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Selection rules in symmetry-broken systems by
symmetries in synthetic dimensions
Matan Even Tzur 1✉, Ofer Neufeld 1,2, Eliyahu Bordo 1, Avner Fleischer 3 & Oren Cohen 1

Selection rules are often considered a hallmark of symmetry. Here, we employ symmetry-

breaking degrees of freedom as synthetic dimensions to demonstrate that symmetry-broken

systems systematically exhibit a specific class of symmetries and selection rules. These

selection rules constrain the scaling of a system’s observables (non-perturbatively) as it

transitions from symmetric to symmetry-broken. Specifically, we drive bi-elliptical high

harmonic generation (HHG), and observe that the scaling of the HHG spectrum with the

pump’s ellipticities is constrained by selection rules corresponding to symmetries in synthetic

dimensions. We then show the generality of this phenomenon by analyzing periodically-

driven (Floquet) systems subject to two driving fields, tabulating the resulting synthetic

symmetries for (2+ 1)D Floquet groups, and deriving the corresponding selection rules for

high harmonic generation (HHG) and other phenomena. The presented class of symmetries

and selection rules opens routes for ultrafast spectroscopy of phonon-polarization, spin-orbit

coupling, symmetry-protected dark bands, and more.
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Selection rules are a significant consequence of symmetries,
appearing throughout science. For example, point-group
symmetries forbid electronic transitions in solids and

molecules1, the existence of electric and magnetic moments2, and
harmonic generation in perturbative nonlinear optics3. In peri-
odically driven (Floquet4) systems, symmetries that involve space
and time (denoted dynamical symmetries, DSs) result in selection
rules for various phenomena. Examples include symmetry-
induced dark states and transperancy5–7, forbidden harmonics
and polarization restrictions in HHG8–10, as well as forbidden
photoionization channels11. Symmetries and selection rules are
widely used for controlling and measuring one another. On one
hand, a system’s symmetry is often “engineered” to achieve a
desirable selection rule12–17. On the other hand, in symmetry-
broken systems, the selection rules are replaced with selection rule
deviations that can be used to extract information about the
broken symmetry and the symmetry-breaking perturbation. In
nonlinear optics for instance, selection rule deviations are used as
a background-free gauge of molecular symmetry18, orientation19,
and chirality20–22, electric currents23, Berry curvature24, topolo-
gical phase transitions25, and more26. However, to date, peri-
odically driven systems with broken symmetry, and selection rule
deviations, have only been analyzed ad hoc18–21,23–27, mostly via
perturbation theory (which is often limited to analyzing selection
rule deviations up to 2nd order). As a result, there is limited
insight into the system’s full dynamical behavior.

Here we present a class of symmetries and selection rules
which naturally appear in systems that exhibit broken DSs. We
construct these symmetries by exploiting symmetry-breaking
degrees of freedom as synthetic dimensions. We consider a
general system that exhibits some DS X̂, and show that when a
perturbation breaks that DS, it imposes an alternative symmetry
of the form X̂ � ζ̂ , where ζ̂ is an operation in synthetic space that
acts only on the symmetry-breaking degrees of freedom (i.e., on
the perturbation). We term the class of these alternative sym-
metries “real-synthetic symmetries” because of their composite
structure. Instead of the standard selection rules from the sym-
metry X̂ (which are broken), we show that the system exhibits a
specific class of selection rules that restrict scaling of observables
with respect to the perturbation. As an example, we focus on
HHG in Floquet systems subject to two driving fields, where the
DS X̂ corresponds to the symmetry of the material sample and a
1st driving laser, and a 2nd field breaks X̂ but imposes X̂ � ζ̂
symmetry in synthetic space, which consequently constrains the
scaling of the HHG spectral yield. The paper is organized as
follows: we begin with a simple numerical example of real-
synthetic symmetries and their corresponding selection rules.
Then, we present an experimental investigation of real-synthetic
symmetries in HHG driven by bi-chromatic bi-elliptical pumps.
We observe selection rules that manifest as restricted scaling laws
of the harmonic orders and polarization states as the system
transitions from the symmetric to the symmetry broken state.
Finally, we rigorously tabulate all real synthetic symmetries and
their corresponding HHG selection rules in (2+ 1)D Floquet
systems subject to two driving fields (ATI selection rules are
derived in section VI of the Supplementary Information).

