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Abstract

The default mode network (DMN) is believed to subserve the baseline mental activity

in humans. Its higher energy consumption compared to other brain networks and its

intimate coupling with conscious awareness are both pointing to an unknown over-

arching function. Many research streams speak in favor of an evolutionarily adaptive

role in envisioning experience to anticipate the future. In the present work, we pro-

pose a process model that tries to explain how the DMN may implement continuous

evaluation and prediction of the environment to guide behavior. The main purpose of

DMN activity, we argue, may be described by Markov decision processes that opti-

mize action policies via value estimates through vicarious trial and error. Our formal

perspective on DMN function naturally accommodates as special cases previous

interpretations based on (a) predictive coding, (b) semantic associations, and (c) a sen-

tinel role. Moreover, this process model for the neural optimization of complex

behavior in the DMN offers parsimonious explanations for recent experimental find-

ings in animals and humans.
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1 | INTRODUCTION

In the absence of external stimulation, the human brain is not at rest.

At the turn to the 21st century, brain-imaging may have been the first

technique to allow for the discovery of a unique brain network that

would subserve baseline mental activities (Buckner, Andrews-Hanna, &

Schacter, 2008; Bzdok & Eickhoff, 2015; Raichle et al., 2001). The

“default mode network” (DMN) continues to metabolize large

Received: 5 February 2020 Revised: 22 March 2020 Accepted: 12 April 2020

DOI: 10.1002/hbm.25019

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium,

provided the original work is properly cited.

© 2020 The Authors. Human Brain Mapping published by Wiley Periodicals, Inc.

3318 Hum Brain Mapp. 2020;41:3318–3341.wileyonlinelibrary.com/journal/hbm

https://orcid.org/0000-0002-2253-1844
mailto:Danilo.Bzdok@mcgill.ca
http://creativecommons.org/licenses/by/4.0/
http://wileyonlinelibrary.com/journal/hbm


quantities of oxygen and glucose energy to maintain neuronal compu-

tation during free-ranging thought (Fiser, Chiu, & Weliky, 2004;

Kenet, Bibitchkov, Tsodyks, Grinvald, & Arieli, 2003). The baseline

energy demand is only weakly modulated at the onset of defined psy-

chological tasks (Gusnard & Raichle, 2001). At its opposite, during

sleep, the decoupling of brain structures discarded the idea of the

DMN being only a passive network resonance and rather supported

an important role in sustaining conscious awareness (Horovitz

et al., 2009).

This dark matter of brain physiology (Raichle, 2006) begs the ques-

tion of the biological purpose underlying neural activity in the DMN.

Its time dynamics, however, still remain elusive at the electrophysio-

logical level (Baker et al., 2014; Brookes et al., 2011; De Pasquale

et al., 2010). What has early been described as the “stream of con-

sciousness” in psychology (James, 1890) found a potential neurobio-

logical manifestation in the DMN (Raichle et al., 2001; Shulman

et al., 1997). Axonal tracing injection in such parts of the association

cortex in monkeys were shown to resemble connectivity links

between nodes of the human DMN (see here for details on anatomi-

cal connections: [Buckner et al., 2008]). Additionally, myelination pat-

terns of axon connections were found to complete particularly late in

these cortical areas (Flechsig, 1920), often believed to reflect sophisti-

cation of subserved neural processes (Sowell et al., 2003;

Yakovlev, 1967). We propose that this set of some of the most

advanced regions in the association cortex (Margulies et al., 2016;

Mesulam, 1998) are responsible for higher-order control of human

behavior (Bzdok et al., 2015). Our perspective therefore follows the

notion of “a hierarchy of brain systems with the DMN at the top and

the salience and dorsal attention systems at intermediate levels,

above thalamic and unimodal sensory cortex” (Carhart-Harris &

Friston, 2010).

2 | TOWARD A FORMAL ACCOUNT OF
DEFAULT MODE FUNCTION: HIGHER-
ORDER CONTROL OF THE ORGANISM

The network nodes that compose the human DMN are hubs of high

baseline neural activity. These regions typically decrease when

engaged in well-defined psychological experiments (Gusnard &

Raichle, 2001). The standard mode of neural information maintenance

and manipulation has been argued to mediate evolutionarily con-

served functions (Binder et al., 1999; Brown, 1914; Buzsáki, 2006).

Today, many psychologists and neuroscientists believe that the DMN

implements some form of probabilistic estimation of past, hypotheti-

cal, and future events (Binder, Desai, Graves, & Conant, 2009; Buck-

ner et al., 2008; Fox et al., 2005; Hassabis, Kumaran, Vann, &

Maguire, 2007; Schacter, Addis, & Buckner, 2007; Spreng, Mar, &

Kim, 2009), even if spatially overlapping neural activity responses do

not imply identical neuronal computations (Kernbach et al., 2018;

Wang et al., 2018; Woo et al., 2014). This brain network might have

emerged to continuously predict the environment using mental imag-

ery as an evolutionary advantage (Suddendorf & Corballis, 2007).

However, information processing in the DMN has also repeatedly

been shown to directly impact human behavior. Goal-directed task

performance improved with decreased activity in default mode

regions (Weissman, Roberts, Visscher, & Woldorff, 2006) and

increased DMN activity was linked to more task-independent, yet

sometimes useful thoughts (Mason et al., 2007; Seli, Risko, Smilek, &

Schacter, 2016). Gaining insight into DMN function is particularly

challenging because this brain network appears to simultaneously

influence perception-action cycles in the present and to support men-

tal travel across time, space, and content domains (Boyer, 2008).

