Approximately 10% of CA cases may progress to CRC, influenced 
by the accumulation of gene mutations, epigenetic abnormalities, and environmental factors.7,8 Colon cancer progression 
is closely linked to various genetic mutations, with mutations in the APC, KRAS, and TP53 genes being particularly 
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prevalent in CRC.9 APC mutations lead to the over-activation of the Wnt signaling pathway, a critical driver of 
tumorigenesis.10 Similarly, mutations in the KRAS gene facilitate uncontrolled tumor cell proliferation.11 Furthermore, 
TP53 mutations compromise the cell’s ability to respond to DNA damage, thereby accelerating cancer cell development 
and progression.12 Mutations in DNA repair genes (eg, MLH1, MSH2, MSH6) are strongly linked to hereditary 
nonpolyposis colorectal cancer (HNPCC). They disrupt DNA repair, increasing mutation accumulation and driving 
CRC development.13 Epigenetic alterations also play a pivotal role in CRC progression. For instance, mutations and 
reduced expression of the histone H3K36 trimethyltransferase SETD2 are linked to the advancement of CRC.14 

Additionally, aberrant DNA methylation, particularly the hypermethylation of promoters associated with microsatellite 
instability (MSI), leads to reduced or absent expression of DNA mismatch repair proteins, further contributing to CRC 
pathogenesis.15 Meanwhile, environmental factors cannot be ignored. Unhealthy dietary habits, obesity, and long - term 
social stress can cause DNA damage. Once the DNA was damaged and the repair mechanism is compromised due to 
epigenetic changes, the risk of developing CRC significantly increases.16 Evidence suggests that the detection and 
excision of adenomas substantially decrease CRC incidence and mortality.17 Therefore, early CA detection is critical. 
Although colonoscopy remains effective for identifying and excising adenomas before their progression to CRC, it has 
notable limitations, including a missed diagnosis rate of up to 25%.18 Stool-based screening, commonly employed for 
CRC detection, lacks sensitivity for adenomas, making it unsuitable for early detection of these lesions.8,19 This 
underscores the urgent need to identify novel characteristic genes associated with CA.

Copper (Cu) is a vital trace element required for the growth and development of all eukaryotes.20 It plays a critical 
role in redox enzymatic activities that are essential for key metabolic processes, signaling pathways, and various 
biological functions.21 The link between disrupted Cu metabolism and the pathogenesis of various malignancies has 
attracted significant research attention. Studies indicate that inflammatory cytokines, such as interleukin (IL)-17, enhance 
Cu uptake through inflammatory responses, thereby fostering colon tumor development.22 Furthermore, evidence shows 
that Cu levels in colon tumor tissues are significantly elevated compared to normal colon mucosa.23 Studies have shown 
that copper metabolism-related genes (CMRGs) are associated with immune infiltration in colon adenocarcinoma 
(COAD). They can be utilized to classify COAD subtypes and distinguish patients with different molecular character-
istics, serving as valuable biomarkers for immunotherapy in COAD.24 This highlights Cu metabolism’s critical role in 
colon tumor initiation and progression. However, research on CMRGs in the context of colon cancer development 
remains limited.

Bioinformatics analysis serves as a powerful tool for predicting molecular pathways and gene interactions, and it has 
been extensively used to identify novel candidate genes and pathways across various cancer types.25 By leveraging 
computational methods to analyze extensive genomic and transcriptomic data, bioinformatics has facilitated the identi-
fication of novel candidate genes and pathways associated with the development of colon carcinogenesis.26,27 This study 
aims to conduct a comprehensive bioinformatics analysis to identify signature genes that can effectively distinguish 
between colon adenomas (CAs), colorectal cancers (CRCs), and normal colons (NCs). Based on these identified genes, 
we expect to develop a robust classification model that can accurately differentiate between CA, CRC, and NC, thereby 
enhancing both the specificity and sensitivity of colorectal disease diagnosis.Furthermore, the study will incorporate 
single-cell data analysis from NC, CA, and CRC patient samples, with the aim of elucidating the expression patterns of 
these signature genes across various cell types, including fibroblasts, lymphocytes, cuprocytes, B-cells, and macrophages. 
This analysis is expected to provide valuable insights into the cellular mechanisms that underpin disease progression and 
to shed light on the roles of these genes within the tumor microenvironment. By identifying these key genes and their 
interactions, the study seeks to offer novel perspectives on the molecular mechanisms driving CRC progression, thereby 
advancing the field of colorectal cancer research and informing future diagnostic strategies.

Materials and Methods
Data Source
The RNA sequencing (RNA-seq) datasets GSE117606, GSE20916 and GSE41657, along with the single-cell RNA-seq 
(scRNA-seq) dataset GSE201348, were retrieved from the Gene Expression Omnibus (GEO) database (available at 
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https://www.ncbi.nlm.nih.gov/geo/). The GSE117606 dataset, detected using the GPL25373 platform (Affymetrix HT HG-U133 
+ PM Array Plate), includes tissue samples from 65 normal controls (NC), 69 patients with CA, and 74 with CRC. The 
GSE20916 dataset, detected on the GPL570 platform (Affymetrix Human Genome U133 Plus 2.0 Array), consists of tissue 
samples from 44 NCs, 55 patients with CA, and 46 patients with CRC. The GSE41657 dataset, detected using the GPL6480 
platform (Agilent-014850 Whole Human Genome Microarray 4x44K G4112F (Probe Name version)), includes tissue samples 
from 12 NC, 51 patients with CA, and 25 with CRC. The GSE201348 dataset, processed with the GPL24676 platform (Illumina 
NovaSeq 6000), contains tissue samples from 8 NCs, 43 patients with CA, five patients with CRC, and 16 unaffected CRC 
individuals. A total of 1,874 CMRGs were sourced from the GeneCards database (accessible at https://www.genecards.org/) 
using the search term “Cu metabolism” under the criteria: category = protein-coding and relevance score ≥1. Furthermore, the 
Cancer Genome Atlas (TCGA)-CRC datasets, comprising 598 CRC patient tissue samples, were accessed from the TCGA 
database (available at https://gdc.cancer.gov/) for feature gene survival analysis.

