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Simple Summary: We provide a comprehensive overview of sequence variations in Dehong humped
cattle genomes with important implications for the future; moreover, we unravel the characteristics of
other native cattle in China. In the current study, we investigated a high level of genomic diversities
using whole-genome resequencing data in 18 Dehong humped cattle. It is speculated that Dehong
humped cattle were influenced by two ancestral segments (Chinese indicine and Indian indicine
cattle). Additionally, the selection signatures were detected in genomic regions that are possibly
related to economically important traits in Dehong humped cattle. These results will establish a
foundation for conservation and breeding programs in the future.

Abstract: Dehong humped cattle are precious livestock resources of Yunnan Province, China; they
have typical zebu traits. Here, we investigated their genetic characteristics using whole-genome
resequencing data of Dehong humped animals (n = 18). When comparing our data with the publicly-
available data, we found that Dehong humped cattle have high nucleotide diversity. Based on
clustering models in a population structure analysis, Dehong humped cattle had a mutual genome
ancestor with Chinese and Indian indicine cattle. While using the RFMix method, it is speculated that
the body sizes of Dehong humped cattle were influenced by the Chinese indicine segments and that
the immune systems of Dehong humped cattle were affected by additional ancestral segments (Indian
indicine). Furthermore, we explored the position selection regions harboring genes in the Dehong
humped cattle, which were related to heat tolerance (FILIP1L, ABHD6) and immune responses
(GZMM, PRKCZ, STOML2, LRBA, PIK3CD). Notably, missense mutations were detected in the
candidate gene ABHD6 (c.870C>A p.Asp290Glu; c.987C>A p.Ser329Arg). The missense mutations
may have implications for Dehong humped cattle adaptation to hot environments. This study
provides valuable genomic resource data at the genome-wide level and paves the way for future
genetic breeding work in the Dehong humped cattle.

Keywords: Whole-genome resequencing; Dehong humped cattle; ABHD6; selection signatures

1. Introduction

Domestic cattle can diverge into two subspecies: the humpless taurine (Bos taurus) and
the humped indicine (Bos indicus) [1]. They play important roles in societies and economies
around the world. India is the second largest producer of world cattle, with 194 million
heads of cattle, which mainly belong to indicine. The Indus Valley in India–Pakistan was
likely the center of B. indicus during the cattle domestication period [2]. Later, B. indicus
might have been dispersed into East Asia; one important infiltration method to get into
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China was through Yunnan Province [3]. Therefore, it was the reason for the development
of the genetic diversity of cattle breeds in Yunnan Province.

Dehong humped cattle, bearing typical zebu traits, are precious livestock resources of
Yunnan Province. This breed has distinctive characteristics (the hump and pendulous skin).
It is adapted to harsh conditions and hot climates. Moreover, 300 years ago, the “Gala” cattle
(type of zebu cattle) were introduced through the Myanmar tract and reached the Dehong
Autonomous Prefecture in the western Yunnan Province of China. Subsequently, Dehong
humped cattle were produced as a result of a cross between the zebu cattle and local yellow
cattle [4]. The Dehong Autonomous Prefecture, where Dehong humped cattle are located, is
surrounded by Myanmar from three sides and separated by two rivers that form a natural
geographical barrier. In recent years, most local breeds in China have been ‘crossed’ with
foreign cattle to improve the quality. Due to the special geographical environment, they are
basically free from the infections of foreign commercial cattle. Therefore, Dehong humped
cattle have relatively stable genetic characteristics.

Previous studies have used Illumina BovineHD BeadChip (777K) for the analysis of
Dehong humped cattle, indicating that Dehong humped cattle are pure Zebu cattle [4,5].
One study showed that Dehong humped cattle had the lowest heterozygosity in the Yunnan
Province, and another other study used statistical methods to detect genes associated with
heat tolerance and immunity. In fact, such methods also have limitations, as it is difficult to
detect important genetic information due to only known sequences.

Here, we generated the genome resequencing data of 18 Dehong humped cattle and
then compared them with reference cattle from different geographical regions in East Asia
(India–Pakistan, Korea, and North and South China) [6]. The current data are breakthroughs
in the genetic diversities and the candidate signatures of positive selections and in tracing
the ancestry components of the Dehong humped cattle.

2. Materials and Methods
2.1. Ethics Statement

The study was approved by the Institutional Animal Care and Use Committee of
Northwest A&F University (2011-31,101,684), following the recommendations by the Reg-
ulations for the Administration of Affairs Concerning Experimental Animals of China.
Specific consent procedures were not required for this study following the recommendation
of the Regulations for the Administration of Affairs Concerning Experimental Animals of
China. All operations and experimental procedures complied with the National Standard
of Laboratory Animal Guidelines for Ethical Review of Animal Welfare (GB/T 35892-2018)
and the Guide for the Care and Use of Laboratory Animals: Eighth Edition.