We aim at proposing an alternative to reasoning about the DMN

based on longstanding cognitive theory. The present work adopts the

control-theoretical perspective of a human agent faced with the

choice of the next actions guided by outcomes to optimize behavioral

performance. These outcomes can be really experienced, hypotheti-

cally imagined, or expected in the future. Formally, we propose rein-

forcement learning (RL) as a particularly attractive framework for

describing, containing, and quantifying the unknown function underly-

ing DMN activity. An intelligent agent improves the interaction with

the environment by continuously updating its computation of value

estimates and action predispositions through integration of feedback

outcomes. That is, “[agents], with their actions, modify the environ-

ment and in doing so partially determine their next stimuli, in particu-

lar stimuli that are necessary for triggering the next action”

(Pezzulo, 2011). Agents with other behavioral policies therefore sam-

ple different distributions of action-perception trajectories

(Ghavamzadeh, Mannor, Pineau, Tamar, et al., 2015). Henceforth, con-

trol refers to the influence that an agent exerts by interacting with the

environment to reach preferred states.

At the psychological level, the more the ongoing executed task is

unknown and unpracticed, the less stimulus-independent thoughts

occur (Christoff, Irving, Fox, Spreng, & Andrews-Hanna, 2016; Filler &

Giambra, 1973; Teasdale et al., 1995). Conversely, it has been empiri-

cally shown that, the more the world is easy to foresee, the more

human mental activity becomes detached from the actual sensory

environment (Antrobus, Singer, & Greenberg, 1966; Mason

et al., 2007; Pope & Singer, 1978; Weissman et al., 2006). Without

requiring explicit awareness, these “offline” processes may contribute

to optimizing control of the organism in general. We formalize a policy

matrix to capture the space of possible actions that the agent can per-

form on the environment given the current state. A value function

maps environmental objects and events (i.e., states) to expected

reward outcomes. Switching between states reduces to a sequential

processing model. Informed by outcomes of performed actions, neural

computation reflected in DMN dynamics could be constantly shaped

by prediction error through feedback loops. The present computa-

tional account of DMN function will be described in the mathematical

framework of Markov decision processes (MDP). MDPs specifically

formalize decision making in stochastic contexts with reward feed-

back, which becomes available intermittently.

Such a RL perspective on DMN activity can naturally embed

human behavior into the tension between exploitative action with

immediate gains and exploratory action with longer-term gratification.
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We argue that DMN implication in many of the most advanced human

capacities can be recast as prediction error minimization informed by

internally generated probabilistic simulations—“covert forms of action

and perception” (Pezzulo, 2011)—, allowing maximization of action

outcomes across different time scales. Such a purposeful optimization

objective may be solved by a stochastic approximation based on a

brain implementation of Monte Carlo sampling. Even necessarily

imperfect memory recall, random day-time mind-wandering, and

seemingly arbitrary dreams during sleep may provide randomly sam-

pled blocks of pseudo-experience that are instrumental to iteratively

optimize the behavioral agenda of the organism.

Evidence from computational modeling of human behavior

(Kording & Wolpert, 2004) and cell recording experiments in ferrets

(Fiser et al., 2004) suggest that much of brain activity is dedicated to

“the development and maintenance of [a] probabilistic model of antici-

pated events” (Raichle & Gusnard, 2005). The present article proposes

a process model that satisfies this previously proposed contention. We

also contribute to the discussion of DMN function by providing tenta-

tive evidence that variation of the gray-matter volume in DMN regions

is linked to the reward circuitry (Figure 2), thus linking two literatures

that currently have scarce cross-references. Finally, we derive explicit

hypotheses that could be tested in targeted neuroscience experiments

in the future, and we detail how our process model relates to previous

cognitive and theoretical accounts of DMN function.

Please appreciate the importance of differentiating which levels

of observation are at play in the present account. A process model is

not solely intended to capture behavior of the agent, such as cognitive

accounts of DMN function, but also the neurocomputational specifics

of the agent. Henceforth, we will use “inference” when referring to

aspects of the statistical model, “prediction” when referring to the

neurobiological implementation, and words like “forecast” or “forsee”

when referring to the cognitive behavior of the agent. It is moreover

important to note that our account does not claim that neural activity

in the DMN in particular or the brain in general are identical with RL

algorithms. Rather, we advocate feedback-based learning strategies as

an attractive alternative perspective to describe, quantify, and inter-

pret research findings related to the DMN.

3 | KNOWN NEUROBIOLOGICAL
PROPERTIES OF THE DEFAULT MODE
NETWORK

We begin by a neurobiological deconstruction of the DMN based on

integrating experimental findings in the neuroscience literature from dif-

ferent species. This walkthrough across main functional zones of the

DMN (i.e., de-emphasizing their precise anatomical properties) will out-

line the individual functional profiles with the goal of paving the way for

their algorithmic interpretation in our formal account (Section 3). We

here focus on major functional zones of the DMN. Please see elsewhere

for excellent surveys on their anatomical boundaries and which brain

parts could or should be counted as DMN (Binder et al., 2009; Buck-

ner & DiNicola, 2019; Kernbach et al., 2018; Seghier, 2013).

3.1 | The posteromedial cortex: Global monitoring
and information integration

The midline structures of the human DMN, including the post-

eromedial cortex (PMC) and the medial prefrontal cortex (mPFC), are

probably responsible for highest turn-overs of energy consumption

(Gusnard & Raichle, 2001; Raichle et al., 2001). These metabolic char-

acteristics go hand-in-hand with brain-imaging findings that suggested

the PMC and mPFC to potentially represent the functional core of the

DMN (Andrews-Hanna, Reidler, Sepulcre, Poulin, & Buckner, 2010;

Hagmann et al., 2008).