Differential Expression Analysis
Differential expression analysis was the process of identified genes with significant differences in expression between sample 
groups. To obtained the genes with significant differences in the samples, the differentially expressed genes (DEGs) between 
CA and NC samples in the GSE117606 dataset were identified using the limma package, applying thresholds of |logFC| > 0.5 
and adj. p < 0.05.28 The top 50 DEGs1 were visualized using the pheatmap package (version 1.0.12).29 Differentially 
expressed CMRGs (DE-CMRGs1) were subsequently identified by intersecting DEGs1 with CMRGs through the 
VennDiagram package (version 1.6.2).30 Similarly, DEGs2 between CRC and CA samples in the GSE117606 dataset were 
also determined using the same limma parameters, and DE-CMRGs2 were obtained by overlapping DEGs2 with CMRGs. To 
explore common functions and relevant pathways, ingenuity pathway analysis (IPA) software was employed to conduct 
classical pathway enrichment analysis for DE-CMRGs1 and DE-CMRGs2 separately.

Diagnostic Model Construction and Validation
In order to comprehensively validated the diagnostic performance and prediction ability of the model and biomarkers, 
multiple algorithms were integrated for key marker screening. Given the strong reliability of integrating multiple 
algorithms for the identification of key markers,31,32 five machine learning techniques—random forest (RF), support 
vector machines (SVM), logistic regression (LR), gradient boosting decision tree (GBDT), and artificial neural network 
(ANN)—were applied to the overlapping genes of DE-CMRGs1 and DE-CMRGs2 to develop diagnostic models for 
distinguishing between samples from patients with CA, CRC, and NC. The predictive performance of each model, in 
terms of the area under the curve (AUC) value, was assessed using the pROC package (version 1.17.0.1).33 The model 
yielding the highest AUC was selected as the optimal model, and the top 10 most important variables within this model 
were identified and ranked. Subsequently, biomarkers were refined by overlapping the top 10 variables from the three 
best-performing models, and the diagnostic value of each individual feature gene was analyzed across different 
subgroups (CA vs NC; CRC vs CA; CRC vs NC). Additionally, the collective diagnostic accuracy of all biomarkers 
was evaluated using a logistic regression model through the rms package. The expression levels of biomarkers among 
samples from NC, CA, and CRC in the GSE117606 dataset were also examined, and their associations with CRC 
survival in the TCGA-CRC cohort were investigated using Kaplan-Meier (K-M) analysis. Optimal expression thresholds 
for different groups were calculated using the survminer (version 0.4.9) and survival (version 3.3–1) packages. To further 
facilitate clinical decision-making regarding CA outcomes, a nomogram was constructed using logistic regression, 
wherein the score for each feature gene was computed and aggregated into a total score to predict the risk of CA. The 
diagnostic accuracy of the nomogram was evaluated through calibration curves, decision curve analysis (DCA), and 
clinical impact curves. The expression levels and diagnostic relevance of the biomarkers were further validated in an 
external dataset (GSE20916 and GSE41657), with the diagnostic performance of individual biomarkers and the full set 
analyzed in a manner consistent with the procedures used for the GSE117606 and GSE41657dataset.
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Single Gene Set Enrichment Analysis (GSEA)
To comprehensively investigate the pathways influenced by the biomarkers and their associated functions, GSEA was performed 
using the ClusterProfiler package (version 3.18.0).34 Initially, correlation coefficients were calculated through correlation 
analysis between the biomarkers and other genes. GSEA was then conducted based on the ranking of these correlation 
coefficients. The results were visualized using GSEA spine plots generated by the Enrichplot package (version 1.10.2).35

Immune Infiltration Analysis
In order to further explored the pathways targeted by biomarkers and the functions, a single-sample GSEA (ssGSEA) was 
also performed to analyze immune infiltration, specifically assessing the tumor microenvironment (TME) cell composi-
tion in samples from NC and patients with CA and CRC. The proportions of immune cells among these three groups 
were compared using the rank sum test. Additionally, Spearman correlation analysis was employed to explore the 
relationships between biomarkers and immune cells.

scRNA-Seq Analysis
The main objective of single-cell RNA sequencing (scRNA-seq) analysis was to study the heterogeneity of gene expression at the 
single-cell level, to reveal cell-to-cell variability, as well as to explore cell development, differentiation, and function.36 To 
explore the characteristic gene expression patterns during cell state transitions, as well as cellular changes in disease states, we 
performed scRNA-seq analysis. For the scRNA-seq data, processing began with the CreateSeuratObject function of the Seurat 
package (version 4.0.5). The data were filtered using minimum criteria of 100 cells and 100 features.37 The percentages of 
erythrocyte and mitochondrial genes were calculated using the PercentageFeatureSet function. Data normalization was 
performed using the NormalizeData function, and the FindVariableFeatures function was utilized to identify genes with high 
intercellular expression variation. To ensure uniformity, the data were further processed using ScaleData, followed by principal 
component analysis (PCA). The JackStraw and ScoreJackStraw functions were used for linear dimensionality reduction to assess 
data quality. The information content of each principal component was ranked, and a PCA ElbowPlot was generated. The 
JackStrawPlot was employed to compare the distribution of p-values for each principal component. Unsupervised cluster 
analysis was subsequently performed using the Seurat package, with cell types identified through auxiliary annotation using the 
SingleR function on the Cellmarker website. The expression levels of biomarkers across different categories were calculated, and 
their relationships with cell categories were visualized using heatmaps and scatter plots.

Construction of the ceRNA Network
The miRWalk database was used to predict miRNAs targeting the biomarkers, with criteria including an energy score below −15 
and a binding probability above 0.95. The Starbase database (accessible at https://starbase.sysu.edu.cn/index.php) was employed 
to predict the targeting relationships between lncRNAs and miRNAs, using parameters such as a clipExpNum greater than 1, 
a degraExpNum greater than 1, and a gene type of lncRNA. This information was used to construct the ceRNA regulatory 
network in Cytoscape (version 3.8.2), analyzing the relationships between lncRNAs, miRNAs, and mRNAs.

Potential Therapeutic Drug Prediction
The Drug-Gene Interaction database (DGIdb, accessible at https://dgidb.genome.wustl.edu/) was utilized to predict drugs 
related to the biomarkers, aiming to identify small-molecule compounds with potential therapeutic effects for patients 
with CA or CRC. The gene-drug interactions were visualized using Cytoscape, providing a comprehensive overview of 
potential therapeutic targets.

