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In the past decade, nanomedicine research has provided us with highly useful agents (nanoparticles) delivering therapeutic drugs
to target cancer cells. The present review highlights nanomedicine applications for breast cancer immunotherapy. Recent studies
have suggested that tumour necrosis factor (TNF) and its receptor 2 (TNFR2) expressed on breast cancer cells have important
functional consequences. This cytokine/receptor interaction is also critical for promoting highly immune-suppressive phenotypes
by regulatory T cells (Tregs). This review generally provides a background for nanoparticles as potential drug delivery agents for
immunomodulators and further discusses in depth the potential of TNF antagonists delivery tomodulate TNF-TNFR2 interactions
and inhibit breast cancer progression.

1. Introduction

The term “nanotechnology” is a concept that has only
emerged in the last decade with the prefix “nano” cited
from the Greek word “nanos”, indicating that something
is dwarf-sized. Therefore, the term “nanotechnology” refers
to a technology that uses very small particles invisible to
the naked eye [1]. Before the 19th century, although the
term nanotechnology had not yet been globally defined, the
applications of nanotechnology were already used in the
industrial field, [2]. During a meeting of American Physical
Society in 1959, for the first time, Richard Feynman dis-
cussed the term of nanotechnology systematically, laying the
foundations of the nanotechnology field [3]. Subsequently,
at the end of 19th century and early of the 20th century, the

field of nanotechnology experienced a massive expansion,
when almost all industrialised countries started pursuing
nanotechnology research in all fields including medicine
[4]. Introduction of modern nanotechnology in the medical
field aimed at better prevention, diagnostics, and therapy of
diseases and was later called “nanomedicine”.

Nanomedicine is a new science that emerged along with
the establishment of technologies such as high resolution
microscopes for biotechnology applications that allow inves-
tigations of nanomaterials (less than 100 nm) at cellular levels
(Figure 1) [5]. Among several different nanomedicine plat-
forms, nanotechnology-based drug delivery has received the
greatest interest. Incorporating therapeutic drugs into nano-
materials and using these as carriers to target specific tissues,
avoiding systemic side effects, remains a major challenge in
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Figure 1: Illustration of how nanomedicine research is based on the applications of nanobiotechnology (adapted from Jain, 2008 [5]).

therapeutics [6, 7]. Many types of nanocarrier systems from
diverse materials with distinctive physiochemical properties
have been established for use in multiple diseases (Table 1),
including the most common and explored type, liposomal
drug carrier systems [8].

As cancer is one of the biggest health challenges facing
humanity, a substantial amount of research has focused on
nanomaterials as drug delivery agents to target cancer tissues,
as illustrated by almost 12,000 manuscripts in the recent
decade [33]. However, interest among the researchers in
applying nanomedicine applications in different cancer types
has varied with breast cancer receiving the least attention
from nanomedicine, despite the fact that it is the most
globally widespread cancer type with alarming rates of occur-
rence in many countries [34]. Furthermore, the majority of
these studies used nanomaterials to target cancer cells with
chemotherapy/drugs, while few studies focused on the use of
nanomaterials to treat/control breast cancer in the context of
immunotherapy.Themost recent study used gold nanoparti-
cles in breast cancer cells to deliver Commiphora myrrha and
Boswellia sacra extracts to induce trisodium citrate dihydrate
reduction which leads to cytotoxicity in breast cancer and
normal cells.The study reported cytotoxicity in breast cancer
cells, but no harm in normal breast cells [35].

Tumour necrosis factor (TNF) is generally considered a
master proinflammatory cytokine [34]. During inflammatory
processes (including the cancer microenvironment) TNF
is one inflammatory mediator that is produced secreted
firstly [37]. It fosters the generation of a cytokine cascade
and promotes the production of other inflammatory medi-
ators [e.g., transcription factors, interleukin (IL)-1, IL-6]
[38, 39]. There are two types of TNF receptors (TNFR1
and TNFR2) localised at the cellular surface, which have
unrelated intracellular regions [40]. A study in a model
of inflammation-associated cancer revealed that TNFR2 is

Table 1: The most well studied nanocarrier systems.