Normal and disturbed metabolic fluctuations in the human PMC

have been closely related to changes of conscious awareness

(Cavanna & Trimble, 2006; Leech & Sharp, 2014). Indeed, the PMC

matures relatively late (i.e., myelination) during postnatal development

in monkeys (Goldman-Rakic, 1987), which is generally considered to

be a sign of evolutionary sophistication. This DMN region has long

been speculated to reflect constant computation of environmental

statistics and its internal representation as an inner “mind's eye”

(Cavanna & Trimble, 2006; Leech & Sharp, 2014). For instance,

Bálint's syndrome is a neurological disorder of conscious awareness

that can result from tissue damage in the posterior medial cortex

(Bálint et al., 1909; Buckner et al., 2008). Such neurological patients

are plagued by an inability to bind various individual features of the

visual environment into an integrated whole (i.e., simultanagnosia) as

well as an inability to direct action toward currently unattended envi-

ronmental objects (i.e., optic ataxia). Scanning complex scenes is

impaired in that statistic or moving objects in the environment may be

invisible or disappear in the subject perception of the patient

(Blumenfeld, 2002; Mesulam, 2000). This dysfunction can be viewed

as a high-level impairment in gathering information about alternative

objects (i.e., exploration) as well as using these environmental oppor-

tunities toward a behavioral goal (i.e., exploitation). Congruently, the

human PMC was coupled in two different functional connectivity ana-

lyses (Bzdok et al., 2015) with the amygdala, involved in significance

evaluation, and the nucleus accumbens (NAc), involved in reward eval-

uation. Specifically, among all parts of the PMC, the ventral posterior

cingulate cortex was most connected to the laterobasal nuclei group

of the amygdala (Bzdok et al., 2015). This amygdalar subregion has

been proposed to continuously scan environmental input for biologi-

cal relevance assessment (Baxter & Murray, 2002; Bzdok, Laird, Zilles,

Fox, & Eickhoff, 2013; Ghods-Sharifi, Onge, & Floresco, 2009).

The putative role of the PMC in continuous abstract integration

of environmental relevance and ensuing top-level guidance of action

on the environment is supported by many neuroscience experiments

(Acikalin, Gorgolewski, & Poldrack, 2017; Heilbronner & Platt, 2013).

Electrophysiological recordings in animals implicated PMC neurons in

strategic decision making (Pearson, Hayden, Raghavachari, &

Platt, 2009), risk assessment (McCoy & Platt, 2005), outcome-

dependent behavioral modulation (Hayden, Smith, & Platt, 2009), as

well as approach-avoidance behavior (Vann, Aggleton, &

Maguire, 2009). Neuron spiking activity in the PMC allowed dis-

tinguishing whether a monkey would pursue an exploratory or
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exploitative behavioral strategy during food foraging (Pearson

et al., 2009). Monkeys were shown to correctly assess the amount of

riskiness and ambiguity implicated by behavioral decisions, similar to

humans (Hayden, Heilbronner, & Platt, 2010). Further, single-cell

recordings in the monkey PMC demonstrated this brain region's sensi-

tivity to subjective target utility (McCoy & Platt, 2005) and integration

across individual decision-making instances (Pearson et al., 2009). This

DMN region encoded the preference for or aversion to options with

uncertain reward outcomes and its neural spiking activity was more

associated with subjectively perceived relevance of a chosen object

than by its actual value, based on an “internal currency of value”

(McCoy & Platt, 2005). In fact, direct stimulation of PMC neurons in

monkeys promoted exploratory actions, which would otherwise be

shunned (Hayden, Nair, McCoy, & Platt, 2008). Graded changes in fir-

ing rates of PMC neurons indicated changes in upcoming choice trials,

while their neural patterns were distinct from neuronal spike firings

that indicated choosing either option. Similarly in humans, the DMN

has been shown to gather and integrate information over different

parts of auditory narratives in an fMRI study (Simony et al., 2016).

Moreover, the retrosplenial portion of the PMC could support

representation of action possibilities and evaluation of reward out-

comes by integrating information from memory recall and different

perspective frames. Regarding memory recall, retrosplenial damage

has been consistently associated with anterograde and retrograde

memory impairments of various kinds of sensory information in ani-

mals and humans (Vann et al., 2009). Regarding perspective frames,

the retrosplenial subregion of the PMC has been proposed to mediate

between the organism's egocentric (i.e., focused on external sensory

environment) and allocentric (i.e., focused on internal world knowl-

edge) viewpoints in animals and humans (Burgess, 2008;

Epstein, 2008; Valiquette & McNamara, 2007).

Consequently, the PMC may contribute to overall DMN function

by monitoring the subjective outcomes (Acikalin et al., 2017) of possi-

ble actions and integrating that information with memory and per-

spective frames into short- and longer-term behavioral agendas

(Heilbronner & Platt, 2013). Rather than merely detecting novelty

(Cooper & Knutson, 2008; Litt, Plassmann, Shiv, & Rangel, 2011), the

PMC of the DMN probably represents subjective value for enriching

the statistical assessment of the environment to map and predict del-

ayed reward opportunities in the future. Viewed from a RL perspec-

tive, the PMC may continuously adapt the organism to changes in

both the external environment and its internal representation to

enable strategic behavior.

3.2 | The prefrontal cortex: Action consideration
and stimulus-value association

Analogous to the PMC, the dorsomedial PFC (dmPFC, related to BA9)

of the DMN is believed to subserve multi-sensory processes across

time, space, and types of information processing to exert top-level con-

trol on behavior. Comparing to the PMC, however, dmPFC function

may be closer to a “mental sketchpad” (Goldman-Rakic, Cools, &

Srivastava, 1996). This DMN part potentially subserves the de-novo

construction and manipulation of meaning representations instructed

by stored semantics and memories (Bzdok et al., 2013; Eickhoff et al.,

2016). The dmPFC may subserve representation and assessment of

one's own and other individuals' action considerations—a necessary com-

ponent of a full-blown RL agent. Generally, neurological patients with tis-

sue damage in the prefrontal cortex are known to struggle with

adaptation to new stimuli and events (Stuss & Benson, 1986). Specifi-

cally, neural activity in the human dmPFC reflected expectations about

other peoples' actions and outcomes of these predictions. Neural activity

in the dmPFC indeed explained the performance decline of inferring

other peoples' thoughts in aging humans (Moran, Jolly, & Mitchell, 2012).

