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Ubiquitination and ubiquitin-like post-translational modifications control the activity and
stability of different tumor suppressors and oncoproteins. Hence, regulation of this
enzymatic cascade offers an appealing scenario for novel antineoplastic targets
discovery. Among the different families of enzymes that participate in the conjugation
of Ubiquitin, deubiquitinating enzymes (DUBs), responsible for removing ubiquitin or
ubiquitin-like peptides from substrate proteins, have attracted increasing attention. In
this regard, increasing evidence is accumulating suggesting that the modulation of the
catalytic activity of DUBs represents an attractive point of therapeutic intervention in cancer
treatment. In particular, different lines of research indicate that USP19, a member of the
DUBs, plays a role in the control of tumorigenesis and cancer dissemination. This review
aims at summarizing the current knowledge of USP19 wide association with the control of
several cellular processes in different neoplasms, which highlights the emerging role of
USP19 as a previously unrecognized prognosis factor that possesses both positive and
negative regulation activities in tumor biology. These observations indicate that USP19
might represent a novel putative pharmacologic target in oncology and underscores the
potential of identifying specific modulators to test in clinical settings.
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INTRODUCTION

Following translation, proteins can undergo several posttranslational modifications (PTMs) to
modulate their activity, such as phosphorylation, methylation, glycosylation, acetylation,
sumoylation and ubiquitination. These modifications represent a very important component in
the physiological regulation of different pathways, including protein degradation, DNA repair
activity, gene regulation and signal transduction, among others (Millar et al., 2019). Since growth
regulatory proteins that drive tumorigenesis are modified by PTMs (Krueger and Srivastava, 2006),
understating the mechanisms by which these modifications regulate oncogenic, or tumor suppressive
pathways is of great relevance to restrain their effects upon pathological scenarios
(Konstantinopoulos et al., 2007).

Moreover, the alteration in the levels and functionality of the components comprising the
pathways responsible for the different PTMs, is related to different pathologies, including cancer (Xu
et al., 2018; Sharma et al., 2019; Chen et al., 2020; Vellosillo and Minguez, 2021). In particular,
ubiquitin-related PTMs are under active study as their dysregulation has been linked with the onset
and progression of different oncological disorders (Reinstein and Ciechanover, 2006; Shi and
Grossman, 2010).
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UBIQUITINATION

Ubiquitination is the covalent attachment of ubiquitin (an 8-kDa
76 amino-acid molecule) to target proteins, and it plays crucial
roles in the regulation of target proteins activity, stability,
subcellular localization and trafficking, and interaction with
other proteins (Damgaard, 2021). Therefore, this modification
affects a great number of biological processes (Mevissen and
Komander, 2017).

Protein ubiquitination is a tightly regulated process which
involves the activity of two groups of enzymes, namely, E1/E2/E3
ligases and deubiquitinating enzymes (DUBs) (Figure 1).

The attachment of ubiquitination moieties to target proteins is
catalyzed by the sequential action of a ubiquitin ATP-dependent
activating enzyme (E1), which transfers the ubiquitin molecule to
a ubiquitin conjugating enzyme (E2) by trans-thiolation, and by a
ubiquitin ligase (E3), which provide substrate specificity to
ubiquitin conjugation (Ciechanover, 1994; Hershko and
Ciechanover, 1998; Komander and Rape, 2012).

This modification can occur as ubiquitin monomers or
polymer chains, and since the ubiquitin molecule contains
eight ubiquitination sites (seven internal lysine residues -Lys 6,
11, 27, 29, 33, 48 and 63- and a primary amine at the N-terminus),
various types of ubiquitin chains with different length and shape

might form (Akutsu et al., 2016; Yau and Rape, 2016; Dwane
et al., 2017; Kwon and Ciechanover, 2017; Ohtake and Tsuchiya,
2017).

Furthermore, the ubiquitin molecule is subject to other PTMs
such as phosphorylation, acetylation (Ohtake et al., 2015; Wauer
et al., 2015; Huguenin-Dezot et al., 2016), and modification with
ubiquitin-like proteins such as interferon (IFN)-stimulated gene
15 (ISG15) (Fan et al., 2015) and small ubiquitin-related modifier
(SUMO) (Lamoliatte et al., 2013). Therefore, these modifications
broaden the ubiquitin code versatility, as they affect not only
ubiquitin interactions but also the formation and topology of the
polyubiquitin chain.

