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ABSTRACT

The evolution of resistance remains one of the primary challenges for modern medicine from infectious diseases to cancers.
Many of these resistance-conferring mutations often carry a substantial fitness cost in the absence of treatment. As a result,
we would expect these mutants to undergo purifying selection and be rapidly driven to extinction. Nevertheless, pre-existing
resistance is frequently observed from drug-resistant malaria to targeted cancer therapies in non-small cell lung cancer
(NSCLC) and melanoma. Solutions to this apparent paradox have taken several forms from spatial rescue to simple mutation
supply arguments. Recently, in an evolved resistant NSCLC cell line, we found that frequency-dependent ecological interactions
between ancestor and mutant ameliorate the cost of resistance in the absence of treatment. Here, we hypothesize that
frequency-dependent ecological interactions in general may play a major role in the prevalence of pre-existing resistance. We
combine numerical simulations with robust analytical approximations to provide a rigorous mathematical framework for studying
the effects of frequency-dependent ecological interactions on the evolutionary dynamics of pre-existing resistance. First, we find
that ecological interactions significantly expand the parameter regime under which we expect to observe pre-existing resistance.
Even when positive ecological interactions between mutants and ancestors are rare, these clones provide the primary mode of
evolved resistance because their positive interaction leads to significantly longer extinction times. Next, we find that even in the
case where mutation supply is sufficient to predict pre-existing resistance, frequency-dependent ecological forces still contribute
a strong evolutionary pressure that selects for increasingly positive ecological effects. Finally, we genetically engineer several
of the most common clinically observed resistance mechanisms to targeted therapies in NSCLC, a treatment notorious for
pre-existing resistance, and where our theory predicts positive ecological interactions to be common. We find that all three
engineered mutants display a positive ecological interaction with their ancestor, as predicted. Strikingly, as with our originally
evolved resistant mutant, two of the three engineered mutants have ecological interactions that fully compensate for their
substantial fitness costs. As a whole, these results suggest that frequency-dependent ecological effects may provide the
primary mode by which pre-existing resistance emerges.
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Introduction1

The rapid, and often inevitable, evolution of therapy resistance is the primary threat to modern medicine’s successful treatment2

of cancer, and infectious disease (e.g. bacterial, viral, fungal, and parasitic infections)1–5. The story of resistance and treatment3

failure is strikingly similar across biological kingdoms. A patient is diagnosed and undergoes an initially successful treatment,4

only for a small resistant subclone of the original disease to relapse, resulting in treatment failure. For decades, the response to5

this paradigm has been the development of novel, more efficient drugs, targeting orthogonal pathways in hopes of winning6

the evolutionary arms race. While this response has undeniably resulted in major success stories when considering individual7

cancers or infections, the overall outlook for drug-resistant disease remains grim6–9.8

As a result, growing efforts have been made to study these diseases in an evolutionary context, whereby scientists seek9

to understand the ecological and evolutionary forces that inevitably result in the untreatable disease state. Understanding10

these evolutionary forces that lead to resistance, should allow scientists and physicians to not only design more effective11

drugs, but perhaps more crucially, design more effect treatments. For example, recent work has focused on improving12

and prolonging the efficacy of our already established drugs via optimal dose scheduling10–12, drug combinations13–17,13

understanding spatial dynamics18–20, understanding ecological interactions between competing subclones21–24, and exploiting14

collateral sensitivity25–29.15

In a similar spirit, this work seeks to understand the evolutionary fates of potential resistance-conferring mutations that16

emerge before treatment has occurred. The fraction of these mutants that survive to see treatment are often the primary cause17

of treatment failure, referred to as “pre-existing resistance”30–33. While these resistant populations provide a large fitness18

advantage once treatment begins, they often carry a significant fitness disadvantage, or fitness cost ( fc), in the absence of19

treatment34–38. Nevertheless, resistance-conferring mutants often persist until treatment, at which time their treatment-sensitive20

ancestors are preferentially killed, resulting in the competitive release and relapse of the resistant population and inevitable21

treatment failure. Understanding how these resistant clones – with a fitness disadvantage – persist in the disease population22

prior to treatment may allow us to prevent resistance from emerging.23

This interest is derived from recent work where we measured the frequency-dependent ecological interaction between an24

evolved EGFR tyrosine kinase inhibitor (TKI) resistant non-small-cell lung cancer (NSCLC) population and its TKI-sensitive25

ancestor39. The focus of that work was on the ecological interaction under TKI treatment, and the inevitable competitive26

release. Strikingly, we observed an interaction between the resistant mutant and its ancestor in the absence of any treatment.27

The resistant population was observed to grow about twenty percent slower than the ancestor when cultured separately, however28

when the resistant population was co-cultured with a majority ancestor population, that difference in fitness nearly vanished.29

This observation, referred to as negative frequency-dependent selection (negative because the selection for the mutant increases30

as the mutant frequency decreases), is a long-studied phenomenon40–42, and has been described as the most “intuitively31

obvious explanation for polymorphisms in nature”43. Despite its long history and potential for potent evolutionary effects,32

frequency-dependent selection remains understudied in the context of drug resistance. This is especially surprising, because33

a resistant population typically first emerges as a single individual in a predominantly ancestor population, and as a result34

frequency-dependent ecological interactions have a profound potential to effect the dynamics of a resistant clone (Fig. 1).35

In this work, we seek to develop a rigorous theory of pre-treatment evolution that incorporates frequency-dependent36

ecological interactions between the emerging resistant subclones and the ancestor from which they evolve. Using both a37

generalized Moran process and Wright-Fisher simulations, we show that mutants with the same intrinsic fitness (monoculture38

fitness) can have mean extinction times that vary by several orders of magnitude as a function of their ecological fitness (fitness39

when co-cultured in a predominantly ancestor environment). Next, we calculate the expected number of resistance-conferring40

mutants in the population as a function of the cost of resistance, as well as the population size, and rate at which resistance-41

conferring mutations occur. When comparing the result of this calculation both when we assume ecological interactions exist,42

and when they are forbidden, we identify a wide parameter space where pre-existence is only likely to occur if ecological-43

interactions are assumed. We then investigate the “many mutant regime” where pre-existence is likely even without ecological44

interactions, and demonstrate that these ecological interactions would play a prominent role in shaping the distribution of45

mutants, dramatically increasing the prevalence of mutants with high ecological fitness. Importantly, we show that these46

ecological effects drive the evolutionary outcomes even when mutants with high ecological fitness are rare. Surprisingly, despite47

the complexity of the model, we obtain analytical approximations for extinction rates, expected number of resistance-conferring48

mutants, and the distribution of observed mutants over the full range of ecological fitness. These analytical approximates both49

support our numerical simulations and allow us to extend our results to population sizes too large to simulate.50

Finally, we test our theory experimentally by engineering several of the most common clinically-observed mutations to51

TKI-therapy in EGFR-driven NSCLC and compete these mutants against the TKI-sensitive ancestor. In all cases we observed an52

ecological interaction that resulted in mutant ecological fitnesses larger than their intrinsic fitness. In the case of BRAFV600E,53

despite harboring a fitness cost of approximately 20 percent, the ecological interaction was sufficiently large that its growth54

rate eclipsed the ancestor’s. This is particularly striking because it suggests BRAFV600E will survive indefinitely as a small55
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Figure 1. Cartoon abstraction demonstrating how frequency-dependent ecological interactions could increase the
likelihood of pre-existing resistance. (A) Cartoon visualization of a typical frequency-dependent growth experiment. The
ancestor (black line) is assumed to grow at a constant rate. Two hypothetical resistant mutants are depicted. Both mutants
shared the same intrinsic fitness and fitness cost, however the positive ecological mutant (red, growth increases as the fraction
of ancestor cells increases) has a significantly higher ecological fitness fe ≈ 1) than the negative ecological mutant (blue,
growth decreases as the fraction of ancestor cells increases). As a result no mutants are present when a drug intervention is
administered (vertical dashed line). (B) Top: Cartoon visualization of an evolving population with no ecological interactions.
All mutants are assumed to have so non-insignificant fitness cost, fc, and as a result go extinct. Bottom: The same evolving
population, assuming ecological interactions are present. Note that an identical number of mutants emerge, however semi-rare
mutants with positive ecological interactions demonstrate an increased time to extinction. As a result, when a drug intervention
is administered, pre-existence is present.
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fraction of the population, lurking until treatment results in competitive release of the untreatable resistant subclone. Taken56

together, these theoretical and experimental results argue that frequency-dependent ecological interactions between resistance57

mutants and their ancestor confer the primary mode by which resistance emerges in modern cancer therapeutics, and potentially58

all evolutionary diseases.59

Results60

Ecologically-dependent extinction time distributions with a generalized Moran process61