2.2. Sampling

A total of 18 Dehong humped cattle were sampled in China. These samples were
collected in Yunnan Province, China. Ear tissues were collected and preserved in 96%
ethanol for one day until DNA extraction.

2.3. Production of WGS Data

Whole genomes were re-sequenced via Illumina NovaSeq 6000 with 2 × 150 bp models
at Novogene Bioinformatics Institute, Beijing, China; 150 bp paired-end sequence data were
generated. Additionally, whole-genome resequencing (WGS) samples at 12× coverage,
representing 4 breeds, were provided by the NCBI sequence Read Archive, including
19 Chinese indicine cattle (Wannan—5, Guangfeng—4, Ji’an—4, Leiqiong—3, Jinjiang—3),
10 India–Pakistan cattle (Brahman—4, Tharparkar—1, Hariana—1, Nelore—1, Gir—2, and
unknown-1), 9—Yanbian, and 15—Hanwoo. In total, 79 whole genomes of cattle were used
for the subsequent analysis.
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2.4. Identification of Single Nucleotide Polymorphisms from WGS Data

At first, the clean reads were trimmed by using Trimmomatic (v0.38) [7]. After trim-
ming, the remaining high-quality reads were aligned against the Bos taurus reference
genome assembly ARS-UCD1.2 by using BWA-MEM (0.7.13-r1126) [8]. To obtain highly
confident variants, we employed Samtools [9], Picard tools (http://broadinstitute.github.
io/picard (accessed on 1 September 2020)), and the Genome Analysis Toolkit (GATK ver-
sion 3.6–0-g89b7209). Based on the latest reference assembly (ARS-UCD1.2), the SNPs were
functionally annotated using ANNOVAR [10].

2.5. Analysis of the Population Genetic Structure and Relatedness

The autosomal SNPs were further filtered for missing genotypes and pruning of
genotypes with a parameter (—indep-pairwise 50 5 0.2) using PLINK [11]. To calculate
linkage disequilibrium (LD) decay, PopLDdecay was used [12]. Additionally, we calculated
the inbreeding coefficient (—het) and the nucleotide diversity (π) using VCFtools [13],
respectively. The plot, as mentioned above, was depicted using R script (http://www.r-
project.org) (accessed on 1 September 2020).

To explore ancestry proportions, we added the genomic data for possible ancestral
components and examined the population structures with genetic clusters of K ranging
from 2 to 8 using the ADMIXTURE program version 1.3 [14]. We employed MEGA v7.0 to
construct an unrooted neighbor-joining tree based on the matrix of the pairwise genetic
distance [15]. After construction, it was beautified with iTOL v5 [16]. The smartPCA
of the EIGENSOFT v5.0 package was used to perform the principal component analysis
(PCA) [17].

2.6. Local Ancestry Inference

To infer the haplotype phase and impute the missing allele, we used Beagle v4.1 [18]
with default parameters. Local ancestry information was inferred using the software
package RFMix in the Dehong humped cattle [19]. We selected Chinese indicine and Indian
indicine as reference panels and performed a chi-square test to compare the number of
ancestry-specific haplotypes for all segments (p-value < 0.05). Based on the Bos taurus
reference genome, a custom Perl script was used to annotate the segments.

2.7. Detection of Selection Signatures

To identify the selective regions in Dehong humped cattle, the nucleotide diversity
(θπ) and composite likelihood ratio (CLR) were performed [20]. Briefly, θπ was run with
the parameters in VCFtools (50 kb windows with 20 kb steps). CLR was run (with the
parameters of 50 kb windows in SweepFinder2) [21].

The fixation index (FST) and cross-population extended haplotype homozygosity (XP-
EHH) have effective tools for detecting select elimination regions when strong selection
signals are obtained. We separately calculated the FST and XP-EHH among the two cattle
breeds using VCFtools (50 kb windows with 20 kb steps) and selscan v1.1 [22]. We chose
Hanwoo cattle and Dehong humped cattle due to the genetic separations. To obtain more
reliable results, we used four overlapped methods (p < 0.01). It is noteworthy that we
calculated Tajima’s D statistic to consolidate our results by using VCFtools.

