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Log interpretation method 
of resistivity low‑contrast oil 
pays in Chang 8 tight sandstone 
of Huanxian area, Ordos Basin 
by support vector machine
Ze Bai1,4*, Maojin Tan2, Yujiang Shi3, Xingning Guan1, Haibo Wu1,4 & Yanhui Huang1,5

Resistivity low‑contrast oil pays are a kind of unconventional oil resource with no obvious difference 
in physical and electrical properties from water layers, which makes it difficult to be identified based 
on the characteristics of the geophysical well logging response. In this study, the support vector 
machine (SVM) technology was used to interpret the resistivity low‑contrast oil pays in Chang 8 tight 
sandstone reservoir of Huanxian area, Ordos Basin. First, the input data sequences of logging curves 
were selected by analyzing the relationship between reservoir fluid types and logging data. Then, the 
SVM classification model for fluid identification and SVR regression model for reservoir parameter 
prediction were constructed. Finally, these two models were applied to interpret the resistivity low‑
contrast oil pays in the study area. The application results show that the fluid recognition accuracy of 
the SVM classification model is higher than that of the logging cross plot method, back propagation 
neural network method and radial basis function neural network method. The calculation accuracy of 
permeability and water saturation predicted by the SVR regression model is higher than that based on 
the experimental fitting model, which indicates that it is feasible to carry out logging interpretation 
and evaluation of the resistivity low‑contrast oil pays by the SVM method. The research results not 
only provide an important reference and basis for the review of old wells but also provide technical 
support for the exploration and development of new strata.

With the increasing volatility of international oil prices and the continuous reduction of oil reservoir scale, the 
resistivity low-contrast oil resources with strong concealment has received much interest in recent years. Carrying 
out the research on logging interpretation and evaluation method of resistivity low-contrast oil pays has become 
the most practical choice to supplement conventional oil resources and reduce oilfield exploration  cost1,2,27. 
The resistivity low-contrast oil pay has the characteristics of little difference in porosity and resistivity logging 
response from water layer, and the oil saturation of resistivity low-contrast oil layer is relatively  low3,4. At present, 
low porosity and low permeability reservoirs represented by tight sandstone has become the main battlefield to 
ensure the supply of oil and gas  resources5. However, the complex pore structure and strong heterogeneity of 
tight sandstone reservoir reduce the sensitivity of the logging response to pore fluid, resulting in more resistivity 
low-contrast oil pays developed, and it is more difficult to interpret and identify this kind of reservoir by using 
conventional logging interpretation  methods6,7,25.

In recent years, data mining technology has been increasingly applied in oil exploration and development, 
especially for unconventional reservoirs with unclear logging response characteristics, and how to use data 
mining technology to effectively solve some complex problems existing in the actual production of oil fields 
is of great  significance8–10. Some classical optimization algorithms, such as the neural network method, sup-
port vector machine and fuzzy clustering method, provide a new technology for the identification of resistivity 
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low-contrast oil  pays11,12. Guo et al.13 predicted the water saturation at the lower limit of three water models by 
using the generalized neural network (GRNN) and particle swarm optimization support vector machine (PSO-
SVM), which is in good agreement with the core analysis results in the Sulige tight sandstone reservoir. Chen 
and  Peng14 used a BP neural network to train and learn the mathematical characteristics of logging curves of low 
resistivity oil reservoirs, which improved the accuracy of fluid identification and reservoir parameter prediction. 
Singh et al.15 used the stepwise linear regression, multilayer feed forward neural (MLFN) network method to 
predict the 2D distribution of P-wave velocity, resistivity, porosity, and gas hydrate saturation. Miah et al.16 used 
the multilayer perception artificial neural network (MLP-ANN) and kernel function-based least-squares sup-
port vector machine (LS-SVM) techniques to develop predictive models for water saturation, and the prediction 
performance was better than that of other models. Baouche and  Nabawy17 applied the fuzzy logic technique that 
enabled a reservoir zonation of the Southern Hassi R’Mel Gas Field into several hydraulic flow units with various 
reservoir properties, and then the permeability values of each flow unit were predicted. With the deepening of 
research, many machine learning algorithms based on theoretical mathematics have been proposed, and each 
has its own advantages and disadvantages. However, the key to applying this kind of method to log interpretation 
of actual formation is to select appropriate training data as  input18,19. In this study, the support vector machine 
(SVM) learning method based on VC dimension theory in statistical learning and the structural risk minimiza-
tion principle (SRM) were used to establish the interpretation model. By analyzing the relationship between log-
ging response and pore fluid, training data were optimized, and SVM classification model for fluid identification 
and support vector machine regression (SVR) model for reservoir parameter prediction were established. The 
application results show that the log interpretation models established by the SVM method are more effective 
than conventional method, which proves that it is feasible to identify and evaluate resistivity low-contrast oil 
pays based on SVM method.