Type of nanocarrier References
Liposomes [8–12]
Dendrimers [13–15]
Polymer-based platforms [16–18]
Superparamagnetism nanoparticulates [19, 20]
Gold nanoshells [21–23]
Carbon-60 fullerenes [24–26]
Nanocrystal [27–29]
Silicon and silica-based nanoparticle [30–32]

preferentially upregulated over TNFR1 and that treatment
with the anti-TNFmonoclonal antibody reduced the number
and size of tumours [41]. Therefore, TNF-TNFR2 axis was
implicated in the suppression of immune response and affects
tumour progression and metastasis [42]. In the following
sections, we will interpret a possible application of targeting
TNF-TNFR2 interactions using a nanomedicine platform in
breast cancer.This neutralisation of TNF as well as TNFR2 by
using TNF antagonist drugs delivered through nanoparticles
might be an effective therapeutic strategy on breast cancer
cells. To the best of our knowledge, this is the first article
discussing this hypothesis.

2. Nanomedicine and Breast Cancer

Cancer includes a range of diseases with alterations in the
biological status of any nucleated cells, which causes malig-
nant tumours with abnormal growth and division (neoplasia)
[43]. It is one of the biggest challenges facing the world and
is causing huge continuous losses without reaching effective-
comprehensive solutions [43, 44]. Currently, both medical
and research community have attempted an approach to
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Figure 2: Annual publications regarding cancer nanomedicine research in the recent 20 years (applied on PubMed database on December
11, 2018, by using search terms: cancer nanomedicine/nanoparticles).
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Figure 3: Global death rates caused by breast cancer between 1994 and 2016 [36].

nonconventional cancer therapies that can limit damage or
loss of healthy tissues and be able to fully eradicate the cancer
cells. Nanomedicine represents an efficient drug delivery
system, which can deliver therapeutic agents directly to the
targeted cancer cells only and minimize the dose-dependent
side effects of drugs on nontarget sites [45]. By focusing on
the targeted site, this could result in enhanced drug efficiency
compared to conventional chemo/radiotherapy [46, 47].
Furthermore, the growing interest in utilizing this application
for cancer research has been significantly increased year by
year (Figure 2).

In 2016, the global prevalence of cancer ranged from
0.2 to 2 percent approximately [36]. Breast cancer was
reported as the highest cancer prevalence with 0.12 percent,
and until 2016 there were a total of 8.15 million breast
cancer cases [36]. There was more than 20% increase in the
global prevalence rate of breast cancer up to 10 years from

2008 to 2017 [48]. Moreover, breast cancer was classified in
2018 as the most common cancer among women, and the
second most widespread cancer with more than 2 million
cases diagnosed over the world [49]. According to the Avon
Breast Cancer Foundation, in 2002, there were over 39,600
deaths caused by breast cancer amongAmericanwomen only
[50]. Although breast cancer prevalence rates are increasing
continuously, recent statistics have reported a decline in death
rates (Figure 3) [36]. This decline could be due to increased
awareness about the preventive measures and the periodic
and early detection as well as treatment (Figure 4).

There are various complex classifications for breast can-
cer; the best one is the molecular phenotype classification
that includes five different subtypes based on cancer genes
expression such as molecular markers (Table 2) [51, 52]. The
treatment and its effectiveness between various breast cancer
types are different, and once metastasized, the effectiveness
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Table 2: The biological subtypes of breast cancer.

Subtypes
Estrogen
receptor
(ER)

Human epidermal
growth factor

receptor-2 (HER2)

Ki-67
protein

Progesterone
receptor
(PR)

Comment

Luminal A
Luminal B

Positive
Positive

Negative
Positive or Negative

Low
High

Positive or Negative
Positive or Negative

In comparing luminal A and B, luminal A
is reported to be growing slower than

luminal B, which means best prognosis in
luminal A cancer; Ki-67 helps in

monitoring how fast tumours grow.

Triple-negative
(basal-like) Negative Negative - Negative

It is defined as basal-like breast cancer
and is more common among young
women especially with BRCA1 gene

mutations.