Expression Verifications of Biomarkers
To further characterize the mRNA and protein expression of the biomarkers in clinical samples, human tissue samples 
were obtained, including 10 pairs of frozen samples from patients with CA and NC,38 from the Second Affiliated 
Hospital of Guizhou University of Traditional Chinese Medicine for qPCR experiments. This study was approved by the 
Ethics Committee of the Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, and written 
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informed consent was obtained from all participants. Total RNA was extracted from the 10 pairs of frozen samples, each 
samples 50mg, and RNA concentration was measured using the NanoPhotometer N50 (Table S1). Reverse transcription 
was performed with the SureScript First-Strand cDNA Synthesis Kit from Saville. The reverse transcription system was 
shown in Table S2. The qPCR reactions were carried out in a CFX96 real-time quantitative fluorescence PCR instrument 
using a system comprising 3 µL of cDNA, 5 µL of 2x Universal Blue SYBR Green qPCR Master Mix, and 1 µL each of 
upstream and downstream primers. The amplification protocol included an initial denaturation at 95°C for 1 minute, 
followed by 40 cycles of denaturation at 95°C for 20 seconds, annealing at 55°C for 20 seconds, and extension at 72°C 
for 30 seconds. Relative gene expression levels were calculated using the 2-ΔΔCt method, with glyceraldehyde 
3-phosphate dehydrogenase (GAPDH) as the internal reference gene.The primer sequences for PCR were shown in 
Table 1. Additionally, the protein levels of the biomarkers in tissues from patients with CRC were assessed using 
immunohistochemistry (IHC) data available from the Human Protein Atlas (HPA) database (accessible at https://www. 
proteinatlas.org/).

Statistical Analysis
Statistical analysis was performed using R software. Differences in gene expression and immune cell proportions 
between different groups were analyzed via the Wilcoxon test, while the qPCR expression data was analyzed using 
a t-test. Statistical significance was set at adj. p < 0.05.

Results
Identification of DE-CMRGs1 and DE-CMRGs2
The differentially expressed genes (DEGs) between samples from patients with CA and NC, a total of 1,343 DEGs1 were 
identified between samples from patients with CA and NC, with 467 genes up regulated and 876 genes down regulated 
(Figure 1A). To visualize these findings, a heat map depicting the top 50 DEGs1 was generated (Figure S1A). By 
intersecting the set of 1,343 DEGs1 with the 1,874 CMRGs, 218 DE-CMRGs were identified, as illustrated in the Venn 
diagram (Figure 1B). Similarly, between samples from patients with CRC and CA, 982 DEGs were identified, including 
641 up regulated genes and 341 down regulated genes (Figures 1C and S1B). By overlapping these 982 DEGs with the 
1,874 CMRGs, 185 DE-CMRGs2 were identified, as shown in the Venn diagram (Figure 1D).

Identification of DE-CMRGs1 and DE-CMRGs2 Enrichment Pathways
IPA was performed to investigate the functions and associated pathways of DE-CMRGs1 and DE-CMRGs2. The analysis 
revealed that DE-CMRGs1 were involved in the activation of aryl hydrocarbon receptor signaling while inhibiting the 
TME pathway, oncostatin M signaling, and LXR/RXR activation. In contrast, DE-CMRGs2 were found to activate the 
TME pathway, oncostatin M signaling, pulmonary fibrosis idiopathic signaling, the role of chondrocytes in the 

Table 1 Sequence of Primers

Primer Sequences

ZEB1 F TTGGCTTGGCAACAGTATTTCG

ZEB1 R CTCCAGCGAGCATTGCAGTAAG
ABCA1 F TAAAGTGGCGGTAGATGGTAATGT

ABCA1 R AAGGAAGACTGATGGCTGAAATAA
SLC24A3 F AGGCCCAGACCTGTAAATGC

SLC24A3 R GAGGAATGCCCACGCAAATC

CAV1 F GCTTGACCTCATGGACCTCGTA
CAV1 R GACCACCGCACCTTGTCTTCT

FLNA F CTGTCGGAGCGGGACATCT

FLNA R TGTTTAGGGTCGCGGTTGAC
GAPDH F CCCATCACCATCTTCCAGG

GAPDH R CATCACGCCACAGTTTCCC
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rheumatoid arthritis signaling pathway, and hypoxia-inducible factor-alpha (HIFα) signaling. Additionally, DE-CMRGs2 
significantly inhibited LXR/RXR activation and matrix metalloproteases (Figure 2A and B).

Identification and Validation of Biomarkers
We took the intersection of DE-CMRGs1 and DE-CMRGs2 to obtain the candidate biomarkers. The Venn diagram revealed 
that 86 candidate biomarkers were identified as common between DE-CMRGs1 and DE-CMRGs2 (Figure 3A). Among the 
machine learning models tested, the RF model demonstrated the highest AUC value of 0.953 for distinguishing between 
samples from patients with CA and NC (Figure 3B). For comparisons between samples from patients with CRC and NC, the 
GBDT model performed best, achieving an AUC value of 0.935 (Figure S2A). Similarly, the GBDT model also yielded the 
highest AUC value of 0.929 when comparing samples from patients with CRC and CA (Figure S2B). The top 10 genes from 
each model were selected and ranked, as shown in Table 2. Overlapping these 30 genes across the models led to the 
identification of five biomarkers: ZEB1, ABCA1, SLC24A3, CAV1, and FLNA (Figure S2C).