Geological and logging response characteristics of research area
The Ordos Basin is the second largest sedimentary basin in China, bearing more than half of China’s energy 
 output20,21. The Huanxian area is located in southwestern Ordos Basin, and the regional geological structure 
crosses the Tianhuan Depression and Yishan Slope from west to the east (Fig. 1). The Chang 8 member of the 
Yanchang Formation developed in the Huanxian area is a typical tight sandstone reservoir with large sedimen-
tary thickness. The oil source of Chang 8 tight sandstone reservoir mainly comes from the overlying Chang 7 
high-quality source rock, which makes it has great exploration and development  potential22,23. However, with 
deepening of oil and gas exploration and development in this area, the problem of identification and evaluation 
of resistivity low-contrast oil reservoir has become increasingly  prominent7,24,25.

Figure 1.  Geographical location of the research area.
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According to previous studies, the genesis of resistivity low-contrast oil reservoir is very complex, and it 
is usually caused by many  factors26,27. Figure 2 shows the relationship between resistivity and density logging 
response of oil layer and water layer established by the oil test data in the study area. And the logging response 
characteristics of different fluids were shown in Table 1. It can be seen that the density (DEN) value and reser-
voir resistivity (RT) value of resistivity low-contrast oil reservoir is lower than that high resistivity oil reservoir. 
And the relative shale content ( �GR) has little difference between resistivity low-contrast oil reservoir and high 
resistivity oil reservoir, indicating that the shale content of reservoir has little effect on resistivity. In addition, 
the relative amplitude of spontaneous potential ( �SP) in resistivity low-contrast oil reservoir is higher than that 
of high resistivity oil reservoir, which reflects that the difference of formation water salinity property is likely 
to be an important reason for the change of electrical property. Besides, the complex pore structure and high 
irreducible water saturation in tight sandstone reservoir make it difficult for conventional logging to identify and 
evaluate resistivity low-contrast oil reservoir, which seriously restricts the exploration progress and development 
of oil resources in this area. Therefore, it is important to develop more effective methods to provide new logging 
technical support for the exploration and development of resistivity low-contrast oil layers.

Method and theory
Different from the neural network method to solve the number of hidden nodes of neurons, the basic idea of 
a support vector machine for reservoir parameter prediction is to map the input space to a high-dimensional 
space by introducing a kernel function and then solve a linearly separable hyperplane or function in this high-
dimensional space, which can separate all data types in the original space. The greater the separation distance 
is, the better the classification effect. Finally, the nonlinear discrimination ability of the original spatial data is 
 realized28.

Taking T =
{
(xi , yi)|i = 1, 2, . . . , n

}
 and xi ∈ RP as the input data, where xi is the logging data related to the 

predicted parameters, and yi is the core analysis data, that is, the target value.
Suppose that in high-dimensional space, the hyperplane or line function that can separate the two types of 

samples satisfies:

where wij is the weight vector representing high-dimensional unknown coefficients and bij is a constant term. 
To use function (1) to distinguish all input data samples without error, function yk(�w · x�+b)− 1 ≥ 0 should 
be satisfied. When the classification interval is maximum, function φ(w) = 1

2w
T
w should be minimum. In this 

way, the problem of solving the optimal hyperplane in high-dimensional space is transformed into the minimum 
value problem of the following convex programming function:

(1)g(xi) =
〈
wij · xi

〉
+ bij

Figure 2.  The cross plot of reservoir resistivity and density.

Table 1.  Logging response characteristics of different fluids.