Certain dmPFC neurons in macaque monkeys exhibited a preference for

processing others', rather than own, action with fine-grained adjustment

of contextual aspects (Yoshida, Seymour, Friston, & Dolan, 2010).

Comparing to the dmPFC, the ventromedial PFC (vmPFC, related

to BA10) is probably more specifically devoted to subjective value

evaluation and risk estimation of relevant environmental stimuli

(Figures 1 and 2). The ventromedial prefrontal DMN may subserve

adaptive behavior by bottom-up-driven processing of “what matters

now,” drawing on sophisticated value representations (Kringelbach &

Rolls, 2004; O'Doherty et al., 2015). Quantitative lesion findings

across 344 human individuals confirmed a substantial impairment in

value-based action choice (Gläscher et al., 2012). Indeed, this DMN

region is preferentially connected with reward-related and limbic

regions. The vmPFC is well known to have direct connections with

the NAc in axonal tracing studies in monkeys (Haber, Kunishio,

Mizobuchi, & Lynd-Balta, 1995). Congruently, the gray-matter volume

of the vmPFC and NAc correlated with indices of value-guided behav-

ior and reward attitudes in humans (Lebreton, Jorge, Michel, Thirion, &

Pessiglione, 2009). NAc activity is further thought to reflect reward

prediction signals from dopaminergic neurotransmitter pathways

(Schultz, 1998) that not only channel action toward basic survival

needs, but also enable more abstract reward processings, and thus

perhaps RL, in humans (O'Doherty et al., 2015).

Consistently, diffusion MRI tractography in humans and monkeys

(Croxson et al., 2005) quantified the NAc to be more connected to

the vmPFC than dmPFC in both species. Two different functional con-

nectivity analyses in humans also revealed strong vmPFC connections

with the NAc, hippocampus (HC), and PMC (Bzdok et al., 2015). In line

with these connectivity findings in animals and humans, the vmPFC is

often proposed to represent triggered emotional and motivational

states (Damasio, Everitt, & Bishop, 1996). Such real or imagined

arousal states could be mapped in the vmPFC as a bioregulatory dis-

position influencing cognition and decision making. In neuroeconomic

studies of human decision making, the vmPFC consistently reflects an

individual's subjective value predictions (Behrens, Hunt, Woolrich, &

Rushworth, 2008). This finding may also explain why performance

within and across participants was reported to relate to state

encoding in the vmPFC (Schuck, Cai, Wilson, & Niv, 2016). Such a

“cognitive map” of the action space—an integral part of a RL agent—

was argued to encode the current task state even when states are

unobservable from the sensory environment.
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3.3 | The hippocampus: Memory, space, and
experience replay

The DMN midline has close functional links with the HC (henceforth

implying to include also parahippocampal regions) in the medial tem-

poral lobe (Shannon et al., 2013; Vincent et al., 2006)—a region long

known to be involved in memory operations and spatial navigation in

animals and humans. While the HC is traditionally believed to allow

recalling past experience, there is now increasing evidence for an

important role in constructing mental models in general (Boyer, 2008;

Gelbard-Sagiv, Mukamel, Harel, Malach, & Fried, 2008; Javadi

et al., 2017; Schacter et al., 2007; Zeidman & Maguire, 2016). Its

recursive anatomical architecture may be specifically designed to

allow reconstructing entire sequences of experience from memory

fragments. Indeed, hippocampal damage was not only associated with

an impairment in re-experiencing the past (i.e., amnesia), but also fore-

casting of one's own future and imagination of experiences more

broadly (Hassabis et al., 2007).

Mental scenes created by neurological patients with HC lesion

exposed a lack of spatial integrity, richness in detail, and overall

coherence (c.f, Hassabis et al., 2007). Single-cell recordings in the

animal HC revealed constantly active neuronal populations whose

firing coincided with specific locations in space during environmental

navigation. Indeed, when an animal is choosing between alternative

paths, the corresponding neuronal populations in the HC spike one

after another (Johnson & Redish, 2007). Such neuronal patterns in

the HC appear to directly indicate upcoming behavior, such as in

planning navigational trajectories (Pfeiffer & Foster, 2013) and mem-

ory consolidation of choice relevance (De Lavilléon, Lacroix, Rondi-

Reig, & Benchenane, 2015). Congruently, London taxi drivers,

humans with high performance in forecasting spatial navigation,

were shown to exhibit increased gray-matter volume in the HC

(Maguire et al., 2000).

There is hence increasing evidence that HC function extends

beyond simple forms of encoding and reconstruction of memory and

space information. Based on spike recordings of hippocampal neuro-

nal populations, complex spiking patterns can be followed across

extended periods including their modification of input-free self-

generated patterns after environmental events (Buzsáki, 2004). Spe-

cific spiking sequences, which were elicited by experimental task

design, have been shown to be re-enacted spontaneously during quiet

wakefulness and sleep (Hartley, Lever, Burgess, & O'Keefe, 2014;