2.8. Enrichment Analyses of Candidate Genes

To understand the functions and complex pathways of candidate genes, we used
KOBAS 3.0 (http://kobas.cbi.pku.edu.cn/) (accessed on 1 September 2020), including
the Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) in the
present study (species: cow, corrected p-value < 0.05).

http://broadinstitute.github.io/picard
http://broadinstitute.github.io/picard
http://www.r-project.org
http://www.r-project.org
http://kobas.cbi.pku.edu.cn/
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3. Results
3.1. Genome Resequencing, SNP Identification, and Diversity

Each sample was sequenced, which generated clean data ranging from 180,531,582 to
391,083,340 reads. After aligning with the B. taurus reference genome (ARS-UCD1.2), the popu-
lation reached ~99.7% genome coverage at a depth of 10.5X (Supplementary Table S1). The data
were jointly genotyped with 53 genomes from around the world (Supplementary Table S2).
In total, the number of common/shared SNPs was 5.3 million across the 5 cattle populations,
while the number of population-specific SNPs was 32.2 million in Dehong humped cattle
(Figure 1A). It is important to note that a higher number of unique SNPs was found in De-
hong humped cattle. That presented the richer genetic diversity of Dehong humped cattle.
The vast majority of SNPs were annotated in intergenic (60.8%) and intronic (37.6%) regions.
Furthermore, 0.7% of the SNPs were present in Exon, including 144,663 nonsynonymous
and 92,411 synonymous SNPs (Supplementary Table S3).
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Figure 1. Genetic diversity among 71 samples from 5 populations. (A) The numbers of shared SNPs
and private SNPs across the five populations by the Venn diagram. (B) The nucleotide diversity for
each group by box plots. (C) Decay of linkage disequilibrium on cattle autosomes estimated from
each breed. (D) Inbreeding coefficient for each individual.

The nucleotide diversity of Dehong humped cattle is between that of Chinese indicine
and Indian indicine (Figure 1B). The linkage disequilibrium (LD) decay in Chinese indicine
was the fastest, followed by Dehong humped cattle and Indian indicine (Figure 1C). The
two results above are the same. For the analysis of the genomic characteristics, the genome
variations (the inbreeding coefficient) did not show entirely consistent patterns (Figure 1D).
The inbreeding coefficient (—het) comparisons among the five populations showed that
the Dehong humped had an overall lower level than that of the commercial cattle.
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3.2. Population Structure and Demographics

We used 71 whole genome sequencing datasets from 5 breeds for an association study.
Both the neighbor-joining (NJ) tree (Figure 2A) and the first two principal components
(Figure 2B) derived from autosomal SNP data indicated that taurine and indicine formed
separate clusters. A more accurate result involved separating the Dehong humped cattle
from Chinese and Indian indicine, respectively. At the optimal number K = 2 with the
smallest cross-validation error, the two genetic clusters were observed: one for taurine
and the other for indicine cattle. Additionally, we noted the genetic ancestry of Dehong
humped cattle in Chinese indicine and Indian indicine at K = 3. Interestingly, the results
showed that the genetic influence was more pronounced in Indian indicine than in Chinese
indicine (Figure 2C).
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Figure 2. Population genetic analysis. (A) The neighbor-joining tree of cattle. (B) The principal
component analysis of cattle with PC1 (9.01%) vs. PC2 (3.34%). (C) Genetic structure of cattle using
ADMIXTURE with K = 2 and K = 3.

3.3. Local Ancestry Inference of Dehong Humped Cattle

In addition to the ADMIXTURE method, we used RFMix to infer local ancestry infor-
mation. Similar to the ADMIXTURE method, it was observed that Dehong humped cattle
have ancestral contributions from two origins. To separately identify segments with higher
proportions of these two ancestors than the genome-wide proportion, our data were analyzed
using the chi-square test for all segments. Ultimately, 444 Chinese indicine and 703 In-
dian indicine segments were retained (p < 0.05) (Figure 3A) (Supplementary Figure S1). A
total of 216 genes were found in the Chinese indicine segment of the Dehong humped
cattle. The functional enrichment analysis of these genes included the KEGG pathway
and GO terms (corrected p-value < 0.05) (Figure 3B). The enrichment analysis revealed
that the significant pathway was the actin cytoskeleton organization (GO:0030036, corrected
p-value = 0.0000247). The genes were selected (WASF2 [23], EHBP1 [24], SPECC1, PFN1 [25,26],
SSH2 [27], ARHGAP26, and DLC1 [28]), which were related to growth traits and the body
shape. Thus, we can speculate that the body sizes of Dehong humped cattle may be re-
lated to Chinese indicine. Other significant pathways were Hippo signaling (bta04390,
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corrected p-value = 0.025903318), receptor localization to synapse (GO:0097120, corrected
p-value = 0.0000543), acylglycerol lipase activity (GO:0047372, corrected p-value = 0.025903318),
and negative regulation of transcription by RNA polymerase II (GO:0000122, corrected
p-value = 0.000188112) (Supplementary Table S4). In addition, 296 genes were annotated
in the Indian indicine segment of Dehong humped cattle. As above (Figure 3C), the most
pathways were involved in the regulation of inflammatory response (GO:0050727, cor-
rected p-value = 0.0177797870524) and B cell homeostasis (GO:0001782, corrected
p-value = 0.0463632673798). Genes in inflammatory pathways are also associated with
the immune response (ALOX15 [29], ESR1 [30], TMEM173 [31], LYN [32], AKNA [33] and
RC3H1 [34], LYN [35], and NCKAP1L [36]). The results suggest that Indian indicine could
contribute to immunity in Dehong humped cattle. Other important pathways were veri-
fied, such as morphine addiction (bta05032, corrected p-value = 0.000305455728886), the
phospholipase D signaling pathway (bta04072, corrected p-value = 0.0463632673798), gluta-
mate receptor activity (GO:0008066, corrected p-value = 0.0393954758617), and regulation of
long-term neuronal synaptic plasticity (GO:0048169, corrected p-value = 0.0447037951668)
(Supplementary Table S5).
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3.4. Patterns of Selection