Figure 1 Differentially expressed copper metabolism-related genes (DE-CMRGs) were identified by overlapping the differentially expressed genes (DEGs1) between colon 
adenoma (CA) and normal control (NC) with copper metabolism-related genes (CMRGs), as well as overlapping the DEGs2 between CRC and CA with CMRGs. The 
analysis yielded the following results: (A) A volcano plot displaying 1,343 DEGs1 between samples from patients with CA and NC (|logFC| > 0.5 and p < 0.05), red for up- 
regulated genes, blue for down-regulated genes; (B) Venn diagram illustrating the 218 DE-CMRGs1; (C) A volcano plot showing 982 DEGs2 between samples from patients 
with CRC and CA (|logFC| > 0.5 and p < 0.05), red for up-regulated genes, blue for down-regulated genes; (D) Venn diagram depicting the 185 DE-CMRGs2.
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Five diagnostic models were constructed separately using the candidate hub genes and compared based on the AUC 
values, and the model with the largest AUC value was selected as the best model. The analysis of each individual feature 
gene’s diagnostic value revealed that ZEB1, ABCA1, SLC24A3, CAV1, and FLNA exhibited strong discriminatory 
power between CA and NC, as well as CRC and CA, while only CAV1 and FLNA effectively distinguished between 
CRC and NC (Figure 3C and Figure S2D and E). Additionally, the diagnostic performance of the five-gene signature 
demonstrated excellent predictive accuracy for NC, CA, and CRC outcomes in both the GSE117606 and external 
GSE20916 validation sets (Figure 3D). The nomogram based on these five biomarkers, shown in Figure 3E, also 
exhibited high predictive accuracy for CA, as confirmed by the calibration curve (Figure S2F). The DCA indicated that 
the nomogram provided clinical benefits across a wide high-risk threshold range (0–1), surpassing the predictive abilities 
of individual genes such as ZEB1, ABCA1, SLC24A3, CAV1, and FLNA (Figure S2G). Furthermore, the clinical impact 
curve confirmed the nomogram’s relatively accurate predictive capabilities (Figure S2H). Given the significant predictive 

Figure 2 Function enrichment analysis for DE-CMRGs1/DE-CMRGs2. Ingenuity Pathway Analysis (IPA) diagrams of DE-CMRGs1 (A) and DE-CMRGs2 (B).
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Figure 3 Diagnostic value of the biomarkers in the GSE117606 dataset. (A) Venn diagram showing 86 candidate biomarkers; (B) Diagnostic value of five machine-learning 
models between CA and NC in GSE117606; (C) Diagnostic value of five biomarkers between CA and NC in GSE117606; (D) Construction of the nomogram based on five 
biomarkers for clinical use in GSE117606; (E) Statistics for the predictive accuracy of biomarkers on NC, CA, CRC outcomes in both GSE117606 and GSE20916; (F) 
Expressions of five biomarkers in GSE117606; (G) Expressions of five biomarkers in GSE20916; (H) Diagnostic value of five biomarkers between CA and NC in GSE20916 
(ns, not significant, * p <0.05, ** p <0.01, *** p <0.001, **** p <0.0001).
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value of clinical features, age and gender were incorporated into the five-gene-based nomogram (Figure S3A). This 
enhanced nomogram demonstrated improved accuracy and clinical benefits compared to individual factors alone (Figure 
S3B and Figure S3C), with the clinical impact curve further validating these results, consistent with the previous 
nomogram (Figure S3D).

As illustrated in Figure 3F, all five genes were expressed at lower levels in samples from patients with CA compared to NC 
and those with CRC. Notably, K-M survival analysis indicated significant differences in survival rates among patients with CRC 
exhibiting high versus low FLNA expression, where higher FLNA expression correlated with poorer prognosis (Figure S4). In 
the external validation using the GSE20916 dataset, the expression of four biomarkers (ABCA1, SLC24A3, CAV1, and FLNA) 
was confirmed, as ZEB1 was not detected. Among these, ABCA1, CAV1, and FLNA exhibited significant differences in 
expression across samples from patients with CRC, CA, and NC, with FLNA expression aligning with the findings from the 
GSE117606 dataset (Figure 3G). In the GSE41657 dataset, significant differences were observed in the expressions of CAV1 and 
SLC24A3 among the samples from patients with CRC, CA, and NC. The expression of CAV1 was consistent with the results of 
the GSE117606 dataset (Figure S5). Moreover, ROC curve analysis demonstrated that CAV1 and FLNA could effectively 
distinguish CRC from CA (AUC > 0.7) (Figure 3H, Figure S6A and B). In the GSE41657 dataset, ROC curve analysis 
demonstrated that CAV1 could be effectively used to distinguish CRC from CA (AUC > 0.7) (Figure S6C–E).

GSEA for Biomarkers
We analyzed the correlation between the biomarkers and the remaining genes to obtain the correlation coefficient. Then, 
the coefficients of the genes were ranked, and then the ranked results were used to perform GSEA to obtain the biological 
process of biomarkers enrichment. The GSEA results revealed significant enrichment of various pathways and biological 
processes associated with the expression levels of CAV1 and FLNA. In the high CAV1 expression group, key pathways 
such as the Apelin signaling pathway, cyclic guanosine monophosphate-protein kinase G (cGMP-PKG) signaling 
pathway, adherens junctions, mitogen-activated protein kinases (MAPK) signaling pathway, neuroactive ligand- 
receptor interactions, proteoglycans in cancer, regulation of the actin cytoskeleton, and vascular smooth muscle 
contraction were notably enriched. Conversely, in the low CAV1 expression group, neuroactive ligand-receptor interac-
tion were significantly enriched (Figure 4A). For FLNA, the low-expression group showed significant enrichment in 
ribosomal processes and ribosome biogenesis in eukaryotes. In contrast, the high FLNA expression group exhibited 
enrichment in pathways such as the Apelin signaling pathway, cGMP-PKG signaling pathway, adherens junctions, 
MAPK signaling pathway, oxytocin signaling pathway, proteoglycans in cancer, regulation of the actin cytoskeleton, and 
vascular smooth muscle contraction (Figure 4B). In summary, these biomarkers, particularly CAV1 and FLNA, were 
predominantly enriched in pathways related to the cGMP-PKG signaling pathway, Apelin signaling pathway, focal 
adhesion, proteoglycans in cancer, vascular smooth muscle contraction, Salmonella infection, neuroactive ligand-receptor 
interaction, and regulation of the actin cytoskeleton (Figures 4C–E).