Fluids

AC(us/m) DEN(g/cm3) ΔGR ΔSP RT(Ω.m)

Range Ave Range Ave Range Ave Range Ave Range Ave

Resistivity low-contrast Oil 209–240 223 2.37–2.52 2.38 0.1–0.34 0.24 0.5–0.94 0.72 6.4–20.5 10.2

High resistivity Oil 212–231 221 2.44–2.52 2.48 0.09–0.45 0.26 0.4–0.85 0.66 23.03–92 57.68

Water 220–240 235 2.37–2.45 2.39 0.15–0.24 0.20 0.6–0.83 0.72 8.7–10.13 9.25
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Which satisfies the following constraint condition:

where ξk is a nonnegative relaxation variable introduced when the sample data are linearly inseparable; C is a 
penalty parameter, and the greater its value is, the heavier the penalty for misclassification. The first term in the 
objective function (2) is to increase the classification interval, which effectively controls the generalization ability 
of the model. The second term is the training error to reduce the experience risk.

To map the training data set to the high-dimensional space, a kernel function needs to be introduced; that 
is, the convex programming problem of Eq. (2) is transformed into a quadratic programming problem. The 
expected weight vector can be written as w =

n∑
i=1

(α∗
i − αi)xi , and finally, the analytical expression of the support 

vector machine regression function is as follows:

where αi and α∗
i  are the nonnegative Lagrange multipliers and K(x, xi) is a kernel function satisfying the Mercer 

condition. The commonly used kernel functions mainly include the polynomial kernel function, Gaussian kernel 
function, radial basis function kernel function and sigmoid kernel function.

The input sample set data have different physical meanings and different dimensions and orders of magni-
tude, and it is necessary to normalize the original data before learning and training. The normalization method 
selected in this paper is the mapminmax function, and its normalization formula is:

where x̂  is the normalized data, x is the input data, xmax and xmin are the maximum and minimum values of the 
input data, and the range of normalized data is between −1 and 1.

The libsvm toolbox in MATLAB software is used for SVM model learning and training, and the radial basis 

function is selected as the kernel function, that is, K(xi, xj) = exp

(
−�xi− xj�2

2σ 2

)
 . The combination of grid search 

and k-fold cross validation is used to determine the best penalty factor ( C ) and kernel function parameters 
( 
√
2σ ), that is, the different combinations of penalty factor and kernel function parameters are selected to cal-

culate the mean square errors obtained through training, and one group with the smallest mean square error is 
obtained as the optimal parameters.

Figure 3 shows the flowchart of constructing the classification model and regression model by using the 
SVM method. The training samples are used for model training in the input data, the testing samples is used to 
determine the optimal model parameters, and the model validation samples are used to check the application 
effect of the constructed models.

SVM classification model. Fluid identification using SVM is a multiclassification problem, but the SVM 
method initially solves two classification problems. Therefore, it is necessary to extend SVM method and con-
struct a reasonable multiclassification coding scheme. At present, there are four main methods to construct 
SVM multiclassifiers: "one against one", "one against rest", "SVM decision tree" and "one-time solution method". 

(2)φ(w, ξ) =
1

2
w
T
w+C

n∑

k=1

ξk

(3)yk(�w · x�+b) ≥ 1− ξk, k = 1, . . . , n

(4)f (x) =
n∑

i=1

(αi − α∗
i )K(x, xi)+ b

(5)x̂ = 2 ∗ (x− xmin)/(xmax − xmin)− 1

Figure 3.  Flowchart of constructing the classification model and regression model by using the SVM method.
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When solving practical multiclassification problems, the "one-to-one" method has a better effect than other 
 methods29,30. Therefore, this method is selected to construct an SVM multiclassifier in this paper, and the basic 
idea is that if there are class k data, class I data and class J data are selected to construct a classifier, where I < J, 
so k (k−1)/2 classifiers need to be trained. For class I and class J data, a two classification problem needs to be 
solved, and the voting method is used to solve this problem; that is, if the function judges that it belongs to class 
I, the number of votes of class I is increased by 1. Otherwise, the number of votes of class J is increased by 1, and 
the final output result is the class with the largest number of votes.