We begin by considering a one-step birth-death process44–46 with states s ∈ {0,1, ..,N}, where N is the total population size, s62

is the mutant population, and N − s is the ancestor population. We do not consider mutation and as a result the states s = 063

(extinction) and s = N (fixation) are absorbing. To account for ecological interactions, the mutant’s growth rate is defined to be64

a function of N−s
N , or the fraction of the population that is of the ancestral type, and assumed to be linear, see Fig. 1, right. In65

addition, for simplicity, we define the ancestor’s growth rate to be constant and, without loss of generality, normalized to 1 (see66

Materials and Methods for full model details).67

First, we are interested in how the distribution of extinction times differs between recently emerged mutants with identical68

fitness costs, but distinct ecological interactions (Fig. 2A, left). In particular we assume one (neutral) mutant has no ecological69

interaction with the ancestor, and thus fc = fe (Fig. 2A, blue), while the comparative (positive) mutant has an interaction that70

ameliorates the fitness cost of the mutant at extremely large ancestor fractions, fe = 1 (Fig. 2A, red). In the case of a mutant71

with a positive ecological interaction, we see that the extinction time distribution is heavily right-skewed in comparison to a72

neutral ecological effect. As a result, if these two mutants were equally likely to emerge in a population, we would expect73

to observe a mutant with a positive ecological interaction significantly more often than an equivalent mutant with a neutral74

ecological interaction. However, ecological interactions are not always positive. Repeating this process in comparing a neutral75

mutant with a mutant that has a negative ecological interaction with the ancestor reveals distinct shift to shorter extinction times76

as one might intuitively expect (Fig. S1).77

Extinction times depend on ecological interactions in a Wright-Fisher model78

While formulating our system as a generalized Moran process allows for convenient closed-form solutions to quantities of79

interest such as extinction time distributions, this representation becomes computationally expensive as the population size80

approaches increasingly realistic values. In addition, we have completely ignored mutation, as well as more realistic conditions81

where many mutants are competing within an evolving population. As such, we switch to a Wright-Fisher formulation of our82

system47–49. In the Wright-Fisher model, populations are still constant in population size N, however each individual of the83

population is replaced every generation with offspring inheriting the parent’s genotype with probability proportional to the84

parent’s fitness. In addition, individuals acquire mutations with some probability µ and we assume mutant populations are85

sufficiently small that we can ignore mutant-mutant interactions. Still, several of the generalizations and abstractions from the86

generalized Moran process remain. Namely, the ancestor’s growth is defined to be constant and normalized to 1, and the mutant87

growth rate is assumed to vary linearly between fi and fe (as a result, a mutant’s growth is fully characterized by these two88

fitness values along with the fraction of the population that is ancestor).89

Each simulation begins with an exclusively ancestor population and with each generation cells mutate with probability µ .90

Each mutant that arises has an intrinsic fitness drawn with uniform probability in [0,1− fc] and a corresponding ecological91

fitness drawn with uniform probability in [0,1]. Each Wright-Fisher ‘generation’ consists of a mutation step, followed by92

an offspring/selection step. For each mutant that emerges we record its intrinsic and ecological fitness values and track its93

evolutionary trajectory, and thus extinction time (τ). A mutant that emerges but does not survive the subsequent selection step94

is defined to survive 0 generations. Employing this model we find that the mean extinction time varies nearly five orders of95

magnitude between the most positive (≈ 10 generations) and deleterious (≈ 0.001 generations) ecological interactions (Fig. 2B).96

In order to develop a more rigorous understanding of the evolutionary dynamics, we sought an analytical approximation for the97

extinction time of a mutant under the same Wright-Fisher conditions. Strikingly, we find a robust approximation across the98

whole range of fe:99

τ( fe)≈
3ln(1− fe)

f 2
e −3

. (1)

Despite its simple form, this approximation agrees with simulation results with a typical error of 5% (Fig. 2B, full derivation100

and details found in the SI). Interestingly, the approximation is only a function of ecological fitness, and not mutation rate101

(assuming µ ≪ 1), population size, or fitness cost. This finding is supported by our simulation results (Fig. 2C).102
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Figure 2. Analytical approximations and simulations predict that extinction times depend on ecological interactions.
(A) Closed form extinction time distributions are calculated and visualized for a generalized Moran process (N=100, fc = 0.25).
The red distribution results from a mutant with a positive ecological interaction with the ancestor ( fe = 1.0), while the blue
population has no ecological interaction with the ancestor ( fe = 1− f c = 0.75). (B) Wright-Fisher simulations are used to
numerically calculate the mean extinction time as a function of fe (N=10000, µ = 10−6, 500 generations, fi is drawn uniformly
in [0,1− fc], fi is drawn uniformly in [0,1]). (C) Wright-Fisher simulations are repeated for varying values of fc, µ , and N to
confirm theoretical prediction that the extinction time distribution depends only on fe. (D) Phase diagram depicting the three
regimes of pre-existing resistance.
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Ecological interactions can increase the probability of pre-existing resistance103

Next we consider the model’s implications for pre-existing resistance. Specifically, we are interested in quantifying the expected104

number of mutants in an evolving population. While it might be tempting to quickly conclude that including ecological105

interactions will necessarily increase the probability of pre-existing resistance because positive interactions will lead to longer106

extinction times, it is important to note that mutants with a high intrinsic fitness are more likely to acquire a relatively deleterious107

ecological fitness, than one that is beneficial. As such, a careful mathematical treatment is required. When the expected number108

of mutants in a population is low (Nmut ≪ 1), potential resistance-conferring mutations are unlikely to be present at time of109

treatment. Contrarily, when the expected number of mutants is greater than 1, we expect treatment threatening resistance to be110

present when a drug is administered. We begin adapting our analytical model to calculate the mean number of mutants (see111

SI for full derivation and details). To begin we consider the case where no ecological interactions are present ( fi completely112

describes the growth rate of the mutant). In this case it can be shown that Nno eco
mut , the mean number of mutants ignoring113

ecological interactions, is:114

Nno eco
mut = Nµ

(
− ln fc

1− fc
−1

)
. (2)

Next, we seek to find an analytical approximation for Neco
mut, the mean number of mutants assuming ecological interactions115

exist. In the case of a sufficiently small mutation rate, we can approximate the total mutant fraction as,116

Neco
mut ≈ Nµ

(
− ln(1− fmax)

fmax
−1

)
for µ ≪ 1. (3)

Here, fmax is the maximum value that fe can take. While we can set fmax arbitrarily close to 1, it can never be exactly 1 for a117

well-defined normalization. Interestingly, for sufficiently small µ , the ratio Neco
mut

Nno eco
mut

is constant with Nµ . While the simplicity of118

the approximation is appealing, unfortunately it breaks down as µ gets large. As a result, a more robust, though significantly119

more complex, approximation was derived (see SI for full derivation):120

Neco
mut ≈

Nµ

fmax
W

((
1− fmax +µ f fc/( fc−1)

c

)−1
)
. (4)

Here W (x) is the Lambert W function, which is the solution y of the equation yey = x. This approximation allows for121

efficient calculation across several decades of µ within 10% of our numerical simulations. Employing these analytical122

approximations we identify three regimes of interest. The least interesting regime is the small Nµ regime (Fig. 2D, green).123