Results
In order to introduce real-synthetic symmetries, we first remind
the difference between HHG in symmetric and symmetry-broken
systems. In HHG28–30, high-order harmonics are emitted due to
interaction between a strong pump laser and a medium. When
the system (pump and medium) exhibits a DS, the harmonic
spectrum exhibits selection rules in the form of forbidden har-
monics and polarization restrictions. If the DS is broken, selection

rule deviations (e.g., forbidden harmonics) are generated. Figure 1
illustrates examples of the scenario depicted above; with “intact”
and with broken dynamical reflection symmetry. In the three
examples presented in the left panel, the DS forbids even har-
monic generation polarized along the x̂ axis due to a dynamical
reflection symmetry denoted by Ẑi ¼ τ̂2 � σ̂ î, where τ̂2 is a half-
cycle time translation and σ̂ i is a spatial reflection relative to î axis
(so that σ̂x is the operation y ! �y)10. Conversely, the dyna-
mical reflection symmetry is broken in the systems in the right
panel due to application of voltage to the sample, orientation of
the molecular ensemble, or by an additional laser pulse. Conse-
quently, the systems on the right panel emit even harmonics
along the x̂ axis– selection rule deviations—as shown in the
schematic spectrum. While all the perturbations break the same
dynamical reflection symmetry Ẑi, each one imposes a different
real-synthetic symmetry Ẑ � ζ̂ , where ζ̂ acts on the perturbation
degrees of freedom in the Hamiltonian: e.g., the applied voltage
direction, the degree of orientation of the molecular ensemble, or
the polarization direction of the symmetry breaking laser pulse
(marked red in Fig. 1). As will be shown below, symmetry
operations of the form X̂ � ζ̂ impose selection rules that constrain
the scaling of the emission in a non-perturbative manner, valid to
all orders in the perturbation strength (without invoking per-
turbation theory at any stage). Below we focus on symmetry
breaking by a perturbing field (bottom right column in Fig. 1).

Simple example. In this section, we present a simple numerical
example of a real-synthetic symmetry and corresponding HHG
selection rules. We consider a Ne atom irradiated by two laser
beams, with frequencies ω ¼ 2π=T and 3ω, polarized along the
x̂ and ŷ axes, respectively (see Fig. 2a, top row, for the Lissajous
curve and mathematical expression for the driving field). Due
to the spherical symmetry of the Ne atom, the DS of the system
is determined by the driving field—it exhibits a 2nd order
rotational DS Ĉ2, defined by ĈN ¼ τ̂N � R̂N . Here, τ̂N is a T=N
time translation and R̂N is a 2π=N rotation within the polar-
ization plane of the laser10. The top row of Fig. 2a illustrates the
invariance of Lissajous curve of the driving field under the Ĉ2
operation. As a result, even harmonic generation is forbidden,
and the HHG spectrum exhibits odd-only harmonics (Fig. 2b,
blue curve). At this point we intentionally deform the Lissajous
curve of the driving field such that it does not exhibit any DS by
adding a third beam with a relative amplitude λ, frequency 4ω,
and x̂ axis polarization. The symmetry broken driving field is
given by

F t; λð Þ ¼ sin ωtð Þ þ λcos 4ωtð Þð Þx̂ þ sin 3ωt þ π=7
� �

ŷ ð1Þ

and the Hamiltonian of the symmetry broken system is given by

Ĥ ¼ �∇2

2
þ V rð Þ þ r � F t; λð Þ ð2Þ

where V rð Þ represents the atomic potential of the Ne atom. For
λ≠ 0, the driving field does not exhibit Ĉ2 DS because the term
λxcos 4ωtð Þ changes sign under the Ĉ2 operation. In order to
revive a symmetry in the symmetry-broken Hamiltonian, we
incorporate the symmetry breaking DOF λ as a synthetic
dimension. The synthetic dimension operation ζ̂ λð Þ ¼ �λ
inverts the effect of Ĉ2 on the symmetry breaking term. Fig-
ure 2a illustrate this symmetry operation – to recover the initial
Lissajous curve, both Ĉ2 and ζ̂ operations need to act on the
field. To obtain the corresponding harmonic generation selec-
tion rules, we employ the invariance of the emitted field
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EHHG t; λð Þ under the symmetry operation:

EHHG t; λð Þ ¼ Ĉ2 � ζ̂EHHG t; λð Þ ¼ R̂2EHHG t þ T=2;�λ
� � ð3Þ

To reformulate this selection rule for harmonic amplitudes, we
employ a Fourier transform EHHG t; λð Þ ¼ ∑nEn λð Þeinωt , where
En λð Þ is the complex amplitude of the n’th harmonic. The
operation R̂2 transforms a vector En λð Þ as R̂2En λð Þ¼ � En λð Þ, and
τ̂2e

inωt ¼ einω tþT=2ð Þ ¼ �1ð Þneinωt . Consequently, the Ĉ2 � ζ̂ selec-
tion rule for harmonic amplitude n is:

En λð Þ � �1ð Þnþ1En �λð Þ ð4Þ

That is, the amplitude of each even (odd) harmonic is an odd
(even) function of λ. Importantly, this analytical result is correct
for any value of λ (i.e., it is non perturbative) because it is a direct
result of a symmetry-based selection rule rather than a
perturbative expansion. We demonstrate the different parity of
even and odd harmonic responses to the perturbation by
numerically solving the time-dependent Schrodinger equation
(TDSE) for a model Ne atom irradiated by field in Eq. 1 (see
section I of the Supplementary Information). Harmonic ampli-
tudes are obtained by Fourier transforming the time dependent
dipole acceleration. Figure 2c, d show the numerically exact
scaling of the harmonic amplitudes with λ over the range between
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Fig. 1 Dynamical symmetry and dynamical symmetry breaking in periodically driven systems. On the left, a linearly polarized laser pulse interacts with
either a solid or a randomly oriented ensemble of molecules, so that the system exhibits a dynamical reflection symmetry. The DS imposes a selection rule
that forbids even harmonic generation along the x̂ axis, as illustrated in the schematic spectrum in the bottom left corner. On the right, the dynamical
reflection symmetry is broken either by a DC voltage applied to the solid sample, orientation of the molecular ensemble, or an additional laser field with a
different frequency. Because the DS is broken, selection rule deviations in the form of even harmonics appear.
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λ ¼ �0:75 to λ ¼ 0:75. Fitting even (odd) harmonic amplitudes
to a linear (quadratic) λ-dependence, results in good agreement
within the range λj j≤ 0:2 (green shaded region; see individual and
average R2 values in Fig. 2(c, d)), corresponding to the analytical
predictions of odd/even scaling with λ.

Experimental investigation of selection rules by real-synthetic
DS. Next, we experimentally explore real-synthetic symmetries
and their corresponding selection rules in HHG driven with a bi-
chromatic bi-elliptical ω0 � 1:95ω0 field. When this frequency

ratio is employed for HHG, non-integer harmonics are generated,
corresponding to different emission channels of n1 fundamental
photons and n2 photons of frequency 1:95ω0

31,32. The non-
integer frequency ratio results in a spectral separation of emission
channels that would otherwise overlap. As will be shown below,
this spectral separation allows us to observe real-synthetic sym-
metries and selection rules without resolving the polarization of
the HHG spectrum.

In our set-up33 (Fig. 3a), a bi-chromatic laser pulse (40 fs FWHM)
with frequencies ω0 � 1:95ω0 (corresponding to the wavelengths
800 nm and 410 nm, respectively) is passed through an achromatic

Fig. 2 HHG selection rules in a system with broken Ĉ2 symmetry. a For λ ¼ 0 (top row), the driving field exhibits Ĉ2 DS (top row). For λ≠0 (bottom row),
the Lissajous curve of the driving field is invariant under Ĉ2 � ζ̂ where ζ̂ λð Þ ¼ �λ b HHG spectrum for λ ¼ 0 (blue, even harmonic forbidden) and λ ¼ 0:2
(red, all harmonic orders allowed). The phase of each Lissajous curve is illustrated by a color gradient that transforms under temporal translations. When
an x̂-polarized field of frequency 4ω and relative amplitude λ perturbs a Ne atom driven by a Ĉ2 symmetric field, the DS is reduced to real-synthetic
symmetry, which coerces c 2q harmonics of to scale oddly with λ whereas d 2qþ 1 harmonics scale evenly with λ. Even (odd) harmonic amplitudes are fit
to a linear (quadratic) model in the range λj j � 0:2 (green shaded), and the average R2 value is presented in the top right of each figure. Individual R2

values are presented above each subfigure. For λj j>0:2, cubic/quadratic contributions deform the lowest order linear/quadratic scaling.
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zero-order quarter-wave plate (QWP). The rotation angle θ of the
QWP controls the ellipticity ϵ θð Þ of the pumps (Supplementary
Information section V), resulting in the following field:

F t; ϵð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1
1þ ϵ2

r
R eiω0t iϵx̂ þ ŷ

� �þ Δe1:95iω0tðix̂ � ϵŷÞ� � ð5Þ

Equation (5) describes two counter rotating elliptically polarized
beams of ellipticity ϵðθÞ, at frequencies ω0 � 1:95ω0 where
ω0 � 2π=Tω0

, and Δ is the two-color amplitude ratio. For θ ¼ 0,
the ellipticity is ϵ ¼ 0 and the field is in a “cross-linear”
configuration. For θ ¼ 45�, the pump ellipticities are ϵ ¼ 1 and
the field is in a “bi-circular” configuration. Figure 3b shows Lissajous
curves of the driving field for different values of θ. We note that
Fig. 3b depicts the Lissajous curves in the temporal window between
0 and Tω0