By using two different methods for the signature of selection, we found 539 (com-
posite likelihood ratio, CLR) (Supplementary Table S6) and 2297 (nucleotide diversity, θπ)
(Supplementary Table S7) candidate genes in Dehong humped cattle (Figure 4A). Among
these, 428 genes were overlapped, which were considered to be candidate genes and en-
riched using GO annotation and KEGG pathway terms. The results represented significant
enrichment of 2 KEGG pathway terms and 15 GO terms (Supplementary Table S8).

To further understand the underlying genetic mechanisms in Dehong humped cattle,
we implemented two methods (FST and XP-EHH) to detect the positive selection charac-
teristics by comparing the differences in ecological adaptability between Dehong humped
and Hanwoo cattle (Figure 4A) (Supplementary Tables S9 and S10). It is worth noting that
82 genes were detected among the four methods mentioned above, indicating that these
genes were strongly selected in Dehong humped cattle (Supplementary Tables S9–S11).
The annotations of candidate genes revealed the functions that may be associated with heat
tolerance (FILIP1L and ABHD6) [37,38]. Interestingly, ABHD6 enables acylglycerol lipase
activity, which is a negative modulator of adaptive thermogenesis [38]. Moreover, Tajima’s
D and haplotype patterns were used to further validate the selection of the ABHD6 gene in
Dehong humped cattle (Figure 4B,C). Two missense mutations in ABHD6 showed distinct
allelic patterns in Dehong humped cattle (c.870C > A p.Asp290Glu; c.987C > A p.Ser329Arg).
In addition, we obtained genes (GZMM, PRKCZ, STOML2, LRBA, and PIK3CD) related to
the immune response [39–43].
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4. Discussion

Population genetic diversity is an important basis for safeguarding the evolution of
species [44,45]. It is generally accepted that the higher the genetic diversity of the species,
the more adaptable its offspring will be (so expansion is more likely to occur). In addition,
the assessment of genetic diversity and the inbreeding coefficient of the population is
essential for the use and conservation of the breed’s genetic resources. Nucleotide diversity
is the most important factor affecting genetic diversity. In this study, the nucleotide diversity
was highest in Chinese indicine, which may be explained by population expansion or
introgression [6]. The nucleotide diversity of Dehong humped cattle is second only to
that of Chinese indicine, with a wealth of genetic information obtained from two genetic
resources (Chinese and Indian indicine). The monotonous environment and high degree
of artificial breeding may be the reasons for the lowest nucleotide diversity of Yanbian
and Hanwoo cattle [46,47]. This is from the higher inbreeding coefficient and faster LD
decay. It also showed the low level of selection and development potential concerning
Dehong humped cattle. Effective measures to conserve genetic diversity are conducive to
the development of the genetic resources of Dehong humped cattle.

Studies on population structures and phylogenetic relationships are of great impor-
tance for understanding historical demographic patterns and tracing ancestral information.
Dehong humped cattle consist mainly of Chinese and Indian indicine, which are inextrica-
bly linked to the human and geographical environments of their habitats. The home tract
of Dehong humped cattle at the border between China and Myanmar (and separated from
the rest of China by the Salween River to the east) possesses a unique pedigree composition
among Chinese native cattle. Thus, the pedigree compositions of Dehong humped cattle
provided the context for exploiting the economic effects of the breed.