HER2-enriched Negative Positive - Negative This cancer is growing faster than luminal
cancers but with worse prognosis.

Normal-like Positive Negative Low Positive or Negative
Although ‘normal-like’ is similar to
luminal A, its prognosis is worse than

luminal A.
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Figure 4: A search shows the levels of population awareness regarding breast cancermedications/treatments, over the recent 10 years. Applied
on the Google Trends database up to December 11, 2018.

of all treatment strategies will be reduced [53]. Therefore,
search for amore effective therapeutic option has been highly
anticipated, especially in breast cancer.

In recent years, along with the extensive identifica-
tion of molecular markers on breast cancer, several novel
nanomedicine applications have been developed to specifi-
cally target these pathways (Table 3). Targeting breast cancer
cells involves attaching specific molecules (ligands) on the
surface of nanoparticles, and these ligands are able to rec-
ognize and bind only to complementary molecular markers
found on the surface of targeted breast cancer cells [54].
Ligand-nanoparticle conjugate binds to the receptors (e.g.,
HER-2, EGFR, VEGFR, IGF-IR) expressed on the breast
cancer, mediates internalization of nanoparticles through
endocytosis, and releases the conjugated biomolecules by
lysosomal degradation to the active sites of tumour cells
[54]. As reviewed below, TNFR2, an immune checkpoint
stimulator and oncogene, has more recently emerged as
a potential new target for breast cancer therapeutics via
its modulation on TNFR2 [55]. However, to date there is
no study focusing on the development of nanomedicine
targeting TNF-TNFR2 axis for breast cancer therapeutics.
Generally, TNF-TNFR2 axis plays a significant role in the
overall regulation of regulatory T cells (Tregs), providing pro-
tection for cancer cells by promoting their immune evasion

in an immunosuppressive environment [55], besides activat-
ing myeloid-derived suppressor cells (MDSCs) to enhance
tumour immune escape [56, 57].

3. TNF-TNFRs Interactions

TNF is a multifunctional cytokine secreted by various types
of cells as well as being responsible for leukocyte recruit-
ment, monocyte chemoattraction, and increased regulation
of adhesion molecule expression and may also promote
apoptosis [68]. TNF is expressed by immune cells including
activated macrophages/monocytes, activated T cells, and
natural killer (NK) cells and could be expressed by other
nonimmune cells (e.g., fibroblasts and endothelial cells) [69].
The complexity of understanding the roles of TNF is partially
due to the presence of different forms of TNF with equally
different roles [70]. The membrane-bound form of TNF
(mTNF) or pro-TNF is a transmembrane protein of 26 KDa
which later can be converted to a soluble form of TNF
(sTNF) which is released when mTNF is cleaved by TNF-
converting enzyme (TACE) [71]. Although sTNF is the first
to be in charge of the majority of responses, some studies
have reported that mTNF has also the capacity to mediate
similar responses, including some inflammatory responses,
proliferation, B cells activation, and apoptosis [72].Moreover,
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it was reported that the biological action ofmTNF is based on
cell contact-dependent signals. For example, mTNF has been
shown to mediate inflammatory responses in astrocytes, but
not in neurons, whereas both cell types sTNF have similar
proinflammatory effects [73].

Both sTNF andmTNF are regulated by binding with their
two receptors localised at the cellular surface. TNFR1 (p55)
is encoded by TNFR1 gene located on chromosome 12p13.31,
consisting of 10 exons, and codes for a 55/60 kDa membrane
receptor. TNFR2 (p75) is encoded by TNFR2 gene located on
chromosome 1p36.22, consisting of 10 exons, and codes for
a 75/80 kDa membrane receptor [74]. These two receptors
mediate different biological activities from TNF [75]. Studies
have shown that the affinity of TNF for TNFR1 is lower
compared toTNFR2; therefore, TNFR1 binds preferentially to
high TNF concentrations and vice versa for TNFR2 [76, 77].
TNFR1 is expressed in nearly all nucleated cells, although in
low levels [78]. Also, TNFR1 has been reported to be the pri-
mary mediator of TNF-induced apoptosis, linked to an intra-
cellular region of TNFR1 called “death domain (DD)” that
activates the nuclear factor kappa B (NF-𝜅B) pathway [79].
Activation of NF-𝜅B pathway plays a key role in the expres-
sion of genes that are responsible for encoding antiapoptotic
proteins and several proinflammatory cytokines, including
TNF, IL-6, and IL-1 [80]. On the other hand, studies showed
that mTNF preferentially binds to and activates TNFR2,
while sTNF binds to and activates TNFR1 [81]. Furthermore,
TNFR2 participates in activation of B cells, enhances apopto-
sis by TNFR1, and plays a key role in other proinflammatory
responses, including proliferation of T cells [80].