, while the periodicity of the bi-chromatic field is T ¼

20Tω0
(the complete Lissajous are given in the Supplementary

Information, section V). We further emphasize that the Floquet
frequency of this system is given by ω ¼ 2π=T and not
ω0 ¼ 2π=Tω0

, and it is the Floquet frequency ω that should be

used when applying the general theory outlined in the next section.
The bi-chromatic beam is focused onto a supersonic jet of argon

gas at an intensity of 2 ´ 1014W=cm2 at the focus, where 10% of the
intensity is in the redshifted SH driver (i.e., Δ ¼ 1=

ffiffiffiffiffi
10

p
). The

ŷ-polarization component of the HHG spectrum is measured by a
polarizing XUV spectrometer. The measured HHG spectrum
(Fig. 3c) exhibits two types of selection rules, which are imposed
either by standard DSs, or by real-synthetic DSs. Firstly, for θ ¼ 0�

and θ ¼ 45�, the driving field exhibits standard HHG selection rules
in the form of forbidden harmonics due to dynamical reflection and
rotation symmetries, respectively10. These selection rules determine
that even harmonic generation is forbidden along the ŷ axis (the

Fig. 3 Real-synthetic symmetries in bi-elliptical HHG. a Illustration of the experimental setup29 b Lissajous curves of the driving field for different values
of the QWP angle θ, in the temporal window 0< t< Tω0. The phase of each Lissajous is illustrated by a color gradient. The driving field exhibits a dynamical
reflection symmetry at θ ¼ 0� (yellow) and a dynamical rotation symmetry at θ ¼ 45� (blue) c the measured HHG spectrum as a function of the QWP
angle θ. d Illustration of the symmetry operations Ẑ � ζ̂ Ẑ on the Lissajous curves of the driving field for ϵ ¼ 0; ±0:4. e Illustration of the symmetry operation
Ĉ � ζ̂ Ĉ on the Lissajous curve of the driving field for ϵ ¼ 0:5. To visualize the operation of Ĉ � ζ̂ Ĉ on the field, it is broken to 4 circularly polarized components.
f Lowest order allowed in the scaling of H20.7, H19.75, and H18.8 with the deviations from θ ¼ 0� and θ ¼ 45�.
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measurement axis) for θ ¼ 0� and 3n harmonic generation is
forbidden for θ ¼ 45� for integer n (Fig. 3c, marked in orange). As θ
detunes from 0� and 45�, these DSs are broken by the polarization
components of the pump, playing the role of a perturbation. In the
next paragraph, we will identify explicitly the real-synthetic
symmetries imposed by these polarization components and obtain
their corresponding selection rules, which constrain the spectral
response of the emission. We will show that these selection rules are
consistent with the observed scaling of the HHG spectrum as θ
detunes from the high symmetry points 0� and 45°, for 3 exemplary
frequency components (18:8ω0; 19:75ω0; 20:7ω0, Fig. 3c). Addi-
tional spectral components are analyzed in the Supplementary
Information, section IV.

As θ detunes from 0�, the dynamical reflection symmetry is
broken, and instead, the symmetry Ẑy � ζ̂ is imposed. Here, Ẑy is

the operation fx ! �x; t ! t þ T=2 ¼ t þ 10Tω0
g and ζ̂ is the

operation ϵ ! �ϵf g. Notably, the operation Ẑy is defined as τ̂2 �
σ̂y where σ̂y is a spatial reflection relative to the x̂ axis, and τ̂2 is
T=2 where T ¼ 20Tω0

is the period of the bi-chromatic field, Tω0

is the period of the fundamental field. Figure 3d shows the action
of the composite symmetry operation Ẑy � ζ̂ on the Lissajous
curve of the driving field. Employing the invariance of
the emission under the symmetry operation, we obtain
EHHG t; ϵð Þ ¼ σ̂yEHHGðt þ 10Tω0

;�ϵÞ. This condition coerces
harmonic amplitudes 20.7 and 18.8 (19.75) to be even (odd)
functions of ϵ (and θ) along the ŷ axis.

As θ is detuned from 45�, the dynamical rotation symmetry is
broken. To obtain the real-synthetic symmetry associated with
the broken dynamical rotation symmetry, we consider the
following general field, formulated with circularly polarized
vectors:

EðtÞ ¼ < i
2

η ð̂eReiω0t þ êLe
1:95iω0tÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Ĉ2:95symmetric

� δ1êLe
iω0t þ δ2êRe

1:95ω0t

8><>:
9>=>;
ð6Þ

Here, êL=R ¼ x̂ ± iŷ where x̂ and ŷ are basis vectors polarized along
the x and y axes, respectively. The parameter η is the amplitude of
an ω0 � 1:95ω0 bi-circular field exhibiting Ĉ2:95 ¼ R̂2:95 � τ̂2:95 DS,
where R̂2:95 is a 2π=2:95 spatial rotation and τ̂2:95 is a Tω0