Table 2 Importance Ranks for the Top 10 Model Genes in the Three Optimal Models in CA/NC/CRC

Variable Permutation Dropout_loss Variable Permutation Dropout_loss Variable Permutation Dropout_loss

PAM 0 0.296172296 ZEB1 0 0.305809715 FLNA 0 0.179280846
ZEB1 0 0.298679048 SLC24A3 0 0.306774937 FBN1 0 0.179725533

CSRP1 0 0.299734117 SLC4A4 0 0.308207895 SLC24A3 0 0.180048873

ABCA1 0 0.299891041 FLNA 0 0.308933436 FN1 0 0.180340091
COL5A1 0 0.301992472 FGFR1 0 0.310169343 ABCA1 0 0.180340091

SLC24A3 0 0.302253564 ABCA1 0 0.311664029 NRP1 0 0.180340091

IGFBP7 0 0.302727832 SLC26A2 0 0.313494742 PAM 0 0.180547646
CAV1 0 0.305157007 CAV1 0 0.313789334 ZEB1 0 0.180896265

FBN1 0 0.305252788 NEXN 0 0.313999463 NEXN 0 0.181556524
FLNA 0 0.308301015 CSRP1 0 0.314118929 CAV1 0 0.182679888

CA vs.Normal (RF) CRC vs.CA (GBM) CRC vs.Normal (GBM)
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Figure 4 Single gene set enrichment analysis (GSEA) for five biomarkers. (A) CAV1; (B) FLNA; (C) ABCA1; (D) SLC24A3; (E) ZEB1.
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Effect of Biomarkers on Immune Heterogeneity
Using ssGSEA to calculate the 24 TME cell score for each sample, the composition of 24 TME cell types in samples 
from patients with NC, CA, and CRC is illustrated in Figure 5A. Analysis of immune cell proportions revealed 
significant differences in B cells, macrophages, mast cells, and T cells between samples from patients with CA and 
NC, as identified by the rank-sum test (Figure 5B). Spearman correlation analysis further highlighted significant positive 
correlations between the biomarkers and mast cells, as well as eosinophils. Additionally, CAV1, ABCA1, and ZEB1 
showed significant positive correlations with both B cells and T cells (cor > 0.2, adj.p < 0.05). In contrast, FLNA 
exhibited significant negative correlations with macrophages (cor < −0.1, adj. p < 0.05) (Figure 5C).

Identification of Feature Gene Expression in Different Cell Subsets
Using single-cell RNA-seq to analyzed the expression patterns of biomarkers during cell state transitions and changes in 
cells during disease states, after data filtering, the features of the scRNA-seq dataset are presented in Figure S7A. A total 
of 2,000 highly variable genes were selected for cell type identification (Figure S7B). Following normalization, the 
results of PCA are shown in Figure S7C, from which 30 principal components were selected for further analysis based on 
a p-value of < 0.05 (Figure S7D). Before clustering, a resolution of 0.06 was determined to be optimal, resulting in well- 
defined clusters (Figure S7E and Figure S7F). The visualization of the 13 clusters using uniform manifold approximation 
and projection (UMAP) and t-distributed stochastic neighbor embedding (t-SNE) is depicted in Figure 6A. Heat maps 
displaying the top five marker genes for each cluster were generated (Figure 6B).

Cell types were then identified for each cluster. Cluster 2, characterized by higher expression levels of marker genes 
such as FCGBP, MUC2, and CLCA1, was identified as the goblet cell cluster (Figure 6C). Cluster 3, with elevated 
expression of marker genes like FTL, TMSB10, and TPT1, was identified as the myeloid cell cluster (Figure 6D). Cluster 
4, showing higher expression of marker genes such as BLNK, MS4A1, and CD37, was identified as the B cell cluster 
(Figure 6E). Consequently, the 13 clusters were further classified into 10 distinct cell subsets (Table S3). The distribution 
of cell counts across each sample is shown in Figure 6f, highlighting the presence of epithelial cells, goblet cells, myeloid 
cells, B cells, fibroblasts, LGR5+ stem cells, lymphocytes, dendritic cells, macrophages, and neurons as the predominant 
cell types in samples from patients with NC, CA, and CRC.

Dot plots were then employed to visualize the marker genes for each cell type, as depicted in Figure 7A. The 
distribution of the 10 identified cell subsets is presented in Figure 7B. Additionally, a heat map and a violin plot were 
used to illustrate the expression levels of the biomarkers within each cell subset, as shown in Figure 7C and D. It is 
noteworthy that nearly all biomarkers were predominantly expressed in fibroblasts, with FLNA displaying the highest 
expression levels (Figure 7C and D). Furthermore, the t-SNE cluster map provided a detailed visualization of feature 
gene expressions across fibroblasts, lymphocytes, goblet cells, B cells, and macrophages (Figure 7E).

ceRNA Network and Potential Therapeutic Drugs for Biomarkers
A comprehensive analysis of the five biomarkers identified 57 miRNAs and 21 lncRNAs, which facilitated the 
construction of a ceRNA network (Figure 8A). The findings indicated that AC138035.1 modulates CAV1 expression 
via hsa-let-7a-5p or hsa-let-7b-5p, AC240565.2 potentially influences ZEB1 expression through hsa-let-7b-5p, and 
LINC01001 similarly regulates CAV1 via hsa-let-7b-5p. Additionally, utilizing the DGIdb database, 12 potential drugs 
were identified targeting the four biomarkers (ABCA1, ZEB1, FLNA, and CAV1). Notably, the analysis revealed a strong 
binding affinity between ABCA1 and probucol, ZEB1 and salinomycin, as well as FLNA and PTI-125 (Figure 8B).

Verification of Feature Gene Expression Using qPCR and the HPA Database
The expression of the biomarkers (ZEB1, ABCA1, SLC24A3, CAV1, and FLNA) was validated through qPCR and 
analysis using the HPA database. qPCR results revealed that the mRNA levels of these genes in samples from patients 
with CA were significantly lower compared to those with NC (Figure 9), corroborating the findings from the bioinfor-
matics analysis. Additionally, protein levels of the five biomarkers were reduced in samples from patients with CRC 
relative to those with NC, consistent with the expression patterns observed in the publicly available GSE117606 dataset 
(Figure 10A–E).
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Figure 5 Immune heterogeneity analysis. (A) Composition of the 24 immune cell types in samples from patients with CA, CRC, and NC; (B) Differences in the proportions 
of immune cells between different groups, yellow for CA, red for CRC, blue for NC; (C) Correlation network of biomarkers and immune cells, connected lines represent 
relationships with mutualisms (ns, not significant, * p <0.05, ** p <0.01, *** p <0.001, **** p <0.0001).
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Discussion
Early detection of CA is essential for preventing the progression to CRC. Thus, identifying CMRGs linked to both CA 
and CRC is of substantial clinical importance, as it enables timely interventions. The role of copper metabolism and 
homeostasis in the development of CA and CRC has garnered increasing interest. Building on the potential relevance of 
CMRGs in colon cancer,22,23 a comprehensive bioinformatics analysis was undertaken to identify key genes associated 
with copper metabolism that contribute to the progression of CA and CRC.