Here the effective population size is insufficient to maintain a mutant subpopulation regardless of the strength or frequency of124

ecological interactions. While this is the least mathematically interesting regime, this corresponds to extremely rare pre-existing125

resistance and high likelihood of treatment success.126

As Nµ gets larger (Fig. 2D, yellow) we enter a regime where ecological interactions would suggest pre-existing resistance127

is likely (Neco
mut > 1), while ignoring ecological interactions would suggest pre-existence is still rare (Nno eco

mut < 1). In this128

regime mutants have yet to become abundant, however, mutants with strong ecological interactions persist sufficiently long to129

threaten treatment efficacy. Representative simulation trajectories of this “rare mutant regime” are shown in Fig. 3A. Without130

ecological interactions (Fig. 3A, top panel) the mutation rate alone is insufficient to maintain a mutant subpopulation capable131

of threatening future treatment efficacy. However, with the introduction of ecological interactions (Fig. 3A, bottom panel),132

rare positive ecological mutants climb to significant fractions of the population, and have measurably longer extinction times133

that may threaten future treatments. As one might intuitively expect, the size of this regime where ecological effects drive134

pre-existence is heavily dependent on the imposed fitness cost of resistant mutants. We find that the larger the fitness cost135

imposed by resistance, the larger the comparative increase provided by allowing ecological effects.136

Ecological interactions significantly influence the distribution of mutants137

Next, we consider the final regime when Nµ is large (Fig. 2D, blue). In this regime the mutational supply is sufficiently large138

to self-sustain a small, resistant subpopulation, regardless of ecological interactions (that is, both (Nno eco
mut > 1 and Neco

mut > 1).139

Representative simulation trajectories of this “many mutant regime” are shown in Fig. 3B. At first glance one might assume140

this regime is uninteresting. In both cases mutants are sufficiently common to threaten future treatments, albeit ecological141

interactions significantly increase the steady-state fraction of resistant mutants. However, the results become more interesting142

when we consider the shape of the resistant subpopulation distribution. In each trajectory plot, the color is proportional to the143
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Figure 3. Positive ecological interactions make pre-existence more likely and dominate the stationary distribution of
mutants. (A) Representative Wright-Fisher trajectory in the “rare mutant regime”. Mutants exist in higher fractions and for
longer periods with ecological interactions. Each mutant is colored by its ecological fitness where red represents an fe value
near 1 and blue represents an fe value near 0. (B) Representative trajectory in the “many mutant regime”. Strong positive
ecological interactions dominate the stationary distribution of mutants. (C) Left: Stationary distribution of mutant ecological
fitnesses when the mutant generating function is uniform in ecological fitness. Right: joint distribution density plot between
intrinsic and ecological fitness. (D) Same as C, however the mutant generating function is now Gaussian centered about
fe = 0.5.

mutants ecological fitness with red representing an ecological fitness near 1 and blue representing an ecological fitness near 0.144

By inspection it is immediately clear that the most positive ecological mutants are over represented in the mutant population,145

considering they emerge with equal probability. However, we can do better and extract this relationship explicitly from our146

simulations (Fig. 2C, left). We find, similar to the impact of ecological effects on extinction times, that the frequency of a147

mutant spans multiple orders of magnitude as a mutant’s ecological fitness varies from 0 to 1.148

Extending our previous analytical work, it is straightforward to show that the stationary distribution of mutant ecological149

fitnesses goes as,150

P( fe)≈
feµ

fmax(1− fe)
for µ ≪ 1. (5)

The above approximation works remarkably well despite the simplicity of its form. From this equation we find that the151

frequency of a mutant is invariant with respect to fitness cost and population size. This is shown explicitly via numerical152

simulations and visualization of the joint distribution of fitness cost and ecological fitness (Fig. 2C, right).153

Non-uniform ecological distributions show similar qualitative results154

An important context to keep in mind with the work is that up to this point we have assumed emerging mutants are assigned an155

ecological fitness with uniform probability in [0,1]. This assumption was not made for simplicity, but instead out of necessity.156

While evolutionary biologists have spent significant time both theorizing about, and measuring the distribution of fitness effects157

(DFE), very little time has been spent quantifying either the frequency or magnitude of ecological effects (distribution of158

ecological effects, DEE). As a result, it is difficult to even speculate on what the null model ought to be.159
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Figure 4. Positive ecological fitnesses above 1 result in a stable fixed point between mutant and ancestor. (A) Stationary
distribution of mutant ecological fitnesses when the mutant generating function has uniform probability in [0,1.10]. (B)
Stationary distribution of mutant intrinsic fitnesses. (C) Joint distribution density plot between intrinsic and ecological fitness
reveals the size of the fitness cost now has a significant impact on mutant survival. (D) Cartoon illustration of why two mutants
with identical values of fe can result in different extinction times. Colored arrows point to stabled fixed points between mutant
and ancestor. Importantly, only the present mutant with the stable fixed point at the smallest value of fe will achieve stability.

Crucially, the analytical approximations derived herein can be simply generalized to fit any assumed, or future measured,160

DEE. While we assumed a uniform distribution, a Gaussian model where the most positive and negative ecological interactions161

are rare relative to more modest, or non-interacting mutants, may be more accurate. As an example, the general stationary162

distribution of mutant ecological fitnesses would become,163

P( fe)≈
feµ

(1− fe)
ρ0( fe) for µ ≪ 1. (6)

Here, ρ0( fe) can be any theorized or measured distribution of ecological effects. As proof of principle, we numerically164

simulate the distribution of mutant ecological fitnesses under an assumed Gaussian DEE, and show the above analytical165

approximation still holds. The results are qualitatively similar to the uniform DEE and, strikingly, despite the rarity of mutants166

with positive ecological interactions, they still manage to dominate the predicted stationary distribution of mutants (Fig. 2D).167

Sufficiently large positive ecological interactions result in a stable fixed point between mutant and ancestor168

We now briefly consider the regime wherein the ecological fitness of a mutant can sample values greater than 1. Put another169

way, when the mutant population emerges, it may emerge into an environment where it out-competes its ancestor. Importantly,170

emerging mutants still have a nonzero fitness cost, so even the most positive ecological interactions cannot lead to a hard171

selective sweep. Though our earlier analytical approximations do not apply for fmax > 1, the numerical simulations are robust172

in this regime. We find that the majority of stationary distribution mutants are mutants with ecological fitnesses larger than the173

ancestor, or fe > 1 (Fig. 4A). This qualitative change in behavior above fe = 1 can be explained in evolutionary game theory174

terms by a switch in the evolutionary game being played. When fe < 1, the ancestor out-competes the mutant population at all175

population frequencies. As a result, it is a question of when, not if, the mutant population will be driven to extinction. When176

fe > 1, however, the mutant population out-competes the ancestor at high ancestor frequencies, while the ancestor out-competes177
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the mutant at high mutant frequencies (as a result of the mutant fitness cost). This leads to a stable fixed point at some ancestor178

frequency where the two populations have an equal growth rate. This is particularly worrying in the case of therapy-resistant179

mutants, because it suggests if such a mutant emerges and survives the initial stochasticity of drift, it coexist at a sizeable180

frequency in the population until treatment.181

Next, we found that, contrary to our previous results, the fitness cost of the mutant plays an important role in determining the182

stationary distribution of mutants (Fig. 4B,C). Here we see that only the mutants with the largest positive ecological interactions183

and smallest fitness costs (intrinsic fitness = 1− fitness cost) are represented at meaningful frequencies. This result can be184

explained by the qualitative shift in evolutionary game for mutants where fe > 1. Previously, regardless of the fitness cost,185

any mutant with fe ≈ 1 would grow at that ecological fitness, as the mutant population never became a meaningful fraction of186

the whole population (Fig. 4D, left). However, as hinted at in the numerical simulations, fc and fe combine to determine the187

stable fixed point between the mutant and the ancestor (Fig. 4D, right). As a result, even mutants with fe < 1 are no longer188

characterized by their ecological fitness, instead they are characterized by their fitness at the frequency determined by the stable189

fixed point.190

Clinically observed lung cancer mutations confer positive ecological interactions191