=2:95
time translation. The parameters δ1;2 are the complex amplitudes of
two circularly polarized symmetry breaking fields which result in
selection rule deviations as the symmetry is broken. The physical
field in our experiment is represented by η ¼ 1þ ϵ and δ1;2 ¼
1� ϵ / θ � 45�j j: The field η êRe

iω0t þ êLe
1:95iω0t

� �
exhibits Ĉ2:95

DS (the relations R̂2:95êL=R¼e± 2πi=2:95êL=R and τ̂2:95e
inω0t ¼

e2πin=2:95einω0t are useful for verifying it). In contrast, the fields of
amplitudes δ1;2 do not, hence they are symmetry breaking. Instead,

these field components are symmetric under the operation Ĉ2:95 � ζ̂ ,
where ζ̂ phase shifts the symmetry breaking field components
δ1 !|{z}

ζ

δ1e
�2 ´ 2πi=2:95 ¼ δ1e

0:95 ´ 2πi=2:95; δ2 !|{z}
ζ

δ2e
0:95´ 2πi=2:95.

Figure 3e illustrates how each circularly polarized components of
the driving field is transformed separately by the operation Ĉ2:95 � ζ̂.
The resulting selection rule for the harmonic ampli-
tudes is EHHG t; δ1; δ2

� � ¼ R̂2:95EHHGðt þ T=2:95; δ1e
0:95 ´ 2πi=2:95;

δ2e
�0:95 ´ 2πi=2:95Þ. By expanding EHHG t; δ1; δ2

� �
to a power series in

δa1δ
b
2
�δ
c
1
�δ
d
2 (bar represents complex conjugate) and taking δ1;2 /

θ � 45�j j; we obtain that the symmetry Ĉ2:95 � ζ̂ forbids linear
contributions in the scaling of H20.7 and quadratic contributions in
the scaling of H19.75 (Supplementary Information, section III).
Similarly, it forbids linear and quadratic contributions to the scaling
of H18.8, hence it scales cubically with the deviation angle
jθ � 45�j. The table in Fig. 3f summarizes the results of this
section, listing the lowest allowed orders in the scaling of each of the
harmonic amplitudes 18.8, 19.75 and 20.7 with θj j and θ � 45�j j.

Figure 4a–c show the measured harmonic amplitudes of
spectral components n= 18.8, 19.75, and 20.7 as a function of the
waveplate angle, θ, obtained by integrating the measured signal
(Fig. 3c) in a range of nω0 ± 0:0225ω0 and taking the square root.
Each harmonic amplitude curve was fitted to three models of the

Fig. 4 Experimental observation of selection rules in a symmetry broken system due to real-synthetic symmetries. a–c Deviations of harmonic
amplitudes from standard selection rules as a function of QWP angle θ for harmonic orders 18.8, 19.75, and 20.7. The scaling of each harmonic amplitude
was fit to three models within the yellow & blue shaded regions, and the best fits appear in the corresponding color above each subfigure. d R2 values for all
numerical fits. The best fits for each harmonic are marked in yellow in blue.
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form am θ � θ0
� �m�� ��, for m ¼ 1; 2; 3 (a constant term was allowed

for initially allowed harmonics). The obtained R2 values of these
fits are summarized in the table in Fig. 4d. The formula and R2

values of the best fit to each harmonic amplitude, as well as
overlays of the numerical fits over the measured harmonic
amplitudes, are shown in Fig. 3a–c. Comparing the obtained R2

values in Fig. 4d with the predicted scaling (Fig. 3f), we observe
that fits to the predicted lowest order allowed contributions
resulted with R2 > 0:95 for all the six examined cases, while all
other fits were significantly smaller. These results demonstrate the
experimental observation of selection rules by real-synthetic DS,
which could consequently be used for applications.

Finally, we note that the observed scaling of the harmonic
amplitudes around θ ¼ 45� can also be obtained via emission-
channel analysis32,33 that relies on conservation of energy, parity,
and spin, (Supplementary Information, section IV). In contrast,
the scaling around θ ¼ 0� does not have an analogue conserva-
tion law derivation.

General theory. In this section we classify real synthetic sym-
metries imposed by dressing laser fields, using Floquet group
theory. That is, we consider a Floquet system that initially exhibits
some DS X̂ to be subject to an external laser field (so-called
dressing field), that transforms its DS X̂ to a real-synthetic
symmetry X̂ � ζ̂ , and tabulate the corresponding selection rules by
Floquet group theory.