Through this analysis, five biomarkers—ZEB1, ABCA1, SLC24A3, CAV1, and FLNA—were identified. Evaluating 
the diagnostic value of each gene individually and collectively revealed that ZEB1, ABCA1, SLC24A3, CAV1, and 
FLNA possess strong discriminatory power between CA and NC.

Zinc finger E-box binding homeobox 1 (ZEB1) plays a pivotal role in the epithelial-mesenchymal transition (EMT) of 
tumor cells, a process essential for metastasis in colon cancer cell lines.37,39–41 Silencing ZEB1 has been shown to inhibit the 
proliferation and metastatic potential of colon cancer cell lines, such as LoVo.42 Studies have shown that during the adenoma 
(CA) stage, ZEB1 expression is generally downregulated, which may be related to maintaining normal epithelial architecture 
and function, thereby restricting abnormal cell migration and proliferation.43 However, as CA progresses to colorectal cancer 
(CRC), ZEB1 expression increases significantly.44 Elevated ZEB1 expression promotes epithelial–mesenchymal transition 
(EMT), facilitating tumor cell detachment from the primary site and contributing to cancer metastasis.45 ZEB1-mediated 
regulation of colorectal cancer by cancer-associated fibroblasts (CAFs) has revealed that heterogeneous expression and defects 

Figure 6 Single-cell RNA-sequencing analysis to identify the different cell subsets in GSE201348. (A) t-Distributed Stochastic Neighbor Embedding (tSNE) plot and Uniform 
Manifold Approximation and Projection (UMAP) plot for 13 principal components (PCs) identified using principal component analysis (PCA). Each PC captures some 
biological differences, with the earlier PCs containing more information about these differences; (B) Expression heatmap for the top 5 marker genes among 13 clusters; (C) 
t-SNE plots labeling cluster 2 as goblet cells based on the expression patterns of FCGBP, MUC2, and CLCA1; (D) t-SNE plots labeling cluster 3 as myeloid cells based on the 
expression patterns of FTL, TMSB10, and TPT1; (E) t-SNE plots labeling cluster 4 as B cells according to the expression patterns of BLNK, MS4A1, and CD37; (F) A pie 
chart showing the proportion of 10 cell subsets in samples from patients with NC, CA, and CRC.
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in ZEB1 within these fibroblasts not only compromise the stability of the extracellular matrix (ECM) and the barrier function 
of CAFs but also collectively contribute to carcinogenesis, suppression of anti-tumor immunity, and promotion of metastasis. 
This occurs through the upregulation of cytokines mediated by Nuclear Factor kappa-light-chain-enhancer of activated B cells 
(NF-κB) and the activation of immune checkpoints, underscoring the multifaceted role of ZEB1 in the tumor microenviron-
ment and its significance as a potential therapeutic target.46 Copper played a critical role in cellular redox reactions, and its 
metabolic imbalance could lead to the generation of oxidative stress.47 ZEB1 has been shown to repress E-cadherin (CDH1), 
thereby promoting epithelial–mesenchymal transition (EMT), and may also influence the expression of antioxidant enzymes 
such as superoxide dismutase (SOD) and glutathione peroxidase (GPX), altering the cellular redox state.48 In colorectal cancer 

Figure 7 Single-cell RNA-sequencing analysis for biomarkers. (A) Dot plots of marker gene expressions for 10 cell subsets, the larger the diameter, the higher the 
expression; (B) t-SNE plots for 10 cell subsets; (C) Expression heatmap for five biomarkers among 10 cell subsets; (D) Violin plot for feature gene expression in 10 cell 
subsets; (E) t-SNE cluster map of five biomarkers in different cell subsets, the bluer the color, the higher the expression level.
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(CRC), oxidative stress may contribute to disease pathogenesis by affecting processes such as intestinal epithelial cell 
proliferation, apoptosis, and inflammation.49 Therefore, dysregulated copper metabolism may promote the progression of 
colorectal adenoma (CA) and CRC through oxidative stress, with ZEB1 potentially serving as a mechanistic link in this 
process. Our study observed that ZEB1 expression was downregulated in CA samples but upregulated in CRC, reflecting its 
dual role in cancer progression. However, this phenomenon warrants further investigation. ATP-binding cassette transporter 
A1 (ABCA1) is a transmembrane protein that mediates the reverse transport of cholesterol from cells to the circulatory 
system.50,51 Wu et al proposed that inducing ABCA1 expression could be a novel cancer treatment strategy by reducing 
intracellular cholesterol levels through reverse cholesterol transport.52 In the tumor microenvironment, copper metabolism 
dysregulation can lead to intracellular changes that may indirectly affect ABCA1-mediated cholesterol transport, thereby 
influencing tumor cell growth and metastasis.53,54 Although the direct relationship between ABCA1 and epithelial–mesench-
ymal transition (EMT) remains unclear, aberrant cholesterol metabolism can alter membrane properties and impact cell–cell 

Figure 8 Exploration of the biomarkers. (A) LncRNA-miRNA-mRNA network relevant to biomarkers; (B) Feature gene-associated targeted drug network using the Drug- 
Gene Interaction database (DGIdb) database. The pink circle represents the biomarkers, the blue circle represents the targeted drugs, the lines represent the interaction 
scores, and the color of the lines deepen as the interaction score increases.