The nature of the ubiquitin chain determines the outcome of
the substrate protein, and different molecular signals are induced
in the cell (Ikeda and Dikic, 2008; Sadowski and Sarcevic, 2010),
affecting biological processes such as protein stability through
proteasome degradation, DNA repair and replication, signal
transduction, gene regulation, molecule trafficking and
endocytosis, etc. (Hershko and Ciechanover, 1998; Haglund
and Dikic, 2005; Komander and Rape, 2012; Yau and Rape, 2016).

The deubiquitinating enzymes are proteases that reverse the
modification of proteins by a single ubiquitin or ubiquitin-like
protein, and remodel polyubiquitin/ubiquitin-like chains on
target proteins. They hydrolyze the isopeptide bond between

FIGURE 1 | Ubiquitination pathway. The ubiquitin molecule is activated by an E1 ubiquitin activating enzyme, in an ATP-dependent step, and a thioester
intermediate is formed (E1-S-ubiquitin). The ubiquitin molecule is then transferred to an E2 conjugating enzyme (E2-S-ubiquitin), and then to the final substrate by an E3
ligase. Ubiquitin bound as monomers or polymers with different topologies are associated with different biological outputs, such as regulation of enzymatic activity,
localization, protein-protein interactions, among others. Sequential ubiquitin conjugations form a polyubiquitin chain on the substrate, which can be recognized and
degraded by the 26S proteasome. The deubiquitinating enzymes (DUBs) are responsible for the ubiquitin molecules recycling and chain editing.

Frontiers in Cell and Developmental Biology | www.frontiersin.org May 2022 | Volume 10 | Article 8891662

Rossi and Rossi USP19 Roles in Cancer

https://www.frontiersin.org/journals/cell-and-developmental-biology
www.frontiersin.org
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


the ubiquitin and the substrate residue of either the target protein
or another ubiquitin molecule (Komander et al., 2009; Komander
and Rape, 2012). The human genome encodes nearly 100 DUBs,
each with distinct substrate specificities and catalytic properties,
which confer high precision upon ubiquitin chains processing
(Komander et al., 2009; Mevissen and Komander, 2017).
Consequently, individual DUBs likely confer specific actions
(Komander et al., 2009; Huang and Dixit, 2016) and
pharmacological modulation of their catalytic activity should
lead to desired outcomes upon physiological or
pharmacological scenarios.

Based on sequence and structural similarities, DUBs have been
classified into seven families: Ubiquitin-specific proteases (USPs),
Ubiquitin C-terminal hydrolases (UCHs), ovarian tumor
proteases (OTUs), Machado-Joseph (Josephin) domain (MJD)
proteases, Jab1/MPN domain-associated metallo-iso-peptidases
(JAMM/MPM+), Zinc finger UB-specific proteases (ZUP/
ZUFSP), and monocyte chemotactic protein-induced proteins
(MCPIP). Except for the JAMMs, which are zinc-dependent
metalloproteases, the remaining families are cysteine proteases
(Reyes-Turcu et al., 2009; Hanpude et al., 2015; Mevissen and
Komander, 2017; Kwasna et al., 2018).

GENERAL PROPERTIES OF USP19

Human ubiquitin-specific protease 19 (USP19) is a modular
deubiquitinating enzyme that belongs to the largest family of
DUBs, the USPs (Nijman et al., 2005; Reyes-Turcu et al., 2009).
This family is characterized by the presence of a highly conserved
USP catalytic domain fold (Hu et al., 2002; Hu et al., 2005;
Avvakumov et al., 2006; Renatus et al., 2006; Komander et al.,
2008), which holds two well-conserved motifs (Cys and His
boxes), each containing the critical residues for the enzymatic
activity. Moreover, USP19 contains two CHORD-SGT1/P23
domains (namely CS1 and CS2) at its N-terminus, which are
relevant for the interaction with other proteins, as well as for the

intra-molecular inhibition and regulation of the catalytic core
(Xue et al., 2020) (Figure 2).