We start by considering a general Floquet system with period
T ¼ 2π=ω, and a DS denoted by X̂. A Floquet system bH0 tð Þ ¼bH0 t þ Tð Þ exhibits the DS X̂ if ½bHf ; X̂� ¼ 0 where bHf � Ĥ0 � i∂t
is the Floquet Hamiltonian. The operation X̂ is a (2+1)D spatio-
temporal symmetry, jointly imposed by the symmetries of the
target material and a first driving laser (or by any other periodic
excitation of the system34,35). The operations X̂ were compre-
hensively tabulated within the framework of Floquet group
theory10, and for completeness, are given with their correspond-
ing HHG selection rules in Table 1. In Table 1, T̂ is the time-
reversal operation (t ! �t), R̂N are 2π=N spatial rotations, τ̂N
are T=N time translations, σ̂ i is a reflection relative to the vector î,
and L̂b is the scaling operation ŷ ! bŷ where ŷ is a basis vector
parallel to the y-axis.

We consider the X̂ symmetric Floquet system to be perturbed
by a perturbation Ŵ:

Ĥ ¼ Ĥ0 þ bW ð7Þ

Ŵ breaks the symmetry X̂ such that X̂† Ĥ0X̂ ¼ Ĥ0, but
X̂†ĤX̂ ≠ Ĥ. Although X̂ is broken, it may still be exploited to
formulate a symmetry of the form X̂ � ζ̂ X̂ in the symmetry broken

system, where ζ̂ X̂ operates on the internal degrees of freedom of
Ŵ denoted by the vector Q, while leaving Ĥ0 unaffected. The
operation ζ̂ X̂ are derived by solving the equation Ŵ ¼ ðX̂ � ζ̂ X̂Þ†
ŴðX̂ � ζ̂ X̂Þ � X̂ � ζ̂ X̂ ½Ŵ�, where the square brackets indicate that

the composite operation X̂ � ζ̂ X̂ transforms the operator Ŵ. In the
examples above, Q is a vector containing the complex polariza-
tion components of the symmetry breaking fields, which is
acted on by ζ̂ . The selection rule for the optical emission is
obtained by employing the invariance of the emission under the
symmetry operation, that is EHHG t;Qð Þ ¼ X̂ � ζ̂ X̂EHHG t;Qð Þ ¼
X̂EHHGðt; ζ̂ Q½ �Þ.

We now focus on the case where Ŵ represents an additional
laser whose amplitude and polarization are given by the complex
vector Q ¼ ðqx; qyÞ

Ŵ¼R Qreisωt
� � ð8Þ

Here, ω is the fundamental frequency of the symmetric Floquet
system and sω ¼ 2πs=T is the frequency of the symmetry
breaking field Ŵ, and s is a rational number. Since X̂ is a
symmetry of Ĥ0, and ζ̂ X̂ only operates on ŴðQÞ by definition, the
symmetry condition is

Ŵ¼R ζ̂ X̂ Q½ �X̂ reisωt
	 
n o

ð9Þ

For example, if X̂ ¼ T̂ , this equation becomes
R Qreisωt
� �¼Rfζ̂ X̂ Q½ �re�isωtg, which is fulfilled by the complex

conjugation operation ζ̂ T̂ Q½ � ¼ �Q. If X̂ ¼ Ẑy (fx ! �x;

t ! T=2g), Eq. (9) reads R Qreisωt
� �¼Rfζ̂ X̂ Q½ � �1ð Þsσ̂xreisωt

	 
g,
which is solved by ζ̂ Ẑy

¼ �1ð Þsσ̂ðQÞy , where the Q superscript

indicates that σ̂ Qð Þ
y operates in the synthetic Q space

(fqx ! �qxg). Table 2 shows operations ζ̂ X̂ that solve Eq. (9)
for all other Floquet group theory10 symmetries X̂ (derived in
section II of the Supplementary Information).

The real-synthetic symmetries, X̂ � ζ̂ X̂ , result in selection rules
on various physical phenomena. Particularly, the selection rule
for the emitted harmonic light (denoted by EHHG t;Qð Þ) can be
obtained using the invariance of a time dependent observable
under the symmetry operation10, i.e. EHHG t;Qð Þ¼X̂EHHGðt; ζ̂½Q�Þ.
Notably, this equation also holds for other observables, i.e.
o t;Qð Þ ¼ X̂oðt; ζ̂ Q½ �Þ for a general o tð Þ. However, EHHG and o
may transform differently under X̂ and therefore adhere to
different selection rules. For example, EHHGðt;Q) transforms as
the dipole moment expectation value hence it changes sign under
R̂2, whereas the expectation value for squared x-axis position
x2 t;Qð Þ does not. Detailed examples of the transformation of the

Table 1 Floquet group theory and harmonic generation selection rules in (2+1)D.