Upon binding of TNF to TNFR1, TNFR1 interacts
with receptor-interacting protein 1/2 (RIP1/2) and TNFR1-
associated DD protein (TRADD) to build a receptor com-
plex [82] that induces Fas-associated DD protein (FADD),
resulting in apoptosis [83]. However, TNFR1 is also able to
induce other adaptor molecules which enhance cell survival,
including cellular inhibitor of apoptosis protein 1/2 (cIAP1/2)
and TNFR-associated factor 1/2 (TRAF1/2). These antiapop-
totic signals by both cIAP1/2 and TRAF1/2 are acquired via
downstream activation of NF-𝜅B pathway [84]. On the other
hand, studies found that TNF and TRAF3 are necessary
for activated T cells [85]. The expression of the full-length
isoform of TRAF3 lacking exon 8 (Traf3DE8) allows the
activation of noncanonical NF-𝜅B pathway by the deactiva-
tion of theNF𝜅B-inducing kinase (NIK)-TRAF3-TRAF2 axis,
which results in aggregation of NIK in activated T cells [84].
Noncanonical NF𝜅B signalling pathway in turn regulates
expression of some chemokines needed in adaptive immu-
nity and structuration of the secondary lymphoid organ,
such as B cell chemoattractant (CXCL13) [86]. Although
the process(es) that drives the differential regulation of the
alternatively spliced form of TRAF3 is not totally clear yet,
some studies have reported that T cell-specific TRAF3−/−
mice were able to double the number of normal TNFR2-
expressing Tregs [87]. Tregs, positive for CD4, CD25, and
Foxp3, primarily suppress excessive inflammation [88], and
expression of TNFR2 on Tregs identifies them as highly
suppressive Tregs [89].Therefore it could be highly beneficial

to use TNFR2 as a potential target in cancer therapeutics [89–
92].

The implication of TNF in almost all steps of tumouri-
genesis has been reported, both as an angiogenic and
antiangiogenic factor, depending on the TNF doses and
nature (soluble and membrane-bound) [93]. Since TNFR1
and TNFR2 differ in their cytoplasmic domain, they trigger
distinct signalling pathways [i.e., proapoptotic (TNFR1) and
prosurvival (TNFR2)] upon interaction with TNF [94]. In
recent years, several studies on different types of tumours
have reported a high expression of TNFR2, resulting in
enhanced proliferation, angiogenesis, and migration of sev-
eral tumour types [95]. This enhancement of tumourigenesis
by TNFR2 is coordinated through the stimulation of NF-
𝜅B or AKT serine/threonine kinase 1 signalling pathways,
which in turn regulateDNAdamage and repair of poly (ADP-
ribose) polymerase (PARP) protein [96]. Moreover, preclini-
cal studies found that blocking TNFR2 is sufficient to reduce
the development of TNF-activated cells [97] as well as to
increase TNF-associated cancer cell death [98]. TNFR1 shows
high affinity to both soluble and membrane-bound TNF,
while TNFR2 is only fully activated by mTNF [99]. Due to
their different structure, their regulation through signalling
pathways (MAPK and NF-kB) would induce different effects.
TNFR1 is responsible for apoptosis while TNFR2 is respon-
sible for cell proliferation and survival [100]. However, under
some conditions, prolonged cell stress or disease condition,
shift of TNFR2 to TNFR1 apoptotic signalling could occur
[39]. All together these findings partially elucidate the role of
TNFR2 in development of cancer and its differential function
compared to signal kinase activation through TNFR1.