Figure 9 Validation of feature gene expression through the quantitative polymerase chain reaction (qPCR) experiments. * p <0.05, *** p <0.001.
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adhesion, potentially interacting with EMT processes. Copper-mediated regulation of ABCA1 may serve as a mechanistic link 
in this context.55,56 Abnormal ABCA1 expression has been documented in colon cancer tissues and cells, where dysregulated 
intracellular cholesterol, driven by ABCA1 overexpression in advanced CRC, may contribute to tumor growth and metastasis. 
Conversely, silencing ABCA1 has been found to promote colon cancer cell proliferation and inhibit apoptosis.50,57 This study 
similarly observed downregulation of ABCA1 in patients with CA, which reversed during the progression to CRC, paralleling 
the pattern seen with ZEB1. This phenomenon supports a potential role for ABCA1 in tumour progression. Caveolin-1 
(CAV1), a membrane protein implicated in various cellular processes including endocytosis, extracellular matrix organization, 
and cholesterol distribution, has been identified as an oncogenic factor in several cancers, including liver, colon, breast, kidney, 
and lung cancers.58,59 However, CAV1 expression varies depending on tumor type and stage. While it is downregulated in 
certain sarcomas and adenocarcinomas, it is significantly upregulated in advanced tumors like squamous cell carcinoma, 
a finding consistent with our results.59 It is important to highlight that there are various copper - transport proteins, such as 
ATP7A and ATP7B, within cells to maintain copper homeostasis. Given the close relationship between the cell membrane 
environment housing CAV1 and these transport proteins, it is highly possible that CAV1 interacts with copper - transport 
proteins.60 Research indicates that copper - homeostasis imbalance, either excess or deficiency, can lead to pathological 
changes like atherosclerosis.61 These links imply a potentially complex connection between CAV1, copper - transport 
proteins, and copper homeostasis in tumor - related physiological and pathological processes. In colorectal adenoma (CA), 
CAV1 expression is usually low. Low CAV1 expression may limit the activation of cell - proliferation and migration - 
promoting signaling pathways, keeping the cell relatively stable.62 Our study shows that low CAV1 expression is significantly 
related to neural - activity ligand - receptor interaction and the ribosome pathway. Neural - activity ligands like neurotrans-
mitters may have their receptors’ expression and function on the cell surface influenced by copper - ion levels.63 When CA 
progresses to colorectal cancer (CRC), CAV1 expression increases. High CAV1 expression may boost endocytosis, affecting 
the number and distribution of cell - surface receptors and thus cell response to growth - factor - like signaling molecules.64 

Notably, Friedrich et al reported that the absence of CAV1, especially when combined with certain tumor suppressors and 
adenomatous polyposis in mouse models, may increase the risk of CRC.59,65 In the study by Li et al, HSPA8 was found to be 

Figure 10 Exploration of the protein expressions of the biomarkers in CRC tissue samples and normal colon samples. (A) ZEB1; (B) ABCA1; (C) SLC24A3; (D) CAV1; (E) 
FLNA.
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transcriptionally upregulated in BRAF V600E mutant CRC, promoting the degradation of CAV1 and the release of β-catenin 
into the nucleus, thereby activating the Wnt/β-catenin pathway and driving metastasis and progression in BRAF V600E 
CRC.66 However, the expression of CAV1 appears to be context-dependent. In our study, we observed that CAV1 expression 
was downregulated in colon adenomas (CA) but upregulated in CRC. Filamin A (FLNA), the most abundant and broadly 
distributed member of the actin-binding protein family, has diverse functions.67,68 As essential cofactors for numerous 
enzymes, copper ions participate in multiple intracellular metabolic pathways and may indirectly modulate the expression 
and function of Filamin A (FLNA).54,69 Our study reveals a significant association between ribosomal biogenesis pathways 
and FLNA underexpression. Copper-dependent enzymes, such as copper-zinc superoxide dismutase (SOD1), may contribute 
to rRNA stability or processing, thereby influencing ribosomal assembly.70 In colorectal cancer (CRC), dysregulated copper 
metabolism could potentially drive tumor progression through ribosomal pathway activation.71 Furthermore, within the tumor 
microenvironment, altered copper ion concentrations may indirectly affect FLNA’s role in epithelial-mesenchymal transition 
(EMT) by modulating cytoskeleton-associated signaling pathways.72 In the context of CRC, the clinical expression and 
biological role of FLNA remain controversial. Tian et al found that FLNA is downregulated in patients with CA and is closely 
associated with CRC development and progression, suggesting it as a prognostic marker.73 Conversely, other research 
indicates that FLNA overexpression and phosphorylation at ser2152 are linked to snail-induced EMT and cell adhesion, 
proposing FLNA as a potential target for combined therapies in CRC progression.74 This could explain the observed 
upregulation of FLNA in CA and its downregulation in CRC samples in this study. Cheng demonstrated that FLNA directly 
regulates metastasis and epithelial-mesenchymal transition (EMT) in chemotherapy-resistant CRC cells, suggesting its 
potential as a reliable CRC marker. This is consistent with our findings, which identified FLNA as a primary marker for 
CRC diagnosis.75 Additionally, SLC24A3, a sodium-potassium-calcium exchanger, is associated with poor prognosis when 
expressed at high levels, indicating its utility as a prognostic marker, particularly in cervical cancer.76,77 This study is the first 
to suggest a potential role for SLC24A3 in the initiation and progression of colon cancer. However, further research is required 
to elucidate the roles and underlying molecular mechanisms of these five characteristic genes in CA and CRC.

To further elucidate the relationship between characteristic genes and key immune cells in CA, immune cell 
infiltration was analyzed. Previous studies, such as those by Mo et al, have shown that the downregulation of the 
ITGA4 gene is positively correlated with increased proportions of mast cells and eosinophils in CA.78 The protective and 
antitumor roles of mast cells in early-stage intestinal tumor models have also been demonstrated.79 Consistent with these 
results, the biomarkers identified in this study exhibited significant positive correlations with the infiltration levels of 
these immune cells. Additionally, the association between a higher proportion of M0 macrophages, low FLNA expres-
sion, and poor prognosis in CRC, as documented in previous literature,80 was confirmed by the current study in CA 
samples. These results underscore the close relationship between characteristic genes and immune cell infiltration in both 
CA and CRC. Subsequent scRNA-seq analysis revealed that these biomarkers were expressed across various cell types, 
including fibroblasts, lymphocytes, goblet cells, B cells, and macrophages. Notably, fibroblasts exhibited the highest 
expression of nearly all characteristic genes, with FLNA showing particularly elevated levels. The critical role of 
fibroblasts in tumor initiation and progression, where fibroblast-related characteristics serve as prognostic markers, has 
been well-documented.81 Hiroki Kobayashi et al further highlighted the importance of cancer-associated fibroblasts in 
CRC progression and their link to poor patient prognosis.82 These findings reinforce the diagnostic value of the selected 
characteristic genes in CRC.