Floquet group symmetry X̂ Harmonic generation selection rule

T̂ Linearly polarized only harmonics. They may be polarized along any axis.
Q̂ ¼ T̂ � R̂2 Linearly polarized only harmonics. They may be polarized along any axis.
Ĝ ¼ T̂ � τ̂2 � R̂2 Linearly polarized only harmonics. They may be polarized along any axis.
Ẑy ¼ τ̂2 � σ̂y Linearly polarized only harmonics, even harmonics are polarized along the reflection axis, and odd harmonics are

polarized orthogonal to the reflection axis.
D̂y ¼ T̂ � σ̂y Elliptically polarized harmonics with major/minor axis corresponding to the reflection axis.
Ĥy ¼ T̂ � σ̂y Elliptically polarized harmonics with major/minor axis corresponding to the reflection axis.
ĈN ¼ τ̂N � R̂N (±) circularly polarized Nq± 1 harmonics, q2N, all other orders forbidden
ĈN;M ¼ τ̂N � R̂N;M ¼ τ̂N � ðR̂NÞ

M (±) circularly polarized Nq±M harmonics, q2N, all other orders forbidden

êN;M ¼ τ̂N � L̂b � R̂N;M � L̂1=b (±) elliptically polarized Nq±M harmonics, q2N, with an ellipticity b, all other orders forbidden.
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EHHG under X̂ are given in the Supplementary Information and in
ref. 10. The condition EHHG t;Qð Þ ¼ X̂EHHGðt; ζ̂ Q½ �Þ is a non-
perturbative restriction (selection rule) on the response of the
dipolar emission of the system as the symmetry is broken, and in
principle, it is valid beyond the radius of convergence of a
particular perturbative expansion. However, for practical applica-
tion of these rules, it is instructive to reformulate them as
selection rules on the expansion coefficients of a perturbative
expansion. We emphasize that we do not employ perturbation
theory, but rather reformulate non-perturbative selection rules in
a perturbative language. To do this, we write

EHHG t;Qð Þ ¼ ∑
n
En Qð Þeinωt ð10Þ

En Qð Þ � ∑
1

a;b;c;d¼0

E abcdð Þ
nx

E abcdð Þ
ny

 !
qaxq

b
y�q

c
x�q

d
y

Here, ω is the fundamental frequency of the perturbed Floquet
system, En Qð Þ is the complex amplitude of the n’th harmonic, qx;y
are the complex polarization components of the symmetry
breaking field (Eq. (8)), �qx;y are their complex conjugates,

E abcdð Þ
nx ; E abcdð Þ

ny are expansion coefficients, and a; b; c; d are non-

negative integers. The non-perturbative selection rule of X̂ � ζ̂ X̂
may be translated to a selection rule on E abcdð Þ

nx=y to all orders in
a; b; c and d, or alternatively, to selection rules on the expansion
coefficients of any other perturbative expansion. For example, we
found above that for X̂ ¼ T̂ , the synthetic dimensions operation
is ζ̂ T̂ Q½ � ¼ �Q. Hence, EHHG t;Qð Þ¼EHHG �t; �Q

� �
, which implies

that the expansion coefficients E abcdð Þ
nx=y must all be real. Table 2

shows these selection rules for all Floquet group symmetries
(derived in the Supplementary Information, section II). Similar
rules were also derived for the ATI spectrum (see SI, section VI).

The rules presented in Table 2 are consistent with the
numerical example presented above where the perturbation is

monochromatic (Ĉ2 symmetry breaking). We emphasize that the
conditions of our experiment involve a bi-chromatic symmetry
breaking perturbation. In this case, the bi-chromatic perturbation
implies that the synthetic operations act in a higher dimensional
space, transforming each color of the perturbation separately.
Then, the selection rules are derived in the same manner but with
a more elaborate series expansion. In the general case of a laser
with two colors, we may write

Ŵ¼R Q1�reis1ωt þQ2�reis2ωt
� � ð11Þ

where s1;2 determine the color of each perturbation, and Q1;2 are
their complex amplitudes, and s1ω; s2ω and ω are mutually
commensurate frequencies. Now, the parameter space that
defines Ŵ is given by Q1;Q2

� �
, and the synthetic dimensions

operation is given by ζ̂ ¼ ζ̂1 � ζ̂2 where ζ̂ i operates only on Qi (i =
1, 2). Here, ζ̂1;2 are the operations tabulated in Table 2
corresponding to s1;2 respectively. The corresponding selection
rule for the emission is given by EHHGðt;Q1;Q;2Þ ¼
EHHGðt; ζ̂1ðQ1�; ζ̂ Q2

	 
Þ, which can be translated to selection rules
on the coefficients of a series expansion, in a manner identical to
the one presented above. The process of concatenating the
symmetry operations tabulated in Table 2 and deriving the
corresponding selection rules is not limited to bi-chromatic
perturbations and one may directly extend it to obtain the real-
synthetic symmetries and selection rules associated with a
polychromatic perturbation. Finally, we emphasize that the only
necessary condition for this construction is that the system
exhibits a broken-symmetry, and that there exists a unitary/anti-
unitary solution for ζ̂ x̂10.