To build the SVM classification model for fluid identification, we must first determine the input logging data 
or parameters sensitive to the pore fluid. Considering that the study area is mainly conventional logging curves, 
nuclear magnetic resonance logs and array acoustic logs are not widely used in the whole area. Therefore, accord-
ing to the characteristics of logging curve, the fluid identification factors sensitive to fluid type are selected as the 
input data, including (PERM/φ)1/2 , DR , QT , Rt , �SP , Rwa and Rwa_SP , where (PERM/φ)1/2 is the comprehensive 
physical property index, which PERM represents the permeability, and φ is the porosity of reservoir. QT is the 
total hydrocarbon logging value, the greater the value, the greater the probability of possible oil and gas. Rt is the 
resistivity logging value. The specific calculation methods of other parameters are as follows:

where �SP is the relative amplitude of the spontaneous potential. When the salinity difference of formation 
water is small, the higher the oil saturation of the reservoir is, the smaller the �SP value; SP is the spontaneous 
potential logging value; and SPShale and SPsand are the spontaneous potential values of pure mudstone and pure 
sandstone, respectively.

where DR is the resistivity difference parameter, and its value is related to the characteristics of mud invasion into 
permeable formation. The AT10 , AT20 , AT30 , AT60 and AT90 are the resistivity logs of 10in, 20in, 30in, 60in, 
and 90in depth from the wellbore, respectively. In the target interval we studied, the permeability of the reservoir 
is poor, and the micro pores are relatively developed. For the fresh water mud, the oil layer is characterized by 
low invasion, while the water layer is characterized by high invasion. Therefore, the value of DR is large for the 
oil layer, while the value for the water layer is  small31,32.

where Rwa is the apparent formation water resistivity calculated by the Archie formula when the reservoir water 
saturation is assumed to be 100%, m is the cementation index, and a and b are the cementation indices.

where Rwa_SP is the resistivity of the pure water layer calculated by spontaneous potential logging data. Rmf  is 
the resistivity of the mud filtrate, and USSP is the static spontaneous potential value. K is the diffusion adsorption 
electromotive force coefficient. In water-saturated layers, Rwa is equal to or less than Rwa_SP , and with the increase 
in reservoir oil saturation, Rwa is higher than Rwa_SP.

The output characteristics are represented by digital labels representing different fluid types, in which the 
number 2 represents the oil layer, the number 1 represents the oil–water layer, the number − 2 represents the water 
layer, and the number − 1 represents the dry layer. According to the oil test conclusion of the target interval in 
the study area, the input logging parameters are matched and combined with the numbers representing different 
pore fluid types to form the input training set of the model. To ensure the effectiveness and representativeness of 
the input training set, 204 training samples are selected in the study area, of which 185 are training sample sets 
and 19 are test sample sets. Table 2 shows the logging parameters and oil test results of these 19 test sample sets.

Figure 4 shows the plan maps of the mean square error and correlation coefficient trained by the fourfold 
cross validation method under different C and 

√
2σ parameter combinations. By looking for the penalty factor 

and kernel function parameters with the smallest mean square error and the highest correlation coefficient of 
19 test sample sets, the optimal penalty factor and kernel function parameter combination of the classification 
model is C = 4096 and 

√
2σ = 2.

SVR regression model. The permeability and water saturation of unconventional reservoirs are seri-
ously affected by pore structure, and it is difficult to obtain these two parameters based on conventional logging 
curves. Therefore, the support vector regression (SVR) method is considered to construct the prediction model 
of reservoir permeability and water saturation. The idea of using SVR to build a reservoir parameter predic-
tion model is the same as the basic process of the SVM classification model. which is to first select the optimal 
dataset with high correlation to the prediction target value as the input. The relationship between permeability, 
water saturation and logging curve is very complex. To determine the appropriate input training set, different 
logging data set combinations were used as the input training data, and the optimal input data set was selected 
by comparing the errors of the prediction model. The combination of different input logging data sets is shown 
in Table 3, including logging curves reflecting the reservoir lithology (ΔSP and ΔGR), reservoir physical proper-
ties (DEN, AC, CNL), reservoir electrical properties (RT), and reservoir porosity calculated by core calibration 