O'Neill, Pleydell-Bouverie, Dupret, & Csicsvari, 2010). Moreover, neu-

ronal spike sequences measured in hippocampal place cells of rats fea-

tured reoccurrence directly after experimental trials as well as directly

before (prediction of) upcoming experimental trials (Diba &

Buzsáki, 2007). Similar spiking patterns in hippocampal neurons during

rest and sleep have been proposed to be critical in communicating

local information to the neocortex for long-term storage, potentially

including DMN regions. Moreover, in mice, invasively triggering spa-

tial experience recall in the HC during sleep has been demonstrated

to subsequently alter action choice during wakefulness (De Lavilléon

et al., 2015). These HC-subserved mechanisms conceivably contribute

to advanced cognitive processes that require re-experiencing or newly

F IGURE 1 Default mode network: key functions. Neurobiological overview of the DMN with its major constituent parts and the associated
functional roles relevant in our functional interpretation. The blue horizontal dashed line indicates the cytoarchitectonic border between the more
dorsal BA9 and the more ventral BA10 (Brodmann, 1909). Axonal tracing in monkeys and diffusion tractography in humans suggested that the
NAc of the reward circuitry has monosynaptic fiber connections to the vmPFC (Croxson et al., 2005; Haber, Kunishio, Mizobuchi, &
Lynd-Balta, 1995b). Evaluation of propagated value information and triggered affective states encoded in the vmPFC may then feed into the
functionally connected partner nodes of the DMN, such as the dmPFC and PMC (Andrews-Hanna et al., 2010; Bzdok, Langner, Schilbach,
Engemann, et al., 2013)
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constructed mental scenarios, such as in recalling autobiographical

memory episodes (Hassabis et al., 2007). Within a RL framework, the

HC could thus orchestrate re-experience of environmental aspects for

consolidations based on re-enactment and for integration into rich

mental scene construction (Bird, Capponi, King, Doeller, &

Burgess, 2010; Deuker, Bellmund, Schröder, & Doeller, 2016). In this

F IGURE 2 Predictive structural association between reward system and DMN nodes. Reward tasks (O'Doherty, Lee, & McNamee, 2015) and
neural processing in the DMN (Buckner et al., 2008), often considered “task-negative,” have been studied so far in largely separate niches of the
neuroscience literature. A currently underappreciated link is however suggested here based on 9,932 human subjects from the UK Biobank, inter-
individual differences in left NAc volume (R2 = 0.11 ± 0.02 [standard deviation across cross-validation folds]) and right NAc volume (R2 = 0.14
± 0.02) could be predicted from (z-scored) volume in the DMN regions. These out-of-sample generalizations reflect the expected performance in
yet-to-be observed individuals (Bzdok & Ioannidis, 2019) obtained from linear support vector regression applied to region volume measures in the

DMN in a 10-fold cross-validation procedure (Hastie, Tibshirani, & Friedman, 2011). Consistent for the left and right reward system, NAc volume
in a given subject is positively coupled with the vmPFC and HC. The congruence of our structural association results for both NAc targets speaks
to the robustness of our pattern-prediction findings. The opposite relation of the left and right TPJ to the NAc appears to reflect a repeatedly
recognized hemispheric asymmetry with respect to functional implications (Seghier, 2013), impairments in neurological patients (Corbetta,
Kincade, Ollinger, McAvoy, & Shulman, 2000), different types of connectivity (Caspers et al., 2011; Uddin et al., 2010) as well as micro- and
macroanatomy (Caspers et al., 2006, 2008). The colors are indicative of the (red = positive, blue = negative) and relative importance (the lighter
the higher) of the regression coefficients. The code for reproduction and visualization: www.github.com/banilo/darkcontrol_2018
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way, the HC may impact ongoing perception of and action on the

environment (De Lavilléon et al., 2015; Zeidman & Maguire, 2016).

3.4 | The right and left TPJ: Prediction error
signaling and world semantics

The DMN emerges with its midline structures early in human develop-

ment (Doria et al., 2010), while the right and left TPJs may become

fully functionally integrated into this macroscopical network only after

birth. The TPJs are known to exhibit hemispheric differences based

on microanatomical properties and cortical gyrification patterns

(Seghier, 2013). In general, neuroscientific investigations on hemi-

spheric functional specialization have highlighted the right cerebral

hemisphere as more dominant for attentional functions and the left

side more for semantic functions (Bzdok et al., 2013, 2016;

Seghier, 2013; Stephan, Fink, & Marshall, 2007).

The TPJ in the right hemisphere (RTPJ) denotes a broad func-

tional zone with varying anatomical nomenclature (Mars et al., 2011;

Seghier, 2013; Seghier, Fagan, & Price, 2010) that has been shown

to be closely related to multi-sensory event representation and pre-

diction error signaling (Downar, Crawley, Mikulis, & Davis, 2000;

Vetter, Butterworth, & Bahrami, 2011; Shulman et al., 2010;

Shulman, Astafiev, McAvoy, d'Avossa, & Corbetta, 2007). This DMN

region is probably central for action initiation during goal-directed

psychological tasks and for sensorimotor behavior by integrating

multi-sensory attention (Corbetta & Shulman, 2002). Its involvement

was repeatedly reported in monitoring multi-step action execution

(Hartmann, Goldenberg, Daumüller, & Hermsdörfer, 2005), visuo-

proprioceptive conflict (Balslev, Nielsen, Paulson, & Law, 2005), spa-

tial reorientation (Corbetta et al., 2000), and detection of environ-

mental changes across visual, auditory, or tactile stimulation

(Downar et al., 2000). Direct electrical stimulation of the human

RTPJ during neurosurgery was associated with altered perception

and stimulus awareness (Blanke, Ortigue, Landis, & Seeck, 2002). It

was argued that the RTPJ encodes actions and predicted outcomes,

without necessarily relating these neural processes to value estima-

tion (Hamilton & Grafton, 2008; Jakobs et al., 2009; Liljeholm, Wang,

Zhang, & O'Doherty, 2013; Rutledge et al., 2009). More specifically,

neural activity in the RTPJ has been proposed to reflect stimulus-

driven attentional reallocation to self-relevant and unexpected

sources of information as a “circuit breaker” that recalibrates func-

tional control of brain networks (Bzdok, Langner, Schilbach, Jakobs,

et al., 2013; Corbetta, Patel, & Shulman, 2008). In the face of large

discrepancies between actual and previously predicted environmen-

tal events, the RTPJ may act as a potential switch between

externally-oriented mind sets focussed on the sensory environment

and internally-oriented mind sets focussed on mental scene con-

struction. For instance, temporally induced RTPJ damage in humans

diminished the impact of predicted intentions of other individuals

(Young, Camprodon, Hauser, Pascual-Leone, & Saxe, 2010), a capac-

ity believed to be enabled by the DMN. Viewed from a RL perspec-

tive, the RTPJ might reflect an important relay that shifts away from

the “internally directed” baseline processes to, instead, deal with

unexpected environmental cues and events.