4. An Implication of TNF-TNFR2 in
Breast Cancer

Numerous studies have explored the association of TNF
and its receptors in breast cancer progression as well as the
therapeutic possibilities. However, only a few investigated
the impacts of TNFR2 expression in breast cancer [101]. In
2008, for the first time Rivas et al. studied the implication of
TNF and its receptors (TNFR1 and TNFR2) on the molecular
mechanisms and intracellular pathways of breast cancer
proliferation [97].This study showed that TNF enhances pro-
liferation of breast cancer cells via the activation of p42/p44
mitogen-activated protein kinases (MAPK) pathway by bind-
ing to both TNFR2 and TNFR1. In addition c-Jun N-terminal
kinase (JNK) and phosphoinositide 3-kinase (PI3K)/AKT
pathway activation was also involved while NF-kB transcrip-
tional activation was acquired by TNFR1 activation only
[97]. However, in 2017, Yang and his colleagues showed that
TNFR2was implicated in promoting the progression of breast
cancer via stimulation of AKT signalling pathway [95]. This
signalling pathway protects cancer cells againstDNAdamage,
which in return enhances breast cancer cell proliferation,
cancer-associated fibroblast (CAF) induction, angiogenesis,
and carcinogenesis [95]. In another study, Yang and his
colleagues were able for the first time to confirm that there
was a positive association between TNFR2 expression and
its prognosis in terms of size of tumour, higher pathological
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grade, and advanced clinical stage [102]. They reported
that the expression levels of TNFR2 in breast cancer cells
were positively associated with doxorubicin (anthracycline
type of chemotherapy) resistance; overexpression of TNFR2
significantly promoted doxorubicin resistance, while less
expression of TNFR2 significantly dampened doxorubicin
resistance, while in turn this regulated the DNA damage
and repair PARP protein [95]. In 2018, Nie et al. used two
types of antibodies: a TNFR2-blocking and a CD25-targeted
approach as a combination treatment in a colon cancer
mouse model and breast cancer mouse model, resulting in
the inhibition of cancer progression in both models [103].
As per our knowledge, no study examined the expression of
TNFR2 in breast normal cells, while we found only one study
reporting that it was detected at low levels in normal vascular
endothelial cells [104].

As TNFR2 exists withoutDD, it can enhance proliferation
and activation of Tregs via 3 main pathways, namely, NF-kB,
activator protein 1 (AP1), and MAPK pathways [105], there-
fore avoiding the immunosuppressive effect of TNF which
is similar to cancer cells survival pathways [100]. Studies
demonstrated that Tregs expressed higher levels of TNFR2
than any other T cells, and these high expression levels by
Tregs were correlated with the most suppressive population
[89]. Moreover, a study performed by van der Most et al.
in 2009 [106] used cyclophosphamide to downregulate Tregs
during chemotherapy for cancers, as Tregs depletion could
be used to enhance the effectiveness of chemotherapies.They
also reported that the drug gemcitabine depleted cycling
Tregs concurrently with downregulation of CD4+ CD25+
T cells [106]. In addition, few studies also showed that
TNFR2 also inhibits the antitumour role of effector T cells
(Teffs) and decreases cancer immune responses [107]. Torrey
et al. proved that targeting TNFR2 could be an effective
treatment as TNFR2 antagonistic antibodies inhibit prolif-
eration of both cancer cells and tumour-infiltrated Tregs
while inducing the expansion of Teffs [108]. Furthermore,
study in both colon and breast cancer models shows that
combination of immunotherapeutic stimulants with TNFR2-
blocking antibodies not only inhibits the proliferation of
cancer cells but also decreases the number of Tregs and
the surface abundance of TNFR2 on Tregs, thus enhancing
the effectiveness of treatment [103]. However, to date in
addition to their impact on both Tregs and Teffs activities
in breast cancer microenvironment, no study has examined
the effectiveness of nanomedicines targeting TNF receptors
for ligand-nanoparticle conjugate or using TNF antagonists
(e.g., biomolecules) as a potential therapy for breast cancer in
humans.