(6)�SP =
SPShale−SP

SPshale − SPsand

(7)DR=
AT90

AT10
×

AT90

AT20
×

AT90

AT30
×

AT90

AT60

(8)Rwa=
Rt ∗ φm

ab

(9)Rwa_SP=
Rmf

10Ussp/K
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logging curve method (POR). And the optimal value of SVR model parameters ( C and 
√
2σ ) are still obtained 

by the fourfold cross validation method.
From 16 wells in the study area, approximately 252 reliable and representative closed coring data are selected 

to analyze the reservoir permeability and water saturation. And 50 samples are randomly selected for back judg-
ment, and the optimal input training sample set combination is selected according to the average relative error of 
the back judgment results. Figure 5 shows the change in the average relative error of the regression permeability 
model and regression water saturation model when using different input data sets. Combination 4 has the small-
est (10.7%) average relative error to predict reservoir permeability, which reflects that reservoir permeability is 
jointly affected by porosity and shale content. Adding porosity data cannot improve the accuracy. Combination 
5 has the smallest (2.1%) average relative error to predict reservoir water saturation. From different average 
relative errors, the average relative error of the saturation regression model changes little from combination 2 

Table 2.  The logging parameters and oil test results of these 19 test sample sets.

NO
Top
(m)

Bottom
(m) (PERM/φ)1/2 Dr QT Rt �SP Rwa Rwa_SP

Oil test results

Oil
(t/d)

Water
(m3/d)

1 2502.7 2503.5 0.231 0.621 21.161 146.661 0.675 2.364 0.258 33.32 0

2 2516.4 2740 0.170 2.344 1.863 119.823 0.702 1.348 0.327 31.96 0

3 2565 2571.3 0.274 1.648 9.201 61.624 0.697 1.146 0.274 8.0 0

4 2356.1 2360.5 0.139 1.014 0.53 16.735 0.657 0.294 0.248 27.12 0

5 2531.6 2533 0.178 1.755 1.131 61.118 0.770 0.627 0.184 13.0 0

6 2590 2595.8 0.272 0.814 0.483 45.347 0.770 0.666 0.246 7.88 0

7 2397.6 2401.8 0.166 1.087 2.409 32.619 0.760 0.369 0.229 11.9 0

8 2469.4 2472.9 0.170 0.947 1.281 9.353 0.852 0.215 0.272 4.34 10.7

9 2813.5 2816.2 0.216 1.492 0.945 13.018 0.713 0.241 0.236 4.68 2.5

10 2652.8 2656.8 0.359 0.878 2.545 13.015 0.858 0.253 0.155 1.56 10.6

11 2607.4 2609.8 0.216 1.492 0.945 13.018 0.713 0.236 0.241 11.22 5.6

12 2614.2 2618 0.496 0.687 2.713 7.585 0.776 0.248 0.156 4.86 6.5

13 2544.3 2548.7 0.297 0.992 1.179 208.161 0.797 2.750 0.292 5.44 6.9

14 2602 2605.3 0.151 1.055 1.06 43.868 0.812 0.463 0.244 6.58 10.9

15 2696.4 2698.8 0.756 0.707 0.375 4.898 0.76 0.174 0.294 0 12.2

16 2595 2600.5 0.144 0.670 0.313 8.736 0.833 0.149 0.142 0 33.6

17 2665 2667.2 0.583 0.390 3.643 6.832 0.793 0.166 0.197 0 19.8

18 2819.1 2822 0.208 0.838 2.254 7.603 0.864 0.183 0.098 0 11.0

19 2527 2529.2 0.080 0.303 2.552 104.618 0.421 0.692 0.290 0 0

Figure 4.  (a) The mean square errors of testing sample sets with different combinations of penalty factors and 
kernel function parameters, (b) the correlation coefficient of testing sample sets with different combinations of 
penalty factors and kernel function parameters.
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to combination 5, basically floating up and down by 2%, which illustrates that the porosity data calculated by 
conventional methods can improve the accuracy, but it is not obvious, which also shows that the reservoir water 
saturation is mainly related to the electrical and comprehensive physical properties of the reservoir. Therefore, 
the optimal input training data set by the SVR regression permeability model is finally selected as combination 
4, and the optimal input training data set by the SVR regression water saturation model is combination 5.