The left TPJ of the DMN (LTPJ), in turn, may have a functional

relationship to Wernicke's area involved in semantic processes

(Blumenfeld, 2002) and has been described as “a temporoparietal

transmodal gateway for language” by some investigators

(Mesulam, 2000). Neurological patients with damage in this region

have a major impairment of language comprehension when listening

to others or reading a book. Patient speech preserves natural rhythm

and normal syntax, yet the voiced sentences lack meaning

(i.e., aphasia). Abstracting from speech interpretations in linguistics

and neuropsychology, the LTPJ appears to mediate access to and

binding of world knowledge, such as required during action consider-

ations (Binder & Desai, 2011; Seghier, 2013). Consistent with this

view, LTPJ damage in humans also entailed problems in recognizing

others' pantomimed action toward objects without obvious relation to

processing explicit language content (Varney & Damasio, 1987).

Inner speech also hinges on knowledge recall about the physical

and social world. Indeed, the internal production of verbalized thought

(“language of the mind”) was closely related to the LTPJ in a pattern

analysis of brain volume (Geva et al., 2011). Further, episodic memory

recall and mental imagery to forecast future events strongly draw on

reassembling world knowledge. Isolated building blocks of world

structure get rebuilt in internally constructed mental scenarios that

guide present action choice, weigh hypothetical possibilities, and fore-

cast event outcomes. As a candidate component of a RL agent, neural

processes in the LTPJ may contribute to the automated predictions of

the environment by incorporating experience-derived building blocks

of world regularities into ongoing action, planning, and problem

solving.

4 | RL CONTROL: A PROCESS MODEL FOR
DMN FUNCTION

We argue the outlined neurobiological properties of the DMN regions

to be sufficient for implementing all components of a full-fledged RL

system. Recalling past experience, considering candidate actions, ran-

dom sampling of possible experiences, as well as estimation of instan-

taneous and delayed reward outcomes are key components of

intelligent RL agents that are plausible to functionally intersect in

the DMN.

RL is an area of machine learning concerned with searching opti-

mal behavioral strategies through interactions with an environment

with the goal to maximize the cumulative reward over time (Sutton &

Barto, 1998). Optimal behavior typically takes the future into account

as certain rewards could be delayed. Through repeated action on and

feedback from the environment, the agent learns how to reach goals

and continuously improve the collection of reward signals in a trial-

and-error fashion (Figure 3). At a given moment, each taken action a

triggers a change in the state of the environment s! s
0
, accompanied

by environmental feedback signals as reward r = r(s, a, s
0
) obtained by

the agent. If the collected reward outcome yields a negative value it
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can be more naturally interpreted as punishment. The environment

can be partly controlled by the action of the agent and the reward can

be thought of as satisfaction—or aversion—that accompany the execu-

tion of a particular action.

The environment is assumed to be stochastic, that is, changing in

random ways. In addition, the environment is only partially observable

in the sense that only limited aspects of the environment's state are

accessible to the agent's sensory perception (Starkweather, Babayan,

Uchida, & Gershman, 2017). We assume that volatility of the environ-

ment is realistic in a computational model which sets out to explain

DMN functions of the human brain.

We argue that an abstract description of DMN activity based on

RL can naturally embed human behavior in the unavoidable tradeoff

between exploitative action with immediate gains and explorative

action with longer-term reward outcomes (Dayan & Daw, 2008). In

short, DMN implication in a diversity of particularly sophisticated

human behaviors can be parsimoniously explained as instantiating

probabilistic simulations of experience coupled with prediction error

minimization to calibrate action trajectories for reward outcome maxi-

mization at different time scales. Such a purposeful optimization objec-

tive may be subserved by a stochastic approximation based on a brain

implementation for Monte Carlo sampling of events and outcomes.

4.1 | Markov decision processes

In artificial intelligence and machine learning, a popular computational

model for multi-step decision processes are MDPs (Sutton &

Barto, 1998). An MDP operationalizes a sequential decision process in

which it is assumed that environment dynamics are determined by a

Markov process, but the agent cannot directly observe the underlying

state. Instead, the agent tries to optimize a subjective reward signal

(i.e., likely to be different for another agent in the same state and pos-

sibly driven by neural processing in the vmPFC) by maintaining

probability distributions over actions (possibly represented in the

dmPFC) according to their expected utility.

This is a minimal set of assumptions that can be made about an

environment faced by an agent engaged in interactive learning.

Definition. Mathematically, an MDP involves a quadruple

S,A, r,pð Þ where.

• S is the set of states, such as S = happy,sad,puzzeledf g.
• A is the set of actions, such as A= read,run, laugh,sympathize,f

empathizeg:
• r :S ×A×S!R is the reward function, so that r(s, a, s0) is the

instant reward for taking action a in state s followed by a state-

transition s! s
0
.

• p :S ×A×S! 0,1½ �, s,a,s0ð Þ↦p s0 j s,að Þ , the probability of moving

to state s0 if action a is taken from state s. In addition, one requires

that such transitions be Markovian. Consequently, the future

states are independent of past states and only depend on the pre-

sent state and action taken.

The process has memory if the subsequent state depends not only

on the current state but also on a number of past states. Rational

probabilistic planning can thus be reformulated as a standard

memoryless Markov process by simply expanding the definition of the

state s to include experience episodes of the past. This extension adds

the capacity for memory to the model because the next state then

depends not only on the current situation, but also on previously

experienced events, which is the motivation behind partially observ-

able MDPs (POMDPs; O'Reilly & Frank, 2006; Starkweather

et al., 2017). Nevertheless, this mathematical property of POMDPs

mostly accounts for implicit memory. Since the current article is con-

cerned with plausibility at the behavioral and neurobiological level, we

will address below how our account can accommodate the neuro-

physiological constraints of the DMN and the explicit memory charac-

teristics of human agents.