Epidermal growth factor (EGFR) tyrosine kinase inhibitors (TKIs) are the first-line treatment for patients diagnosed with192

advanced non-small cell lung cancer (NSCLC). While the development of targeted TKIs has importantly extended overall193

survival times, these drugs are rarely curative50 and patients often recur with TKI-resistant tumors. As a result, EGFR-mutant194

NSCLC is an ideal system for studying pre-existing resistance and a location we would expect to find the strongest evidence of195

our predictions — namely the presence of strongly positive ecological interactions between mutants and their ancestor.196

To test our theory we genetically engineered (see Materials and Methods) three of the most commonly clinically observed197

resistance mutations found in response to TKIs:51, 52 BRAF-V600E, KRAS-G12V, and PIK3CA-E545K. Then, using our198

previously described evolutionary game assay23, 39, we measured the ecological interaction between each of these mutants and199

the ancestor PC9 cell line from which they emerged.200

We found that each of the three engineered mutants had varying levels of positive ecological interactions with their ancestor201

(Fig. 5, top). The most extreme result of the three was undoubtedly the BRAFV600E mutant, in which we observed a202

sufficiently strong ecological interaction to out-compete the ancestor in predominantly ancestor populations ( fe > 1). This203

observation suggests, at least in a laboratory environment, that if BRAFV600E emerges and survives stochastic evolutionary204

forces, it will stably coexist at approximately 20% of the population.205

A similarly strong positive ecological interaction was observed between KRASG12V and the PC9 ancestor. While the206

ecological fitness did not eclipse the ancestor, the ecological interaction was strong enough to completely ameliorate its fitness207

cost of approximately 20%. Finally, the PIK3CA-E545K mutant showed the weakest ecological interaction, though still slightly208

positive in nature. While we already reported on the ecological interaction between the evolved mutant and its ancestor, as it209

was the motivator of this study39, we performed additionally sequencing analysis (WXS and RNA-seq) and identified several210

common clinical mutations present, distinct from the engineered mutations: MET overexpression, CCND1 amplification, and211

KRASG12D mutation (Fig. 5, bottom). Taken together, these experimental results match our theoretical predictions and212

strongly support the hypothesis that frequency-dependent ecological interactions are a primary mode by which resistance is213

conferred in evolutionary diseases.214

Discussion215

While much work has gone into quantifying clinically problematic resistant bacteria, cancers and viruses, we nearly always216

characterize these clones in monoculture - entirely outside the eco-evolutionary forces that selected for (or against) them in the217

first place. In this work we set out to provide the foundation for a rigorous and generalizable mathematical framework that218

incorporates frequency-dependent ecological interactions and can be used to study their role in pre-existing resistance. This219

work both compliments and builds off of recent studies from a wide range of disciplines ranging from theoretical population220

genetics and ecology to clinical trials across several biological kingdoms. We demonstrate that the presence of ecological221

interactions can significantly increase the probability of pre-existing resistance, in addition to shaping the distribution of mutants222

likely to be present before treatment. We derive analytical approximations of several quantities of interest including extinction223

time, mean mutant population numbers, and the underlying distribution of mutants each as a function of ecological fitness.224

Importantly, these results can easily be generalized to any theorized distribution of ecological effects, or future experimentally225

measured distribution. As an important example, we show that even when we assume positive ecological interactions are rare,226

they still end up as a plurality of the stationary mutant frequency distribution. Finally, in an model system for pre-existing227

resistance, we show common clinically observed mutants harbor positive, frequency-dependent ecological interactions when228

co-cultured with their ancestor, providing strong evidence for our theory in cancer. In addition, recent exciting work in bacteria229
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Figure 5. As predicted, common clinically observed resistance mutations in NSCLC harbor strong postitive ecological
interactions with their ancestor in a model system of pre-existing resistance. Pie chart: Visual representation of the known
resistance mechanisms to Osimertinib, a third generation TKI and the current standard of care for EGFR-positive NSCLC. Top:
Measured positive ecological interactions between engineered resistant mutants and their ancestor. From left to right —
KRAS-G12V, PIK3CA-E545K, BRAF-V600F. Bottom right: Measured positive ecological interaction between evolved
gefitinib-resistant NSCLC PC9 population and its ancestor. Previously reported in39. Bottom left: Fresh sequencing analysis
reveals the gefitinib-resistant evolved mutant has additional clinically observed resistance mutations including: KRASG12D,
MET amplification, and CCND1 amplification (cell cycle genes).
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provides additional evidence, as frequency-dependent interactions resulted in maintenance of otherwise costly antibiotic230

resistant populations in Escherichia coli53 and Pseudomonas aeruginosa54.231

It is also important to address several limitations of our work. As we mentioned earlier, the distribution of ecological effects232

(DEE) has never been experimentally measured. As a result, assumptions regarding the distributional parameters have to made233

in order to calculate meaningful quantities of interest. While we did our best to combat this by developing analytical models234

that are agnostic to this distribution, the quantitative aspect of our results are subject to the specifics of a model. Our hope is that235

the analytical and numerical results herein, when combined with the promising experimental work in NSCLC, motivate future236

measurements of the DEE across diverse model systems. Similarly, our own experimental validation is constrained to one237

subsystem. Our predictions are broad and should apply to many evolving populations where pre-existence is evolved. Therefore238

it is important that future studies should should aim to test these theories not just in other cancers, but in other organisms from239

HIV to drug resistant bacteria. It is possible that these principles provide the most explanatory power in cancer and bacteria240

where it is common to find highly dense heterogeneous populations in contrast to viruses, for example. Finally, while the model241

aims to generally capture major evolutionary forces that may underlie pre-existing resistance, it is still an abstraction of a much242

more complex clinical scenario where the immune system, spatial dynamics, and treatment adherence, to name only a few, can243

play major roles.244
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Materials and Methods245

Cell culture246

PC-9 are human adenocarcinoma cells derived from undifferentiated lung tissue were obtained from Sigma (Sigma, USA).247

PC-9 cells were cultured in RPMI-1640 medium supplemented with 10% heat inactivated fetal bovine serum (FBS) and 1%248

penicillin streptomycin solution at 37°C with humidity containing 5% CO2. Cells were split every four days to maintain249

optimum confluency of ≈80-90%.250

Engineering of mutant cell lines251

To establish PC-9 cells stably expressing target genes, HEK-293T cells were co-transfected using TransIT-Lenti transfection252

reagent (Mirus, USA), with 500ng psPAX2 (addgene, USA), 100ng PMD2 (addgene, USA) and 500ng of target genes. Viral253

particles were collected after 48hrs and used to transduce PC-9 cells. Then, to establish ancestor PC-9 cells stably expressing254

nuclear localized GFP, cells were transduced with pLVX-eGFP-Hygro (Vectorbuild, USA). In addition, to establish query cells255

expressing fluorescently labeled PC-9 cells with a gene of interest cells were co-transduced with pLVX-mCherry-Hygro or256

pLVX-mCherry-Puro and each of pLVX-PIK3CA-E545K-Bsd (Vectorbuild, USA). Next, 72hrs after transduction, cells were257

selected with 200µg/ml hygromycin, 5µg/ml puromycin and 5µg/ml blasticidin.258

Drug sensitivity assay259

Cells were harvested at 70-80% confluence, stained with trypan blue (Corning, USA), and counted with a TC20 Automated260