It has previously been shown that TNF antagonism
(anti-TNF) is a successful therapeutic option that has been
applied in various inflammatory cases, including inflamma-
tory bowel disease (IBD), spondyloarthritis (SpA), psoria-
sis, and rheumatoid arthritis (RA) [109]. TNF antagonism
prevents ligand triggering of TNF-TNFRs signalling and
thus blocks TNF’s cytotoxicity and inflammatory capacity
[110]. Currently, there are five approved TNF antagonists
used to treat symptoms in inflammatory disorders, including
Etanercept, Infliximab, Adalimumab, Certolizumab Pegol,

and Golimumab [109]. Among them, Etanercept is a novel
TNFR2:IgG1 fusion protein that was developed and approved
by FDA in 1998 [111], and it is the only TNF antagonist that is
a nonmonoclonal antibody and does not contain a fragment
crystallisable (Fc) portion, which means that it is unable to
encourage complement activation, antibody-dependent cell-
mediated cytotoxicity (ADCC), or apoptosis [112].

Anti-TNF biology functions by mopping up excess sol-
uble TNF and reducing the endocrine activity of these
cytokines. They would bind to TNF complexes to block cell-
to-cell contact and/or trigger reverse signalling, lastly acting
as agonists on Fc receptor (FcR)-expressing cells as they are
fused to human IgG1 [110]. However, most of the previous
studies on TNF antagonism focused on the inflammatory
cases and particularly on rheumatoid arthritis; consequently
there are no experimental studies on breast cancer in this con-
text. As inflammation is known as a significant component
in cancer progression and the microenvironment of cancer is
controlled by inflammatory cells [113], we estimate that TNF
antagonism is able to modify breast cancer cells’ signalling
cascades inducing cell division, migration, differentiation, or
death depending on their expression markers and secreted
cytokines.

Taken together, these findings suggest that targeting
TNF-TNFR2 interaction with pharmacological agents, in an
attempt to reduce the number and function of Tregs while
enhancing the function and number of Teffs, could provide
stronger immune responses against cancer cells and serve as
a promising cancer therapeutic approach [55, 114]. On the
other hand, studies have also shown that TNF-TNFR2 axis
enhances the activation of myeloid-derived suppressor cells
(MDSCs) and Tregs suppressive cells that promote tumour
immune escape [56, 57]. Furthermore, TNFR2 accelerates
the programmed death of macrophages for clearing cancer
cells [115].Thus, TNFR2 plays both direct and indirect role in
cancer progression (Figure 5) [116]. We can summarize the
pathways of these roles as follows: (1) direct effect of TNF
in cancer progression modulated by TNF-TNFR2 axis breast
cancer cells itself and (2) indirect effect of TNF in cancer
progression modulated by TNF-TNFR2 on Tregs and MDSC
which ultimately increase tumourigenesis, tumour invasion,
and metastasis. TNF-TNFR2 effects are more prominent on
Tregs compared to Teffs as these receptors are preferentially
expressed by Tregs.

5. Nanomedicine in Targeting
TNF-TNFR2 Axis

As we discussed before, nanomedicine platforms offer a
variety of potentially efficient solutions for the development
of immunotherapeutic agents that can be exploited for
breast cancer treatment [117]. As mentioned before, the first
study back in 2008 utilized conjugate gold nanocages with
antiepidermal growth factor receptor (anti-HER2) mono-
clonal antibodies to target breast cancer cells. The targeted
cells with the immuno–gold nanocages responded directly to
pulsed near-infrared laser irradiation and the mortality rate
of cells increased in line with increasing time of exposure
till 5 min and became fixed. This study provided significant
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Figure 5: Role of TNF-TNFR2 in the progression of breast cancer and the potential role of TNF antagonists in competing with TNFR2 by
mopping up excess soluble TNF and binding on the membrane-bound TNF. (a) TNFR2 is expressed on immune cells and tumour cells in
cancer microenvironment. Instead of apoptosis, TNFR2 induces malignant transformation and tumour proliferation by sTNF that activates
TNFR2 to enhance Tregs, cancer cells, and MDSC. Therefore, TNFR2 is implicated in enhancing tumour progression either by maintaining
cancer microenvironment (immune responses) and enhancing cancer immune evasion, or by inducing cancer cells survival and proliferation
[116]. TNFR2 was implicated in promoting the progression of breast cancer via stimulation of AKT signalling pathway which protects against
DNAdamage and, consequently, enhances proliferation, CAF induction, angiogenesis, and carcinogenesis. Further, a positive association had
been reported between TNFR2 expression and its prognosis in terms of size of tumour, higher pathological grade, advanced clinical stage,
and dampened doxorubicin resistance [95, 102]. (b)We hypothesized that TNF antagonists wouldmodify breast cancer cells’ signalling effects
that lead to division, migration, differentiation, or death by assessing their expression markers and secreted cytokines.