Application effect analysis
SVM classification model. To evaluate the reliability of the SVM classification model for fluid recogni-
tion, conventional fluid recognition method (cross plot of porosity and resistivity log), back propagation neural 
network (BP) method and radial basis function neural network (RBF) method were introduced for comparison. 
The input parameters of the BP and RBF neural network prediction model are the same as those of the SVM 
classification model. The optimal number of neuron layers of BP model is two layers, and the number of neurons 
in each layer is 12 and 14. The training function adopts the gradient descent adaptive learning rate function 
(traingdx function). The Gaussian function is selected as the basis function of RBF model, and the optimal 
Gaussian width of the training model is 0.1. Table 4 shows the comparison of fluid identification results of 19 
test sample sets by using the SVM classification model, cross plot of porosity and resistivity log, BP model and 
RBF model. And the oil test results with only oil producing are resistivity low-contrast oil pays. It can be seen 
that the SVM classification model has the highest fluid identification accuracy (89.473%), followed by the RBF 
model (84.210%) and BP model (78.947%), and the conventional fluid recognition method has the lowest fluid 
identification accuracy (68.421%). This shows that using the SVM classification model to identify the resistivity 
low-contrast oil layer is effective and feasible. Moreover, compared with the commonly used artificial neural 
network algorithm (BP and RBF), the SVM classification model has certain advantages in solving the problem 
of small sample training, stronger generalization ability and better stability.

SVR model. Figure 6 is the log interpretation result of an oil production well (M165) with low resistivity, 
in which the testing interval is 2590–2596.5 m, and the average resistivity is about 12.6 Ω∙m. The 8th and 9th 

Table 3.  The combination of different input logging data sets.

NO Input logging data sets Prediction parameter

Combination 1 DEN, AC, CNL

Permeability

Combination 2 RT, DEN, AC, CNL

Combination 3 DEN, AC, CNL, ΔGR

Combination 4 DEN, AC, CNL, ΔSP

Combination 5 DEN, AC, CNL, ΔSP, POR

Combination 1 DEN, AC, CNL

Water Saturation

Combination 2 RT, DEN, AC, CNL

Combination 3 RT, DEN, AC, CNL, ΔGR

Combination 4 RT, DEN, AC, CNL, ΔSP

Combination 5 RT, DEN, AC, CNL, ΔSP, POR

Figure 5.  Characteristics of the average relative error by using different input data set combinations.
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Table 4.  Comparison of fluid identification results by different methods.

NO
Top
(m)

Bottom
(m)

Cross plot of Rt-Por BP model RBF model SVM model Oil test results

Fluid 
identification
Result Agreement

Fluid 
identification
Result Agreement

Fluid 
identification
Result Agreement

Fluid 
identification
Result Agreement

Oil
(t/d)

Water
(m3/d)

1 2502.7 2503.5 Oil layer ✓ Oil layer ✓ Oil layer ✓ Oil layer ✓ 33.32 0

2 2516.4 2740 Oil layer ✓ Oil layer ✓ Oil layer ✓ Oil layer ✓ 31.96 0

3 2565 2571.3 Oil layer ✓ Oil layer ✓ Oil layer ✓ Oil layer ✓ 8.0 0

4 2356.1 2360.5 Oil layer ✓ Oil–water layer  × Oil–water layer  × Oil layer ✓ 27.12 0

5 2531.6 2533 Oil layer ✓ Oil layer ✓ Oil layer ✓ Oil layer ✓ 13.0 0

6 2590 2595.8 Oil–water layer  × Oil–water layer  × Oil–water layer  × Oil layer ✓ 7.88 0

7 2397.6 2401.8 Oil–water layer  × Oil layer ✓ Oil layer ✓ Oil–water layer  × 11.9 0

8 2469.4 2472.9 Oil–water layer ✓ Oil layer  × Oil layer  × Oil–water layer ✓ 4.34 10.7

9 2813.5 2816.2 Oil layer  × Oil–water layer ✓ Oil–water layer ✓ Oil–water layer ✓ 4.68 2.5

10 2652.8 2656.8 Oil layer  × Oil–water layer ✓ Oil–water layer ✓ Oil–water layer ✓ 1.56 10.6

11 2607.4 2609.8 Oil–water layer ✓ Oil–water layer ✓ Oil–water layer ✓ Oil–water layer ✓ 11.22 5.6

12 2614.2 2618 Oil–water layer ✓ Oil–water layer ✓ Oil–water layer ✓ Oil–water layer ✓ 4.86 6.5