Cell Counter (Bio-Rad, USA). Luminescent based cell viability assays using CellTiter-Glo (CTG) reagent (Promega, USA)261

were performed in 96 well plate (Corning, USA). A total number of 3,000 cells were plated in 90µL of complete medium262

per well in three replicate per drug concentration with Multidrop reagent dispenser (Thermo Fishers, USA). After 3hrs of263

incubation, 10µL of gefitinib, osimertinib and erlotinib (Cayman, USA) diluted in complete RPMI-1640 medium were added264

to the cells. Compounds were tested in a threefold dilution in a range of 0−1.8µM, 0−3µM and 0−10µM for gefitinib,265

osimertinib and erlotinib respectively. After 72hrs of incubation, 25µL CTG reagent was add to the cells; incubated for 10266

minutes at room temperature and luminescence was measured.267

Game assay268

PC-9 mutants stably expressing nuclear localized fluorescent signal ancestor PC-9 stably expressing nuclear localized GFP269

were co-cultured at different initial proportion of ancestor cells at a density of 1,500 cells in 90µL of fresh medium. After 3hrs270

of incubation, 10µL of DMSO diluted in complete RPMI-1640 medium (final DMSO concentration of 0.1% v/v) were added271

to the cells in three replicates per initial proportion. Then time-lapse microscopy images were obtained for GFP and mCherry272

using BioSpa automated incubator (BioTek, USA) every 4 hours over the course of 96 hrs. Then, images were processed273

with the open-source software CellProfiler55. Images were background subtracted, converted to 8-bit, contrast enhanced, and274

thresholded, then raw cell numbers were extracted.275

Generalized Moran model details276

In this work we consider a well known generalized Moran process, a model previously used to study frequency dependent277

evolutionary dynamics44–46. Briefly, we consider a one-step birth-death process with states s ∈ {0,1, ..,N} and characterized278

by birth and death rates bi and di with i ∈ {1,1, ..,N −1}. As a result this model describes a fixed population size N, with s279

resistant mutants and N − s ancestor population. We forgo mutation rate and as a consequence the states s = 0 and s = N are280

absorbing. We consider an evolutionary game with a 2x2 payoff matrix such that:281

( R A
R (1− fc) fe
A 1 1

)
As a result, we can write the expected payoffs in a population of s mutants and N-s ancestor individuals as:282

P(R) =
s−1
N −1

(1− fc)+
N − s
N −1

fe P(A) = 1.
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RNA-Seq283

Paired-end reads are preprocessed using fastp to trim and quality filter the reads. Following the filtering, reads are aligned to284

GRCh38 reference genome via STAR aligner. Read quantification is done using Salmon on the extracted transcriptome locations285

from spliced STAR alignment. Gene-level abundance are aggregated from bootstrapped transcript abundances using R package286

tximport. The Arriba tool is coupled with spliced alignments for fusion-transcript detection as well. Pathway level expression287

activities are quantified using R package GSVA and msigdbR for the Hallmark Pathways. The R package ComplexHeatmap was288

used to generate heatmaps.289

Whole exome sequencing290

Paired-end whole-exome reads of ancestor and parental lines were preprocessed using fastp similar to RNA-Seq. Alignment to291

GATK (GATK best practices bucket) version of GRCh38 reference is done using bwa-mem aligner. Following the alignment,292

variant calling pipeline according to the GATK workflow including duplicate marking and variant calling via HaplotypeCaller293

was conducted. Variants passing filtering based on hard-filtering are further annotated using Variant Effect Predictor (VEP) tool.294

Exome alignments are further input to CNVkit for copy-number alterations. Using a flat-reference for bias correction log2295

scaled abundances are generated for ancestor and resistant strains. Copy number segments are captured using circual binary296

segmentation and assigned to genes mapping to the segment.297

Code availability298

Code used in this study will be made openly available on GitHub.299

Acknowledgments300

This work was made possible by the National Institute of Health T32CA094186 (JAM), The Research Council of Norway301

325628/IAR (DST), 5R37CA244613-03 (JGS), 5T32GM007250-46 (JGS), and American Cancer Society RSG-20-096-01302

(JGS).303

References304

1. Fisher, M. C. et al. Tackling the emerging threat of antifungal resistance to human health. Nat. Rev. Microbiol. 20, 557–571305

(2022).306

2. Goldberg, D. E., Siliciano, R. F. & Jacobs, W. R. Outwitting evolution: fighting drug-resistant tb, malaria, and hiv. Cell307

148, 1271–1283 (2012).308

3. Darby, E. M. et al. Molecular mechanisms of antibiotic resistance revisited. Nat. Rev. Microbiol. 1–16 (2022).309

4. Pennings, P. S. Hiv drug resistance: problems and perspectives. Infect. disease reports 5 (2013).310

5. Menard, D. & Dondorp, A. Antimalarial drug resistance: a threat to malaria elimination. Cold Spring Harb. perspectives311

medicine 7, a025619 (2017).312

6. Sandru, A., Voinea, S., Panaitescu, E. & Blidaru, A. Survival rates of patients with metastatic malignant melanoma. J.313

medicine life 7, 572 (2014).314

7. Boucher, H. W. et al. Bad bugs, no drugs: no eskape! an update from the infectious diseases society of america. Clin.315

infectious diseases 48, 1–12 (2009).316

8. Organization, W. H. Antimicrobial resistance: global report on surveillance (World Health Organization, 2014).317

9. Arnold, M. et al. Progress in cancer survival, mortality, and incidence in seven high-income countries 1995–2014 (icbp318

survmark-2): a population-based study. The Lancet Oncol. 20, 1493–1505 (2019).319

10. Maltas, J., Singleton, K. R., Wood, K. C. & Wood, K. B. Drug dependence in cancer is exploitable by optimally constructed320

treatment holidays. bioRxiv DOI: 10.1101/2022.07.01.498458 (2022). https://www.biorxiv.org/content/early/2022/07/03/321

2022.07.01.498458.full.pdf.322

11. Iram, S. et al. Controlling the speed and trajectory of evolution with counterdiabatic driving. Nat. Phys. 17, 135–142323

(2021).324

12. Gatenby, R. A., Silva, A. S., Gillies, R. J. & Frieden, B. R. Adaptive therapy. Cancer research 69, 4894–4903 (2009).325

13. Feder, A. F., Harper, K. N., Brumme, C. J. & Pennings, P. S. Understanding patterns of hiv multi-drug resistance through326

models of temporal and spatial drug heterogeneity. eLife 10, e69032, DOI: 10.7554/eLife.69032 (2021).327

13

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 16, 2023. ; https://doi.org/10.1101/2023.03.16.533001doi: bioRxiv preprint 

10.1101/2022.07.01.498458
https://www.biorxiv.org/content/early/2022/07/03/2022.07.01.498458.full.pdf
https://www.biorxiv.org/content/early/2022/07/03/2022.07.01.498458.full.pdf
https://www.biorxiv.org/content/early/2022/07/03/2022.07.01.498458.full.pdf
10.7554/eLife.69032
https://doi.org/10.1101/2023.03.16.533001
http://creativecommons.org/licenses/by-nc-nd/4.0/


14. Anderson, G. R. et al. A landscape of therapeutic cooperativity in kras mutant cancers reveals principles for controlling328

tumor evolution. Cell reports 20, 999–1015 (2017).329

15. Hegreness, M., Shoresh, N., Damian, D., Hartl, D. & Kishony, R. Accelerated evolution of resistance in multidrug330

environments. Proc. Natl. Acad. Sci. 105, 13977–13981 (2008).331

16. Torella, J. P., Chait, R. & Kishony, R. Optimal drug synergy in antimicrobial treatments. PLoS computational biology 6,332

e1000796 (2010).333

17. Dean, Z., Maltas, J. & Wood, K. B. Antibiotic interactions shape short-term evolution of resistance in e. faecalis. PLoS334

pathogens 16, e1008278 (2020).335

18. Fu, F., Nowak, M. A. & Bonhoeffer, S. Spatial heterogeneity in drug concentrations can facilitate the emergence of336

resistance to cancer therapy. PLoS Comput. Biol 11, e1004142 (2015).337

19. Zhang, Q. et al. Acceleration of emergence of bacterial antibiotic resistance in connected microenvironments. Sci. 333,338

1764–1767 (2011).339

20. De Jong, M. G. & Wood, K. B. Tuning spatial profiles of selection pressure to modulate the evolution of drug resistance.340