Discussion
To summarize, we have demonstrated that systems that are
traditionally regarded as symmetry-broken, systematically
exhibit a specific class of symmetries and selection rules
through synthetic dimensions. These determine how the

Table 2 Real-synthetic symmetries and harmonic generation selection rules in (2+1)D symmetry broken systems.

X̂ ζ̂X̂ Qð Þ Harmonic generation selection rule

T̂ �Q E abcdð Þ
nx ; E abcdð Þ

ny 2 R

Q̂ ��Q E abcdð Þ
nx ; E abcdð Þ

ny 2 i1þaþbþcþdR

Ĝ �1ð Þ1þs �Q E klhjð Þ
nx ; E klhjð Þ

ny 2 inþ1þ sþ1ð ÞðaþbþcþdÞR

Ẑy �1ð Þsþ1 0
0 �1ð Þs

� �
qx
qy

� �
nþ sþ 1ð Þ aþ cð Þ þ s bþ dð Þ ¼ 2q )
E abcdð Þ
nx ¼ 0

nþ sþ 1ð Þ aþ cð Þ þ s bþ dð Þ ¼ 2qþ 1 )
E abcdð Þ
ny ¼ 0

D̂y �1 0
0 1

� �
�qx
�qy

� �
E abcdð Þ
nx 2 i1þaþcR
E abcdð Þ
ny 2 iaþcR

Ĥy �1ð Þsþ1 0
0 �1ð Þs

� �
�qx
�qy

� �
E abcdð Þ
nx 2 inþ1þ sþ1ð Þ aþcð Þþs bþdð ÞR
E abcdð Þ
ny 2 inþ sþ1ð Þ aþcð Þþs bþdð ÞR

ĈNM e�
i2πs
N R̂

ðQÞ
N;M�Q E abcdð Þ

Rn is forbidden unless mod n�M a� b� cþ dð Þ � s aþ b� c� dð Þ �M;Nð Þ ¼ 0

E klhjð Þ
Ln is forbidden unless mod n�M a� b� cþ dð Þ � s aþ b� c� dð Þ þM;Nð Þ ¼ 0

êNM e�
i2πs
N L̂

ðQÞ
1=b � R̂

Qð Þ
N;M � L̂ðQÞb�Q E abcdð Þ

�n is forbidden unless modðn�M a� b� cþ dð Þ � s aþ b� c� dð Þ �M;NÞ ¼ 0

E abcdð Þ
þn is forbidden unless mod n�M a� b� cþ dð Þ � s aþ b� c� dð Þ þM;Nð Þ ¼ 0
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system’s observables scale as the system transitions out of its
original symmetric state, showing the role of the broken sym-
metries in the dynamics. We have tabulated these symmetries
for periodically driven Floquet systems subject to two driving
fields, and derived the corresponding selection rules for HHG,
ATI and more. We observed experimentally that the scaling of
the HHG spectrum is consistent with selection rules rooted in
synthetic dimensions by driving HHG with a bi-chromatic, bi-
elliptical laser field. We highlight that our theory is a non-
perturbative and applies to all orders of the perturbation’s
strength. We further emphasize that real-synthetic symmetries
and their associated selection rules are general concepts, rele-
vant to all systems with a broken symmetry in real-space and
time. For example, one (or both) of the lasers that we have
employed may be replaced by a different periodically oscillating
(or static) element (either extrinsic or intrinsic), e.g., spin–orbit
coupling strengths36 (see section V in the Supplementary
Information), Floquet dark bands6 (section VI in the Supple-
mentary Information), or lattice excitations34,35,37. Specifically,
by reformulating them as effective gauge fields, the derived
symmetries and selection rules (Table 2) can be directly applied
to dynamical symmetry breaking by phonons and magnons,
opening opportunities for all-optical time-resolved spectro-
scopy (and control) of their dynamics. Overall, the presented
approach provides a unified framework for the analysis of
symmetry-broken systems, complementary to perturbation
theory, hence we expect it to be used throughout science and
engineering.

Data availability
Data presented in Figs. 3 and 4 have been deposited in a Zenodo repository at https://
zenodo.org/record/5977834#.Yf-dlOpBwkk. Any other data supporting the findings of
this study are available from the corresponding author upon reasonable request.

Code availability
The code supporting the findings of this study are available from the corresponding
author upon reasonable request.
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