13 2544.3 2548.7 Oil layer  × Oil layer  × Oil–water layer ✓ Oil–water layer ✓ 5.44 6.9

14 2602 2605.3 Oil–water layer ✓ Oil–water layer ✓ Oil–water layer ✓ Oil–water layer ✓ 6.58 10.9

15 2696.4 2698.8 Water layer ✓ Water layer ✓ Water layer ✓ Water layer ✓ 0 12.2

16 2595 2600.5 Water layer ✓ Water layer ✓ Water layer ✓ Water layer ✓ 0 33.6

17 2665 2667.2 Water layer ✓ Water layer ✓ Water layer ✓ Water layer ✓ 0 19.8

18 2819.1 2822 Water layer ✓ Water layer ✓ Water layer ✓ Water layer ✓ 0 11.0

19 2527 2529.2 Oil layer × Dry layer ✓ Dry layer ✓ Oil layer  × 0 0

Accuracy 68.421%(13/19) 78.947%(15/19) 84.210% (16/19) 89.473% (17/19) /

Figure 6.  Comparison of reservoir permeability and saturation calculated by the SVR regression model and 
conventional method (Well M165).
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tracks in Fig. 6 are the calculation results of reservoir permeability and water saturation, respectively. The blue 
solid line in 8th track is the permeability calculated by the multiple logging curves regression of acoustic log and 
density log, and the yellow solid line is the permeability curve predicted by the SVR model. The blue solid line 
in 9th track is the saturation calculated by the Archie saturation model, and the parameters of Archie model are 
a = 1.0, b = 1.13, m = 1.99, n = 1.85 from petroelectric experiment of 16 cores. The yellow solid line in 9th track is 
the water saturation curve predicted by the SVR model. It can be seen that the reservoir parameters calculated 
by the SVR model are more consistent with the core analysis results.

In addition, the calculated permeability and water saturation by using the SVR model and the conventional 
model are compared with the core analysis data of 129 sealed cores from 12 wells (Fig. 7). The results show that 
the average relative error of permeability calculated by the multiple logging curves regression model is 0.385, and 
the permeability predicted by the SVR model is 0.259. The average relative error of water saturation calculated 
by the Archie model is 0.188, while the saturation predicted by the SVR model is 0.097. This further verifies that 
the constructed SVR prediction model is feasible and effective.

Discussion. Based on the support vector machine learning method, this paper constructs a classification 
model for resistivity low-contrast oil reservoir identification and SVR regression model for reservoir parameter 
prediction. Support vector machine learning method has the characteristics of low requirements for the number 
of training samples and not affected by local extremum and strong generalization ability, which makes it great 
advantages in solving complex practical problems such as nonlinear regression and classification compared with 
the classical neural network method. The application effect analysis also shows that the constructed model has 
a higher accuracy than the classical neural network prediction method and conventional logging interpretation 
model. However, it should be noted that during the process of model construction, the optimal input data set 
should be effectively selected. Therefore, in order to improve the application effect of SVM method in other simi-
lar areas, the logging response and reservoir characteristics of resistivity low-contrast oil pays should be analyzed 
to build an optimal input data sets.

Conclutions

(1) There is no obvious difference in physical and electrical properties between the resistivity low-contrast oil 
pay and water layer in the tight sandstone reservoir of the Chang 8 member in the Huanxian area, Ordos 
Basin. It is difficult to effectively identify and evaluate resistivity low-contrast oil pays by using conventional 
logging data, which seriously restricts the exploration progress and development benefits of oil resources 
in this area.

(2) This study analyzed the relationship between the logging response and pore fluid to optimize the input 
training dataset. The SVM learning method was used to construct the SVM classification model and SVR 
regression model for fluid identification and reservoir parameter prediction.

(3) The application results show that the SVM classification model has higher fluid identification accuracy, and 
the conventional fluid recognition method (cross plot of porosity and resistivity log) has the lowest fluid 
identification accuracy. The reservoir permeability and water saturation predicted by the SVR regression 
model are more consistent with the core analysis results, which proves that it is effective and feasible to 
interpret the resistivity low-contrast oil pays based on SVM method.

(a) (b)

Figure 7.  The comparison results of reservoir permeability (a) and water saturation (b) calculated by the SVR 
regression model and conventional method, respectively.
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