F IGURE 3 Illustration of a
partially observable Markov
decision process (POMDP). Given
the current state of the
environment, the agent takes an
action by following the policy
matrix, which is iteratively updated
by the Bellman equation. The
agent receives a triggered reward

and observes the next state. The
process goes on until interrupted
or a goal state is reached
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4.1.1 | Why Markov decision processes?

One may wonder whether MDP models are applicable to something as

complex as human behavior. This class of reinforcement-learning models

has had numerous successes in diverse applied domains. For instance,

MDPs have been successfully used in financial trading is largely a mani-

festation of strategic decision-making of interacting human agents.

According to how the market responds, the agent incurs gain or loss as

environmental feedback of the executed financial actions. Recent

research on automatizing market exchanges by algorithmic trading has

effectively deployed MDPs as a framework for modeling these elaborate

behavioral dynamics (Abergel, Huré, & Pham, 2017; Brázdil, Chatterjee,

Forejt, & Kucera, 2017; Dempster & Leemans, 2006; Hult &

Kiessling, 2010; Yang et al., 2012; Yang, Qiao, Beling, & Scherer, 2014;

Yang, Qiao, Beling, Scherer, & Kirilenko, 2015). MDPs have also been

effective as a behavioral model in robotics (Abbeel & Ng, 2004; Ng

et al., 2004) and in challenging multistep strategy games (Mnih

et al., 2015; Pritzel et al., 2017; Silver et al., 2016). More recent work

has developped an MDP-related way of reasoning about future behav-

ior of other agents (Rabinowitz et al., 2018). The idea is to use meta-

learning (i.e., learning to learn) to build strong priors about the behavior

of a population of other agents.

4.1.2 | Reinforcement learning in the brain?

RL has been argued to be a biologically plausible mechanism in the

human brain (Daw & Dayan, 2014; O'Doherty et al., 2015). Indeed,

previous authors have proposed (Gershman, Horvitz, &

Tenenbaum, 2015) that a core property of human intelligence is the

improvement of expected utility outcomes as a strategy for action

choice in uncertain environments, a view captured by the formalism

of MDPs. It has also long been proposed (Dayan & Daw, 2008) that

there can be a mapping between algorithmic aspects underlying

model-free and model-based RL and neurobiological aspects underly-

ing decision-making, which involves parts of the DMN. The neuro-

transmitter dopamine could serve as a “teaching signal” to guide

estimation of value associations and action policies by modulating

synaptic plasticity in the reward-processing circuitry, including the

NAc. In contrast, model-based RL would start off with some mecha-

nistic assumptions about the dynamics of the world. These assump-

tions could relate to the physical laws governing the agent's

environment, constraints on the state space, transition probabilities

between states, or reward contingencies.

An agent might represent such knowledge about the world as

follows:

• r(s, “stand still”) = 0 if s does not correspond to a location offering

relevant resources.

• p(s0|s, “stand still”) = 1 if s0 = s and 0 otherwise.

• etc.

Such knowledge can be partly extracted from the environment:

the agent infers a model of the world while learning to take optimal

decisions based on the current representation of the environment.

These methods learn what the effect is going to be of taking a particu-

lar action in a particular state. The result is an estimate of the underly-

ing MDP which can then be either solved exactly or approximately,

depending on the setting and what is feasible.

4.1.3 | Accumulated reward and policies

The behavior of the agent is governed by a policy, which maps states

of the world to probability distributions over candidate actions

(potentially represented in the dmPFC). Starting at time t = 0, follow-

ing a policy π generates a trajectory of action choices:

choose action : a0~π ajs0ð Þ
observe transition : s1~p sjs0,a0ð Þand collect rewardR0 = r s0,a0,s1ð Þ
choose action : a1~π ajs1ð Þ
observe transition : s2~p sjs1,a1ð Þ,and collect rewardR1 = r s1,a1,s2ð Þ
..
.

choose action : at~π ajstð Þ
observe transition : st+1~p sjst,atð Þ,and collect rewardRt = r st,at,st+1ð Þ
..
.

We assume time invariance in that we expect the dynamics of the

process to be equivalent over sufficiently long time windows of equal

length (i.e., stationarity). Since an action executed in the present

moment might have repercussions in the far future. It turns out that

the quantity to optimize is not the instantaneous rewards r(s, a), but a

cumulative reward estimate which takes into account expected reward

from action choices in the future. A common approach to modeling

this gathered outcome, which is likely to involve extended parts of

the DMN, is the time-discounted cumulative reward

Gπ =
X∞
t=0

γtRt =R0 + γR1 + γ
2R2 +…+ γtRt +… ð1Þ

This random variable measures the cumulative reward of follow-

ing an action policy π. The reward outcome is random because it

depends both on the environment's dynamics and the policy π being

executed. The exponential delay discounting function used here refers

to the usual formulation in the field of reinforcement learning,

although psychological experiments may also reveal other discounting

regimes (Green & Myerson, 2004). Note that value buffering may be

realized in the vmPFC by virtue of this region's connections to the

NAc of the reward system (Carlezon & Thomas, 2009; Croxson

et al., 2005; Haber et al., 1995b).

The goal of the RL agent is then to successively update this action

policy (perhaps most closely related to the PMC) in order to maximize

Gπ on average (cf., below). In Equation (1), the definition of cumulative
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reward Gπ, the constant γ (0 ≤ γ < 1) is the reward discount factor,

viewed to be characteristic trait for a certain agent. On the one hand,

setting γ = 0 yields perfectly hedonistic behavior. An agent with such

a shortsighted time horizon is exclusively concerned with immediate

rewards. This is however not compatible with coordinated planning of

longer-term agendas that is potentially subserved by neural activity in

the DMN.