Phys. review letters 120, 238102 (2018).341

21. Korolev, K. S., Xavier, J. B. & Gore, J. Turning ecology and evolution against cancer. Nat. Rev. Cancer 14, 371–380342

(2014).343

22. Wargo, A. R., Huijben, S., De Roode, J. C., Shepherd, J. & Read, A. F. Competitive release and facilitation of drug-resistant344

parasites after therapeutic chemotherapy in a rodent malaria model. Proc. Natl. Acad. Sci. 104, 19914–19919 (2007).345

23. Kaznatcheev, A., Peacock, J., Basanta, D., Marusyk, A. & Scott, J. G. Fibroblasts and alectinib switch the evolutionary346

games played by non-small cell lung cancer. Nat. ecology & evolution 3, 450–456 (2019).347

24. Good, B. H., McDonald, M. J., Barrick, J. E., Lenski, R. E. & Desai, M. M. The dynamics of molecular evolution over348

60,000 generations. Nat. 551, 45–50 (2017).349

25. Maltas, J. & Wood, K. B. Pervasive and diverse collateral sensitivity profiles inform optimal strategies to limit antibiotic350

resistance. PLoS biology 17, e3000515 (2019).351

26. Maltas, J. & Wood, K. B. Dynamic collateral sensitivity profiles highlight challenges and opportunities for optimizing352

antibiotic sequences. bioRxiv DOI: 10.1101/2021.12.19.473361 (2021). https://www.biorxiv.org/content/early/2021/12/21/353

2021.12.19.473361.full.pdf.354

27. Scarborough, J. A. et al. Identifying states of collateral sensitivity during the evolution of therapeutic resistance in ewing’s355

sarcoma. Iscience 23, 101293 (2020).356

28. Maltas, J., McNally, D. M. & Wood, K. B. Evolution in alternating environments with tunable interlandscape correlations.357

Evol. 75, 10–24 (2021).358

29. Zhao, B. et al. Exploiting temporal collateral sensitivity in tumor clonal evolution. Cell 165, 234–246 (2016).359

30. Lin, J. J. & Shaw, A. T. Resisting resistance: targeted therapies in lung cancer. Trends cancer 2, 350–364 (2016).360

31. Boshuizen, J. et al. Reversal of pre-existing ngfr-driven tumor and immune therapy resistance. Nat. communications 11,361

3946 (2020).362

32. Jangir, P. K. et al. Pre-existing chromosomal polymorphisms in pathogenic E. coli potentiate the evolution of resistance to363

a last-resort antibiotic. eLife 11, e78834, DOI: 10.7554/eLife.78834 (2022).364

33. Robinson, M., Tian, Y., Delaney IV, W. E. & Greenstein, A. E. Preexisting drug-resistance mutations reveal unique barriers365

to resistance for distinct antivirals. Proc. Natl. Acad. Sci. 108, 10290–10295 (2011).366

34. Szakacs, G. et al. Targeting the achilles heel of multidrug-resistant cancer by exploiting the fitness cost of resistance.367

Chem. reviews 114, 5753–5774 (2014).368

35. Sampah, M. E. S., Shen, L., Jilek, B. L. & Siliciano, R. F. Dose–response curve slope is a missing dimension in the analysis369

of hiv-1 drug resistance. Proc. Natl. Acad. Sci. 108, 7613–7618 (2011).370

36. Melnyk, A. H., Wong, A. & Kassen, R. The fitness costs of antibiotic resistance mutations. Evol. applications 8, 273–283371

(2015).372

37. Weinreich, D. M., Delaney, N. F., DePristo, M. A. & Hartl, D. L. Darwinian evolution can follow only very few mutational373

paths to fitter proteins. science 312, 111–114 (2006).374

14

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 16, 2023. ; https://doi.org/10.1101/2023.03.16.533001doi: bioRxiv preprint 

10.1101/2021.12.19.473361
https://www.biorxiv.org/content/early/2021/12/21/2021.12.19.473361.full.pdf
https://www.biorxiv.org/content/early/2021/12/21/2021.12.19.473361.full.pdf
https://www.biorxiv.org/content/early/2021/12/21/2021.12.19.473361.full.pdf
10.7554/eLife.78834
https://doi.org/10.1101/2023.03.16.533001
http://creativecommons.org/licenses/by-nc-nd/4.0/


38. Kühnert, D. et al. Quantifying the fitness cost of hiv-1 drug resistance mutations through phylodynamics. PLoS pathogens375

14, e1006895 (2018).376

39. Farrokhian, N. et al. Measuring competitive exclusion in non&#x2013;small cell lung cancer. Sci. Adv. 8, eabm7212, DOI:377

10.1126/sciadv.abm7212 (2022). https://www.science.org/doi/pdf/10.1126/sciadv.abm7212.378

40. Ayala, F. J. & Campbell, C. A. Frequency-dependent selection. Annu. review Ecol. systematics 5, 115–138 (1974).379

41. Clarke, B. C., Shelton, P. & Mani, G. Frequency-dependent selection, metrical characters and molecular evolution. Philos.380

Transactions Royal Soc. Lond. B, Biol. Sci. 319, 631–640 (1988).381

42. Levin, B. Frequency-dependent selection in bacterial populations. Philos. Transactions Royal Soc. Lond. B, Biol. Sci. 319,382

459–472 (1988).383

43. Trotter, M. V. & Spencer, H. G. Frequency-dependent selection and the maintenance of genetic variation: exploring the384

parameter space of the multiallelic pairwise interaction model. Genet. 176, 1729–1740 (2007).385

44. Traulsen, A., Claussen, J. C. & Hauert, C. Coevolutionary dynamics in large, but finite populations. Phys. Rev. E 74,386

011901 (2006).387

45. Ashcroft, P., Traulsen, A. & Galla, T. When the mean is not enough: Calculating fixation time distributions in birth-death388

processes. Phys. Rev. E 92, 042154, DOI: 10.1103/PhysRevE.92.042154 (2015).389

46. Nowak, M. A., Sasaki, A., Taylor, C. & Fudenberg, D. Emergence of cooperation and evolutionary stability in finite390

populations. Nat. 428, 646–650 (2004).391

47. Imhof, L. A. & Nowak, M. A. Evolutionary game dynamics in a wright-fisher process. J. mathematical biology 52,392

667–681 (2006).393

48. Wright, S. Evolution in mendelian populations. Genet. 16, 97 (1931).394

49. Fisher, R. A. Xxi.—on the dominance ratio. Proc. royal society Edinb. 42, 321–341 (1923).395

50. Hayashi, H. et al. Overall treatment strategy for patients with metastatic nsclc with activating egfr mutations. Clin. Lung396

Cancer 23, e69–e82 (2022).397

51. Chmielecki, J. et al. Candidate mechanisms of acquired resistance to first-line osimertinib in egfr-mutated advanced398

non-small cell lung cancer. Nat. Commun. 14, 1070 (2023).399

52. Camidge, D. R., Pao, W. & Sequist, L. V. Acquired resistance to tkis in solid tumours: learning from lung cancer. Nat.400

reviews Clin. oncology 11, 473–481 (2014).401

53. Leale, A. M. & Kassen, R. The emergence, maintenance, and demise of diversity in a spatially variable antibiotic regime.402

Evol. Lett. 2, 134–143 (2018).403

54. Dimitriu, T. et al. Negative frequency dependent selection on plasmid carriage and low fitness costs maintain extended404

spectrum β -lactamases in escherichia coli. Sci. reports 9, 17211 (2019).405

55. Stirling, D. R. et al. Cellprofiler 4: improvements in speed, utility and usability. BMC bioinformatics 22, 1–11 (2021).406

56. Neuts, M. F. Matrix-geometric solutions in stochastic models: an algorithmic approach (Dover, 1994).407

15

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 16, 2023. ; https://doi.org/10.1101/2023.03.16.533001doi: bioRxiv preprint 

10.1126/sciadv.abm7212
https://www.science.org/doi/pdf/10.1126/sciadv.abm7212
10.1103/PhysRevE.92.042154
https://doi.org/10.1101/2023.03.16.533001
http://creativecommons.org/licenses/by-nc-nd/4.0/


0.00 0.25 0.50 0.75 1.00

Fraction ancestor

0.0

0.2

0.4

0.6

0.8

1.0

1.2

N
o
rm

a
liz

e
d
 g

ro
w

th
 r

a
te

0 25 50 75 100

Extinction time, t

Fr
e
q
u
e
n
cy

Neutral eco effect

Neutral eco effect

Negative eco effect

Negative eco effect
Ancestor

Figure S1. Similar qualitative trends exist when comparing neutral and negative mutants. Closed form extinction time
distributions are calculated and visualized for a generalized Moran process (N=100, fc = 0.25). The red distribution results
from a mutant with a negative ecological interaction with the ancestor ( fe = 0.5), while the blue population has no ecological
interaction with the ancestor ( fe = 1− f c = 0.75).