USP19 presents different isoforms generated by alternative
splicing, and the most distinctive feature—structurally and
functionally–is that some of them have a cytoplasmic
localization, while others have a transmembrane domain that
serves as anchorage to the endoplasmic reticulum (Hassink et al.,
2009) (Figure 2).

Like other DUBs, USP19 is covalently modified by PTMs such
as phosphorylation and ubiquitination, which affect its activity
and half-life, respectively (Matsuoka et al., 2007; Velasco et al.,
2013).

Functionally, USP19 has mainly been associated with protein
quality control and cellular homeostasis (Hassink et al., 2009; Lee
et al., 2014; Wiles et al., 2015; He et al., 2016; He et al., 2017),
muscle development (Combaret et al., 2005; Sundaram et al.,
2009;Wiles et al., 2015), and it has been shown that it controls the
half-life of several proteins such as HIF1-α (Altun et al., 2012),
BECN1 (Cui et al., 2016), TGFßRI (Zhang et al., 2012), TRAF3
(Gu et al., 2017), HRD1 (Harada et al., 2016), TAK1 (Lei et al.,
2019), KPC1 (Lu et al., 2009), c-IAPs one and 2 (Mei et al., 2011),
HDAC1/2 (Wu et al., 2017), COROA2 (Lim et al., 2016), LRP6
(Perrody et al., 2016) and MARCH6 (Nakamura et al., 2014),
therefore affecting cellular processes relevant in tumorigenesis
such as DNA damage repair, apoptosis, the TGF-β Pathway,
hypoxia and angiogenesis, immunity, proliferation, ERAD and
autophagy.

THE ROLE OF USP19 IN CANCER
MALIGNANCY

Disrupted regulation of protein ubiquitination is a trigger of
cancer, among other diseases. Not surprisingly, alterations in the
levels of the ubiquitination cascade components -including the
DUBs-have been associated with multiple neoplasms (Shi and
Grossman, 2010; Deng et al., 2020; Sun et al., 2020).

FIGURE 2 | Domain architecture of USP19. It contains two CHORD-SGT1 domains (namely CS1 and CS2) at its N-terminus and a large USP domain with a
ubiquitin-like domain (UBL) andmyeloid translocation protein 8, Nervy protein, Deaf-1 zinc finger (MYND Zn-finger). The positions of the amino acids Cys, His, and Asp in
the catalytic triad are indicated in red. There are multiple USP19 isoforms generated by alternative splicing. In particular, alternative splicing of the last exon generates
isoforms with a cytoplasmic localization or isoforms anchored to the endoplasmic reticulum. This schematic depicts: (A) the USP19 isoform that contains a
transmembrane (TM) domain which anchors USP19 to the endoplasmic reticulum. (B) The soluble USP19 isoform has a relatively hydrophilic region and an EEVDmotif in
the C-terminus instead.
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In the last couple of years, increasing evidence has begun to
demonstrate that USP19 is associated with tumor progression
and that it represents a novel prognostic factor for the outcome of
several malignant diseases. In particular, it has been shown that
USP19 plays both positive and negative roles in the onset and
development of diverse neoplasms, in a tissue-specific manner.
Consequently, in the following paragraphs, results denoting
USP19 relevance in different signaling pathways regulating cell
proliferation and cell-cycle progression, as well as tumor growth
and metastasis will be presented, therefore unveiling the
importance of conducting extensive studies to further the
study of USP19’s dual role in tumorigenesis under different
molecular scenarios, and to establish its significance as a
potential new target for the clinical treatment of cancer.

USP19 as a DUB Negatively Regulating
Tumorigenesis
A couple of recent papers presented results indicating that USP19
negatively affected proliferation and migration in clear cell renal
cell (Hu et al., 2020) and serous ovarian carcinomas (Kang et al.,
2021).