To reveal the ancestral proportions of Dehong humped cattle in the local region, the
application of RFMix was beneficial to infer local ancestry information. Based on the Kobas
3.0 annotation, the influences of ancestral segments were explored in Dehong humped
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cattle and we found that Dehong humped cattle received ancestral contributions from
Indian indicine and Chinese indicine. Of these, the body sizes of the Dehong humped cattle
are influenced by the Chinese indicine segments. The excessive segments inherited from
Chinese indicine contained WASF2 and PFN1, two genes belonging to GO terms—actin
cytoskeleton organization. The WASF2 gene was a downstream effector molecule that
involved signal transductions from tyrosine kinase receptors and small GTPases to the actin
cytoskeleton. promoting actin filament formation [48,49]. The gene can respond to changes
in the external environment by reregulating its expression or distribution to further influ-
ence the cytoskeleton arrangement [50]. PFN1 plays an important role in actin dynamics by
regulating actin polymerization in response to extracellular signals. Previous studies have
shown that PFN1 could contribute to essential roles in postnatal skeletal homeostasis [51].
Among excessive segments inherited from Indian indicine, the following genes were found
to be annotated: LYN and NCKAP1L. LYN plays an important role in the regulation of
innate and adaptive immune responses, hematopoiesis, responses to growth factors and cy-
tokines, integrin signaling, as well as responses to DNA damage and genotoxic agents [32].
NCKAP1L controls lymphocyte development, activation, proliferation and homeostasis,
erythrocyte membrane stability, as well as phagocytosis and migration by neutrophils and
macrophages [52,53]. Therefore, the additional ancestral segments (Indian indicine) acted
on the immune system of Dehong humped cattle. However, this is just a conjecture, and
more theoretical and experimental support is required for further elaboration.

Dehong humped cattle, due to the humid and hot living conditions of their home tracts,
have remarkable heat-tolerant properties. The gene ABHD6, selected by four methods,
has been associated with heat tolerance in Dehong humped cattle. ABHD6 is located on
chromosome 22 of cattle at about 0.048 Mbp. This region showed extreme differentiation
and distinct haplotype patterns in two populations (Dehong humped and Hanwoo cattle).
Tajima’s D analysis exhibited a significantly lower value in Dehong humped cattle. The
results verified that the ABHD6 gene, which is associated with heat tolerance, showed
strong positive selection in Dehong humped cattle. Additionally, missense mutations in
ABHD6 may have crucial effects on heat resistance in Dehong humped cattle. In addition
to genes related to heat tolerance, we obtained genes related to immune response, such as
GZMM, PRKCZ, STOML2, LRBA, and PIK3CD. LRBA contributes to the secretion of the
immune effector molecules. The immune genes in Dehong humped cattle may make them
more able to cope with pathogenic challenges in the local environment.

5. Conclusions

In this study, WGS data were used to investigate the population structure of Dehong
humped cattle, leading to the first in-depth research on gene diversity, phylogenetic rela-
tionships, ancestry components, and genomic regions under selection. The identified genes
will be helpful to better understand the features of Dehong humped cattle and further
unravel the characteristics of other native cattle in China. The revelation of the genetic
diversity of Dehong humped cattle will establish a sound foundation for conservation and
breeding programs in the future.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/biology11091331/s1, Figure S1: Distribution of the local segments
whose proportions of Chinese indicine and Indian indicine were excessive compared to the average
level of the whole genome, respectively. Table S1: Summary of sequencing statistics in Dehong humped
cattle. Table S2: Summary of additional cattle sample information. Table S3: Functional annotation of
the identified single-nucleotide polymorphisms (SNPs) using ANNOVAR. Table S4: KEGG PATHWAY
and Gene Ontology of 216 genes in the Chinese indicine segment of Dehong humped cattle. Table S5:
KEGG PATHWAY and Gene Ontology of 296 genes in the Indian indicine segment of Dehong humped
cattle. Table S6: A summary of genes from CLR in Dehong humped cattle. Table S7: A summary of
genes from θπ in Dehong humped cattle. Table S8: KEGG PATHWAY and Gene Ontology of Dehong
humped cattle candidate genes overlapped by CLR and θπ methods. Table S9: A summary of genes
from Fst in Dehong humped cattle (compared to Hanwoo cattle). Table S10: A summary of genes from
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XP-EHH in Dehong humped cattle (compared to Hanwoo cattle). Table S11: A summary of genes
from four methods (Fst, XP-EHH, CLR, θπ) in Dehong humped cattle. Table S12: Cross-validation
(CV) errors for ADMIXTURE ancestry models with K ranging from 2 to 7.
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