Supplemental Material: Frequency-dependent ecological interactions increase the preva-408

lence and shape the distribution of pre-existing drug resistance409

Simulations410

Here we provide additional complimentary results from our numerical simulations in the main paper.411

Additional generalized Moran process results412

Similar to the main text figure, we compare the extinction time distributions of two emerging mutants in an initially ancestor413

population. Here we compare a neutral mutant with a negative mutant.414

While the effect is smaller that the comparison between positive and neutral mutants in the main text, we find similar415

qualitative trends in that extinction time distribution for neutral mutants is shifted to longer extinction times when compared to416

the negative mutant (Fig. S1).417

Analytical theory418

The following sections describe the analytical theory supporting the numerical simulations in the main text. Important formulas419

that are used to fit the simulation results are highlighted by boxes.420

Stationary distribution and total number of mutants421

We seek to derive an approximate analytical expression for the stationary probability density of mutants P( f ) in the Wright-422

Fisher simulations described in the main text. We assume ecological interactions are present, and that sufficient time has423

passed for a stationary state to be reached. P( f )d f is defined as the fraction of the total population that consists of mutants424

with instantaneous fitnesses between f and f + d f . Integrating this distribution gives the mean total number of mutants425

Neco
mut = N

∫ fmax
0 d f P( f ), where N is the fixed total population size. For the theoretical calculations we consider an upper bound426

on the mutant fitness fmax < 1 to allow for a well-defined normalization (as explained in more detail below), though we can set427

fmax arbitrarily close to 1 in order to fit the numerical results.428

Every generation of the model consists of a mutation step followed by selection. Let us consider first the mutation part. If429

P( f ) is the current distribution, mutation modifies it to a new distribution,430

Pm( f ) = P( f )+µρα( f )−µP( f ). (S1)

Here µ is the mutation probability for a single cell in one generation, and ρα( f ) is the probability density of a new mutant431

having fitness f , given a total fraction of mutants α ≡
∫ fmax

0 d f P( f ) = Neco
mut/N. The second and third terms on the right-hand432

side in Eq. (S1) are respectively the gain and loss due to new mutations.433
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The dependence of ρα( f ) on α reflects the role of ecological interactions. In the simplest linear model, a new mutant
is assigned a fitness function f (α) = α fi +(1−α) fe, where fi (the intrinsic fitness) is randomly drawn from a uniform
distribution between 0 and 1− fc, and fe (the ecological fitness) is randomly drawn from a uniform distribution between 0 and
fmax. Here fc, where 0 < fc < 1, is the cost associated with intrinsic fitnesses, with 1− fc < fmax. For this definition of f (α),
the distribution ρα( f ) is given by

ρα( f ) =


f

α(1−α) fmax(1− fc)
f < α(1− fc)

1
(1−α) fmax

α(1− fc)≤ f < (1−α) fmax
α(1− fc)+(1−α) fmax− f

α(1−α) fmax(1− fc)
f ≥ (1−α) fmax

. (S2)

For 0 < α < 1 the distribution ρα( f ) has a trapezoidal shape, rising linearly from zero for small f , then plateauing in the434

middle region, before decreasing linearly to zero at fmax. In the two limits α = 0 and α = 1 it reverts to a uniform distribution435

between 0 and fmax (for α = 0) or between 0 and 1− fc (for α = 1).436

The second part of the dynamics is the selection step, which makes a further modification of the mutant distribution, yielding

Ps( f ) =
f Pm( f )

1−
∫ fmax

0 d f Pm( f )+
∫ fmax

0 d f f Pm( f )
. (S3)

The above form reflects the fact that the ancestors after the mutation step, comprising a fraction 1−
∫ fmax

0 d f Pm( f ) of the total,
have fitness 1, and mutants with fitness f have a chance of surviving into the next generation proportional to f . In order for
the system to be in a stationary state, the distribution Ps( f ) in the next generation must end up being the same as the starting
distribution P( f ) in the current generation. Using Eqs. (S1)-(S3), we can express the condition Ps( f ) = P( f ) compactly as

P( f ) =
f [(1−µ)P( f )+µρα( f )]

1−β
, (S4)

where β ≡
∫ fmax

0 d f (1− f ) [(1−µ)P( f )+µρα( f )]). Eq. (S4) can be solved for P( f ),

P( f ) =
f µρα( f )

1−β − f (1−µ)
. (S5)

Note that both α and β on the right-hand side of Eq. (S5) depend implicitly on P( f ). In order for the solution to be self-
consistent, we plug Eq. (S5) into the definitions of α and β , which leads to a closed system of equations for these two quantities:

α =
∫ fmax

0
d f

f µρα( f )
1−β − f (1−µ)

, β =
∫ fmax

0
d f

(1−β )(1− f )µρα( f )
1−β − f (1−µ)

. (S6)

The equation for β is satisfied exactly when β = µ , using the fact that
∫ fmax

0 d f ρα( f ) = 1. Plugging β = µ into the α equation,
we can carry out the integral analytically, leading to the following relation:

α =
µ

α(α −1)(1−µ)(1− fc) fmax

[
α fc

(
ln
[
α ( fc −1)+1

]
− ln

[
α ( fc + fmax −1)− fmax +1

]
+(α −1) fmax

)
− (α −1)

(
ln
[
α ( fc −1)+1

]
+( fmax −1) ln

[
α ( fc + fmax −1)− fmax +1

]
+α fmax

)
+((α −1) fmax +1) ln

[
(α −1) fmax +1

]]
.

(S7)

There is no explicit analytical solution for α from the above equation, but there are ways to derive approximate solutions that437

work in different limits. We consider two such limits in turn.438
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Small mutant fractions (µ ≪ 1): When µ ≪ 1, the mean number of mutants in the population becomes small, and their fraction
α , given by the solution of Eq. (S7), scales like α ∝ µ . In this limit Eq. (S7) gives us α = µ(− f−1

max ln(1− fmax)−1)+O(µ2),
so we get an approximate expression for the total mutant fraction (main text Eq. (3)):

Neco
mut ≈ Nµ

(
− ln(1− fmax)

fmax
−1

)
for µ ≪ 1. (S8)

To leading order in µ , we can approximate the stationary distribution of mutant fitnesses in Eq. (S5) as (main text Eq. (5)):

P( f )≈ f µ

fmax(1− f )
for µ ≪ 1. (S9)

Note that since α ≪ 1, ρα( f )≈ ρ0( f ), and the distribution of instantaneous fitnesses f in Eq. (S9) is approximately also the439

distribution of ecological fitnesses fe. In order for Eq. (S9) to be normalizable, and hence its integral giving Eq. (S8) to be440

well-defined, we need fmax strictly smaller than 1. In the numerical simulations only a finite number of mutants are sampled441

overall during the course of the evolutionary trajectories, and an effective value of fmax ≈ 0.995 was found to provide good fits442

between the theory and simulation results.443

444

Large mutant fractions (µ ≲ 1): We would like to extend the results above to larger values of µ and α , to cover simulation
cases where the mutant fractions α are on the order of 10% of the total. We note that as α gets larger, the distribution of new
mutant fitnesses ρα( f ) in Eq. (S2) gets increasingly suppressed at fitnesses near zero and fmax. This makes the precise value of
fmax less important for determining α , and we can approximate Eq. (S7) by taking the fmax → 1 limit. If we then keep the
expressions to leading order in µ , assuming that α ∼ O(µ), Eq. (S7) becomes