Hu and others utilized clear cells renal cancer (ccRCC) cell
lines in vitro and demonstrated that overexpression of USP19
levels negatively affected migration and proliferation, and the
opposite occurred upon USP19 silencing. They validated their
results using in vivo models and observed that USP19
downregulation promoted tumor growth in a xenograft model.
Moreover, they conducted in silico analyses and observed that
USP19 mRNA levels were significantly lower in ccRCC than
normal tissues, and that low USP19 expression was associated
with disease progression and poor prognostic outcomes in a The
Cancer Genome Atlas (TCGA) cohort of patients (Hu et al.,
2020). These results were consistent with a previous work by Liu
and collaborators, who performed an in silico analysis and
observed that isoform uc003cvz.3, which is mainly localized in
the cytoplasm, serves as an indicator of poor outcome in patients
with advanced stage ccRCC (Liu et al., 2013).

Similarly, Kang et al. applied a machine learning model on
RNA-sequencing data from 51 patients who received
conventional therapies for high-grade serous ovarian
carcinoma (HGSC) and identified USP19 and RPL23 as
candidate prognostic markers. Specifically, they showed that
patients with lower USP19 or higher RPL23 mRNA levels had
worse prognoses and they validated their model using publicly
available data from the TCGA (Kang et al., 2021). They also
observed that USP19 levels positively correlated with TOP3B
and XRN2, which regulate genome instability (Kang et al.,
2021). Based on this observation, and considering that USP19
interacts with and deubiquitinates HDAC1/2 in order to
regulate DNA damage repair and chromosomal stability
(Wu et al., 2017) and that both ccRCC and HGSC are
characterized by high genomic instability, it is plausible that
USP19-mediated deubiquitination of key regulators associated
with DSB repair or genome instability might be responsible for
the worse prognosis observed in ccRCC and HGSC patients
with low USP19 levels (Kang et al., 2021).

In addition, Shahriyari L and collaborators (Shahriyari et al.,
2019) described the existence of a correlation between the
expression of USP19, RBM15B and the tumor suppressor gene
BAP1 (BRCA1 associated protein-1) in different type of cancers.
All three genes are in proximity of the 3p21 tumor suppressor
region, which is commonly altered in many cancers, suggesting
that USP19 could play a functional role in BAP1 molecular
mechanism of action or its alteration could be a byproduct of
chromosomal rearrangement affecting other genes. Although
further characterization is required, this observation highlights
the potential of USP19 as a putative prognostic biomarker in
different cancers.

USP19 Positively Regulates Tumor Growth
and Metastasis
Opposite to the role of USP19 as a tumor suppressor, recent work
has also established that antagonism of USP19 expression
conferred a prominent antiproliferative and antitumorigenic
response in diverse neoplasms: Ewing sarcoma, gastric, breast
and colorectal cancers (Gierisch et al., 2019; Dong et al., 2020;
Rossi et al., 2021; Zhu et al., 2021), suggesting pro-tumorigenic
roles in these tissues.

Ewing sarcoma is the second most common pediatric bone
and soft tissue tumor, which is characterized by the presence of a
chimeric oncoprotein, EWS-FLI1, due to a genetic translocation
between chromosomes 22 and 11 (Desmaze et al., 1997). Gierisch
and collaborators demonstrated that this protein, which
maintains tumor cells survival, is regulated by USP19 in a post
translational manner, and dependent on its catalytic activity
(Gierisch et al., 2019). Downregulation of USP19 levels
resulted in a reduction of EWS-FLI1 levels, hence decreasing
tumor cells growth and colony formation capability, whereas the
opposite occurred upon USP19 (TM isoform) overexpression.
Using in vivo experiments, the authors demonstrated that tumor
growth was delayed when USP19 levels were reduced.

On the other hand, Dong and others analyzed USP19
relevance in gastric cancer (Dong et al., 2020). Their results
revealed that USP19 TM isoform overexpression enhanced cell
proliferation and exhibited anti-apoptotic properties, as well as it
increased cells migration and spreading capabilities in vitro; the
opposite was observed upon USP19 silencing (multiple isoforms).
Furthermore, they showed that increased USP19 (TM isoform)
levels enhanced MMP2/MMP9 protein expression and enzyme
activity, and that genetic alteration of USP19 levels affected
tumorigenesis using in vivo models. Finally, using a cohort of
212 gastric cancer patients, the authors observed that USP19
expression was significantly increased in gastric cancer tissues,
compared to normal gastric tissues, and the high level of USP19
expression was positively correlated with a poorer prognosis.