details regarding the best dosage of immuno–gold nanocages
and other information about the parameters of the laser
irradiation in breast cancer treatment [66]. Although there
are numerous applications of nanoparticles in modulating
immune response [39], only a few experimental studies
have developed different nanomedicine applications in breast
cancer therapeutic research (Table 3). As mentioned earlier,
to date there is no study investigating the involvement
of nanoparticles in TNF antagonist or in regulating TNF-
TNFR2 interactions on breast cancer. Polystyrene nanoparti-
cles, which exhibit various immunological effects in the lung
[118], have been used to selectively activate lung TNFR2+
cells, preferentially TNFR2 expressing Tregs. This aforemen-
tioned study is the first to show that TNFR2 can be targeted
by nanoparticles for therapeutics application in lung diseases
[119]. Thus, nanoparticles are expected to serve as an efficient
tool to deliver therapeutic agents (including TNF antagonist)
or even to directly regulate TNF-TNFR2 interactions in breast
cancer cells.Therefore, we hypothesized that the utilization of
nanoparticles with specific ligand would alter the function of
breast cancer cells (e.g., uptake capacity or downregulation

of membrane-bound TNF) and mediate TNF-TNFR2 signal
that leads to distinct immunological effects, such as expan-
sion of breast cancer cells, cytokines secretion, or survival
capacity (Figure 6).

6. Future Directions

Studies have demonstrated that TNF-TNFR2 axis is impli-
cated in the suppression of immune response and affects
tumour progression and invasion by its oncogenic roles,
which results in enhanced proliferation, angiogenesis, and
migration of breast cancer. This receptor is also responsible
for enhancing the proliferation and activation of Tregs and
MDSCs, thus promoting tumour immune escape. Hence,
neutralisation of TNF as well as TNFR2 by using TNF-
antagonist drugs might be an effective therapeutic strategy
for breast cancer cells. However, no studies to date have
investigated the modulation of TNF antagonists targeting
TNF-TNFR2 axis and their immunoregulation on breast
cancer cells, while the potential of nanoparticles to mediate
these effects in breast cancer is still unknown. The field of



Journal of Oncology 9

↓ Tumourigenesis
↓ Tumour invasion
↓ Metastasis

Breast Cancer Cells

Nanoparticle
Specific ligands

Figure 6: Nanoparticles are expected to serve as an efficient tool to deliver TNF antagonists or even to directly regulate TNF-TNFR2
interactions in breast cancer cells that leads to immunological cascades as observed in Figure 5(b).

nanomedicine has provided the possibility of targeting the
TNF-TNFR2 axis to not only deliver therapeutic drugs to tar-
geted sites but also restore the immune response to suppress
the cancer cells. Based on accumulating evidence suggesting
that tumour progression is governed not only by genetic
changes intrinsic to cancer cells but also by environmental
factors, future studies might use nanoparticles as a model for
inert environmental stimuli. In summary, nanoparticles have
the potential to be used as drug delivery vehicle in the future
for nanomedicine development in breast cancer therapy.
Therefore, future studies should investigate how the presence
of nanoparticles with specific characterisation would alter
the function of breast cancer cells via TNF-antagonist effects
by TNF-TNFR2 signal and their contribution to distinct
immunological effects.
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