α ≈ µ

1− fc

(
( fc −1) ln(α)+ fc ln fc

)
. (S10)

The solution to this equation has the form

α ≈ µW
((

µ f fc/( fc−1)
c

)−1
)
. (S11)

Here W (x) is the Lambert W function, which is the solution y of the equation yey = x. For x > 0 (which is the only case that445

arises in our problem) the function is single-valued (the so-called zero branch of the solution).446

While Eq. (S11) works in the fmax → 1 limit, ideally we would like an expression that works for fmax close to, but not
exactly 1, and for the entire range of µ ≲ 1 including small µ . Since we know Neco

mut = Nα for µ ≪ 1 and fmax < 1 from
Eq. (S8), we posit the following approximate form for Neco

mut (main text Eq. (4)):

Neco
mut ≈

Nµ

fmax
W

((
1− fmax +µ f fc/( fc−1)

c

)−1
)
. (S12)

By construction this is consistent with Eq. (S11) when fmax → 1. When 1− fmax is small but nonzero and µ ≪ 1, we can use447

the fact that W (x) diverges like lnx for large positive x to see that Eq. (S12) gives Neco
mut ≈−Nµ f−1

max ln(1− fmax) for µ → 0.448

This recovers the dominant contribution in Eq. (S8) when 1− fmax is small.449

Thus in principle Eq. (S12) should work for a wide range of µ and different values of fc. Fig. S2 depicts a comparison of450

Eq. (S12) to simulation results, and the analytical approximation is within 10% of the numerical value across five decades of µ451

and both small and large fc (as shown by the errors shown in the inset). For small µ the Neco
mut curves start out independent of fc452

and proportional to µ , as expected from Eq. (S8). With increasing µ , the curves bend downwards in a way that depends on fc,453

as the population of mutants becomes a non-negligible fraction of the total.454

Non-uniform ecological/intrinsic fitness distributions: The derivations above can be easily extended to non-uniform
distributions of the ecological and/or intrinsic fitnesses. This modifies the shape of ρα( f ), depending on the specific distributions
from which fi and fe are drawn for new mutants. In general, imagine fe is drawn from a distribution ρ0( fe), like the Gaussian
example considered in the main text. In the limit µ ≪ 1, when the total mutant fraction α is small, Eq. (S9) for the distribution
becomes (main text Eq. (6)):

P( fe)≈
feµ

(1− fe)
ρ0( fe) for µ ≪ 1. (S13)
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Figure S2. Comparison of the approximate analytical theory, Eq. (S12) (curves), and the simulation results (circles) for the
mean number of mutants Neco

mut as a function of mutation rate µ . We set fmax = 0.995, N = 104, and use two different values for
the fitness cost, fc = 0.15 and 0.9 (red and blue respectively). The inset shows the absolute percent error of the analytical
approximation with respect to the numerical values. The black line on the left shows the scaling Neco

mut ∝ µ expected in the small
µ regime from Eq. (S8).

Other results from the theory can be similarly generalized.455

No ecological interactions: In the absence of ecological interactions, the fitness function f (α) = fi for all α . If fi is drawn
from a uniform distribution between 0 and 1− fc, the distribution ρα( f ) becomes uniform: ρα( f ) = 1/(1− fc). An analogous
calculation to the one above yields the mean number of mutants in this scenario (main text Eq. (2)):

Nno eco
mut = Nµ

(
− ln fc

1− fc
−1

)
. (S14)

This number is a useful baseline for gauging the relative effectiveness of ecological interactions in enhancing mutant populations.456

Mean time to extinction of an individual mutant457

The final quantity we would like to calculate theoretically is the mean number of generations that an individual mutant survives458

after first arising. Note that if a mutant is generated by the mutation step, but does not survive the selection step immediately459

afterwards, we say its lifetime is zero generations. To simplify the calculation, we consider the regime µ ≪ 1, where the chance460

that a mutant disappears via a second mutation is negligible. And by the definition of the model, the same type of mutant cannot461

be generated again from either the ancestor or other mutant populations. So in this regime the mutant persists with a randomly462

fluctuating population until in one of the selection steps none of its population is chosen to survive to the next generation.463

Let us focus on a single mutant type with fitness f . If there are ℓ such mutants in the current generation, the probability
Wkℓ that there will be k mutants of this type in the next generation is given by the binomial distribution characteristic of
Wright-Fisher dynamics,

Wkℓ =

(
N
k

)(
1− f ℓ

N(1−β )

)N−k ( f ℓ
N(1−β )

)k

. (S15)

For µ ≪ 1 we can assume that β ≪ 1, f ≈ fe and that N ≫ k for any k that has a non-negligible probability, since the number
of mutants of a single type at any given time will be a tiny fraction of the total. We can then approximate Eq. (S15) as

Wkℓ ≈
( feℓ)

k

k!
e− feℓ, (S16)

which is just the limit in which the binomial distribution looks like a Poisson distribution. The probabilities Wkℓ can be464

interpreted as components of an N ×N transition matrix W . Since the vast majority of this matrix will consist of probabilities465

exponentially close to zero, we can focus on the states k, ℓ= 0, . . . ,M for some M ≪ N. Thus we will consider W instead to be466
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an (M+1)× (M+1) matrix, choosing M large enough to get a satisfactory approximation to the non-truncated system. This467

reduces the problem to an (M+1) state discrete time Markov process.468

Note that Wk0 = 0, so ℓ = 0 (extinction) is an absorbing state. From the theory of phase-type distributions56, the mean
number of generations to extinction can be calculated using the M×M submatrix S of the tranpose W T , defined via Skℓ =Wℓk
for k, ℓ= 1, . . . ,M. Starting from a population of 1 (after the mutation step) at generation zero, the mean time to extinction is
given by

τ( fe) = zT (I −S)−1e−1. (S17)

Here I is the M×M identity matrix, z is an M-dimensional vector with a 1 in the first element and zero elsewhere, and e is469

an M-dimensional vector with 1 for all its elements. The −1 at the end of Eq. (S17) is due to the counting convention where470

extinction during the first selection step is considered to be an extinction time of zero.471

For a given choice of M, it turns out the matrix inverse in Eq. (S17) can be calculated analytically. Even though the resulting472

expression becomes unwieldy for large M, it can always be Taylor expanded around fe = 0 to give relatively simple results.473

The Taylor coefficient of order f n
e in the expansion remains unchanged for any choice of M ≥ n. Thus we can find the Taylor474

expansion of τ( fe) in the non-truncated system up to any chosen order M, simply by Taylor expanding Eq. (S17).475

The first few terms of this Taylor expansion are:

τ( fe) = fe +
f 2
e

2
+

2 f 3
e

3
+

f 4
e

8
+

19 f 5
e

30
+

f 6
e

144
+

107 f 7
e

280
+ · · · . (S18)

While the lowest terms are sufficient to describe the mean extinction time of mutants with fe ≪ 1, progressively more terms
are required to approximate τ( fe) as fe approaches 1 from below. In fact, technically in this approximation the series τ( fe)
diverges at fe = 1, since we have effectively taken N → ∞ in Eq. (S16). In practice this is not a problem since we only consider
mutants with fitnesses up to fmax < 1. Rather than working with the Taylor expansion directly, we constructed an analytical
approximation designed to agree with the expansion through order f 3

e , and capture the divergence at large fe (main text Eq. (1)):

τ( fe)≈
3ln(1− fe)

f 2
e −3

. (S19)

Despite its simple form, this approximation agrees with the simulation results for µ ≪ 1 across the whole range of fe with a476

typical error of 5%.477
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