Similarly, our group analyzed USP19 clinical significance in
breast cancer (Rossi et al., 2021). We demonstrated that USP19
positively regulates breast tumor cells migration and invasion
in vitro, and that genetic silencing reduces cells motility, whereas
its overexpression increases migratory and invasive
capabilities—dependent on USP19’s catalytic activity and ER
localization. Our results also indicated that USP19 does not
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affect breast cancer cells proliferation in two dimensions, in
concordance with Lu and collaborators (Lu et al., 2011), but
significantly modulates proliferation and invasion if cells are
grown embedded in extracellular matrix proteins and
basement membrane proteins. In vivo experiments showed
that USP19 silencing reduces tumorigenicity and delays tumor
onset and growth, and the opposite was observed upon wild type
USP19 overexpression (but not when overexpressing a
catalytically dead mutant, or a cytoplasmic version of USP19).
Using experimental metastasis assays, we verified that USP19
silencing reduces cells’ ability to engraft in secondary tissues, and
using in silico approaches and TCGA data, we demonstrated that
the Wnt pathway is activated in patient samples expressing high
levels of USP19. In concordance with these results, we observed a
positive correlation between USP19 and LRP6 levels (a Wnt
pathway coreceptor). Functional analysis on USP19
overexpressing cells indicated that LRP6 silencing reverted
migratory and invasive phenotypes, possibly as a downstream
USP19 effector. Finally, we conducted a retrospective analysis on
early breast cancer patients which revealed that USP19 expression
levels correlated with poor outcome and reduced distant
metastasis free survival, hence serving as a prognostic factor in
early breast cancer patients.

Lastly, a very recent publication by Zhu and collaborators
studied USP19 pertinence in colorectal carcinogenesis (Zhu et al.,
2021). Their work showed that ERK2 signaling is responsible for
lipid synthesis mediated by cytoplasmic-localized malic enzyme 1
(ME1) phosphorylation, which is overexpressed in a variety of
cancers (including colorectal cancer). USP19-mediated ME1
stabilization is enhanced by phosphorylation, generating
oncogenic phenotypes, and either USP19 deletion or a point
mutation in ME1 protein that prevents ubiquitination, represses
colorectal carcinogenesis. Of note, USP19 catalytic activity is
necessary to ensure ME1 stabilization. Finally, the authors
showed that the USP19-ME1 signaling axis is dysregulated in
human colorectal cancer samples, and that USP19 is upregulated
during colorectal carcinogenesis pathogenesis and spontaneous
tumor development.

Supplementary Table S1 summarizes USP19 relevance in
different cancers, and whether is catalytic activity or specific
isoform is important in each type of neoplasm.

CONCLUDING REMARKS

Various studies have linked USP19 to different cancers, and either
its overexpression or silencing may dysregulate the function of

several proteins with oncogenic or tumor-suppressive properties,
which in the long run may impact on the onset and development
of tumors. Since USP19 has different isoforms, and divergent
effects have been observed in different cancers, it is plausible to
assume that this difference could be explained by the effect these
isoforms exert on differing substrates. Moreover, USP19 is a
fundamental deubiquitinase with pivotal roles in several cellular
processes related to tumorigenesis, including DNA damage repair
(Wu et al., 2017), apoptosis (Mei et al., 2011), the TGF-β Pathway
(Zhang et al., 2012), hypoxia and angiogenesis (Altun et al., 2012;
Boscaro et al., 2020), immunity (Cui et al., 2016; Jin et al., 2016;
Gu et al., 2017; Lei et al., 2019; Wu et al., 2019; Liu et al., 2021),
proliferation (Lu et al., 2009), ERAD (Hassink et al., 2009) and
autophagy (Cui et al., 2016). Given its versatility, USP19’s role on
tumorigenesis and metastasis might also be determined by a
combinatorial effect on diverse signaling pathways rather than a
specific substrate. In this respect, more studies should be
performed to analyze the association of USP19 with cancer-
related signaling pathways and putative targets, regulatory
mechanisms affecting its expression and to search for
molecular alterations shared by tumors across different tissues
and new targets to better understand how USP19 is affecting cell
survival and cellular homeostasis.

Taken together, the findings described here implicate USP19
as a previously unrecognized target for the development of novel
therapeutic alternatives for cancer treatments.
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