To delve deeper into the pathways and functions associated with the identified characteristic genes, GSEA was 
conducted. The analysis revealed significant enrichment of these genes in several pathways, including the cGMP-PKG 
signaling pathway, Apelin signaling pathway, focal adhesion, and proteoglycans in cancer. Therapeutic activation of the 
cGMP-PKG pathway has been proposed as a promising strategy for colon cancer prevention and treatment, with PKG 
playing a central role in intestinal homeostasis and tumor suppression by inhibiting the β-catenin, T-cell factor (TCF), 
and SOX9 signaling pathways, thereby blocking cell proliferation and tumor angiogenesis.83 Additionally, increasing 
evidence supports the anti-tumor signaling capabilities of PKG1 in colon cancer cell lines.84 The Apelin pathway, which 
activates G-protein coupled receptors and Apelin receptors, also exerts various biological functions.85,86 Notably, Picault 
et al found that the Apelin gene was upregulated in approximately half of the CA cases, suggesting that the Apelin 
signaling pathway may contribute to colon cancer progression by activating anti-apoptotic pathways.87 The focal 
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adhesion signaling network, composed of integrins, growth factor receptors, and other survival-promoting molecules, 
represents another potential target for cancer treatment.88 Moreover, studies have shown that syndecan-2, a cell surface 
proteoglycan, is upregulated in CRC and promotes cell migration, while the expression of the antineoplastic molecules 
syndecan-1 and syndecan-4 is reduced.89 These results suggest that the dysregulation of these biological processes is 
closely linked to CRC onset and development, highlighting the potential of the five biomarkers as indicators of pathways 
associated with CRC progression in patients with CA. The incorporation of these genes into diagnostic strategies and 
treatment plans holds significantly to enhance our ability to manage CRC. Their expression levels in specific cell types, 
notably fibroblasts and immune cells, suggest that they may also significantly influence the tumour microenvironment 
and impact response to treatment.

Moreover, an upstream regulatory network involving lncRNA-miRNA-mRNA interactions was constructed for the 
characteristic genes linked to disease progression. Vahid et al proposed that MALAT1, regulated by the lncRNA-p53 
network, could serve as an early detection biomarker for CRC.90 In this study, MALAT1 was found to competitively bind 
to miR-141-3p, thereby influencing the expression of SLC24A3. Additionally, Mezgebe et al demonstrated that miRNA 
let-7c, which interacts with CAV1 and ZEB1 in our study, was significantly upregulated in adenomas compared to 
healthy samples.91 This finding may explain the downregulation of CAV1 and ZEB1 in CA samples. The constructed 
network offers a foundation for further exploration of the underlying mechanisms governing these genes in CA and CRC.

Among the drugs predicted to target the characteristic genes involved in disease progression, probucol, which targets 
ABCA1, has been shown to effectively inhibit ABCA1-mediated cholesterol efflux,92 a process implicated in the 
development of various tumors. CAV1 demonstrates a strong binding affinity for testosterone, and studies have shown 
that both endogenous and exogenous testosterone can exacerbate azoxymethane (AOM) or dextran sodium sulfate 
(DSS)-induced colitis and its carcinogenic effects.93 Another potential drug, salinomycin, targets ZEB1 and has shown 
promise in eradicating cancer stem cells (CSC) and treating drug-resistant cancer cells, suggesting its potential as an 
effective chemotherapy agent.94 Wang et al found that salinomycin significantly reduced tumor growth and CSC-related 
Wnt target gene expression, including LGR5, in colorectal tumor xenografts and APCmin/+ transgenic mice.95 

Therefore, the predicted drugs highlighted above hold considerable promise as potential therapeutic candidates for the 
treatment and prevention of CA and CRC.

While our study provides valuable insights, it is important to acknowledge its limitations. The current sample may not 
fully capture the heterogeneity of all colon adenoma (CA) patients. While this study provides valuable insights into the 
roles of copper metabolism and the immune microenvironment in CA, several limitations should be acknowledged. The 
current sample cohort may not fully capture the heterogeneity of CA patients. The qPCR validation was performed with 
a limited sample size and lacks long-term clinical follow-up. Subsequent studies should expand the sample size to 
include individuals of diverse ethnicities, ages, genders, and clinical stages, coupled with longitudinal monitoring of gene 
expression patterns and disease progression to enhance the generalizability and reliability of the findings. Furthermore, 
the stability of signature gene expression may vary across different disease stages, necessitating longitudinal studies to 
validate their clinical utility. We plan to systematically analyze existing datasets, incorporating clinical staging, family 
history, and other variables to construct a nomogram for evaluating associations and interactions with the five key genes, 
thereby improving predictive accuracy. Addressing these limitations is essential for translating these research findings 
into clinical applications.

To enhance the scientific and translational value of the study, animal models and cell culture experiments should be 
conducted in the future to validate the biological functions of these signature genes by knocking out or overexpressing 
them, thereby confirming their roles in the pathogenesis of CA. Secondly, the dynamic trends of cancer characteristics 
were effectively captured by monitoring the biomarkers through longitudinal studies using the Smoothing Cubic 
B-Spline Model,96 which combines multi-omics data and reinforcement learning state behaviour reward state 
Behaviour (SARSA) hybrid cancer prediction model, which lays a solid foundation for subsequent bioinformatics 
analyses.97–99 Combined with multi-centre and large-sample clinical studies, we will assess its clinical application 
value in different stages of the disease and enhance the generality of the findings.
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Through the efforts in the above directions, we expect to overcome the limitations of current studies, further reveal 
the molecular mechanisms of CA, promote clinical translation, and open up new avenues for precision diagnosis and 
treatment of CA.

Conclusions
In conclusion, this study successfully identified and validated Cu metabolism-related biomarkers associated with CA and 
CRC through comprehensive bioinformatics approaches. The research also examined the correlation between the 
biomarkers and immune infiltration, alongside predicting potential targeted drugs for CA treatment. Additionally, 
a ceRNA regulatory network was constructed to elucidate lncRNA-miRNA-mRNA interactions, offering valuable 
insights for future mechanistic studies. Overall, this study lays a solid foundation for understanding the molecular 
mechanisms underlying these diseases.
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