On the other hand, setting 0 < γ < 1 allows a learning process to

arise. A positive γ can be seen as calibrating the risk-seeking trait of

the intelligent agent, that is, the behavioral predispositions related to

trading longer delays for higher reward outcomes. Such an agent puts

relatively more emphasis on rewards expected in a more distant

future. Concretely, rewards that are not expected to occur only within

a very large number of time steps from the present point are ignored.

The complexity reduction by time discounting alleviates the variance

of expected rewards accumulated across considered action cascades

by limiting the depth of the search tree. Given that there is more

uncertainty in the far future, it is important to appreciate that a sto-

chastic policy estimation is more advantageous in many RL settings.

4.2 | The components of reinforcement learning in
the DMN

Given only the limited information available from an MDP, at a state

s the average utility of choosing an action a under a policy π can be

captured by the single quantity

Qπ s,að Þ= Gπ js0 = s,a0 = a½ �, ð2Þ

called the Q-value for the state-action pair (s, a). In other words, Qπ(s, a)

corresponds to the expected reward over all considered action trajecto-

ries, in which the agent sets out in the environment in state s, chooses

action a, and then follows the policy π to select future actions.

For the brain, Qπ(s, a) defined in Equation (2) provides the subjec-

tive utility of executing a specific action. In this way, we can answer

the question “What is the expected utility of choosing action a, and

its ramifications, in this situation?.” Qπ(s, a) offers a formalization of

optimal behavior that may well capture processing aspects such as

subserved by the DMN in human agents.

4.2.1 | Optimal behavior and the Bellman equation

Optimal behavior of the agent corresponds to a strategy π* for choos-

ing actions such that, for every state, the chosen action guarantees

the best possible reward on average. Formally,

π* sð Þ≔argmaxa∈AQ* s,að Þ,whereQ* s,að Þ≔max
π

Qπ s,að Þ: ð3Þ

The learning goal is to approach the ideal policy π* as close as

possible, that is, to solve the MDP. Note that Equation (3) presents

merely a definition and does not lend itself as a candidate schema for

fully computing MDPs with even moderately sized action and state

spaces (i.e., computational intractability).

Fortunately, the Bellman equation (Sutton & Barto, 1998) pro-

vides a fixed-point relation which defines Q* implicitly via a sampling

procedure, without querying the entire space of policies, with

the form

Q* =Bel Q*� �
, ð4Þ

where the so-called Bellman transform Bel(Q) of an arbitrary Q-value

function Q :S ×A!R is another Q-value function defined by

Bel Qð Þ s,að Þ≔s0~p s0 js,að Þ r s,að Þ+ γmax
a0∈A

Q s0,a0ð Þ
� �

= r s,að Þ+ γs0~p s0 js,að Þ max
a0∈A

Q s0,a0ð Þ
� �

= instantaneous reward+ expected reward for acting greedily thereafter

ð5Þ

The Bellman Equation (4) is a temporal consistency equation

which provides a dynamic decomposition of optimal behavior by

dividing the Q-value function into the immediate reward component

and the discounted reward component of the upcoming states. The

optimal Q-value operator Q* is a fixed point for this equation. As a

consequence of this outcome stratification, the complicated dynamic

programming problem (3) is broken down into simpler sub-problems

at different time points. Indeed, exploitation of hierarchical structure

in action considerations has previously been related to the medial pre-

frontal part of the DMN (Braver & Bongiolatti, 2002; Koechlin, Basso,

Pietrini, Panzer, & Grafman, 1999). Using the Bellman equation, each

state can be associated with a certain value to guide action toward a

preferred state, thus improving on the current action policy of the

agent.

Note that in Equation (4) the random sampling is performed only

over quantities which depend on the environment. This aspect of the

learning process can unroll off-policy by observing state transitions

triggered by another (possibly stochastic) behavioral policy.

4.2.2 | Value approximation and the policy matrix

As already mentioned in the previous section, Q-learning (Watkins &

Dayan, 1992) optimizes over the class of deterministic policies of the

form Equation (3). State spaces may be extremely large and tracking

all possible states and actions may require prohibitively excessive

computation and memory resources, perhaps reflect in the especially

high metabolic turn-over of the posterior medial DMN (i.e., PMC). The

need of maintaining an explicit table of states can be eliminated by

instead using of an approximate Q-value function ~Q s,a j θð Þ by keeping

track of an approximating parameter θ of much lower dimension than

the number of states. At a given time step, the world is in a state s∈S,
and the agent takes an action which it expects to be the most valuable

on average, namely,
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πhard-max sð Þ= argmaxa∈A ~Q s,a j θð Þ: ð6Þ

This defines a mapping from states directly to actions.

For instance, a simple linear model with a kernel ϕ would be of

the form ~Q s,a j θð Þ=ϕ s,að ÞTθ , where ϕ(s, a) would represent a high-

level representation of the state-action pairs (s, a), as was previously

proposed (Song, Parr, Liao, & Carin, 2016), or artificial neural-network

models as demonstrated in seminal machine-learning models (Mnih

et al., 2015; Silver et al., 2016) for playing complex games (atari, Go,

etc.) at super-human levels.

In the DMN, the dmPFC is conceivable to implement such a hard-

max lookup over the action space. The model parameters θ would cor-

respond to synaptic weights and connection strengths within and

between brain regions. It is a time-varying neuronal program which

dictates how to move from world states s to actions a via the hard-

max policy Equation (6). The approximating Q-value function ~Q s,a j θð Þ
would inform the DMN with the (expected) usefulness of choosing an

action a in state s. The DMN, and in particular its dmPFC part, could

then contribute to the choice, at a given state s, of an action a which

maximizes the approximate Q-values. This mapping from states to

actions is conventionally called policy matrix (Mnih et al., 2015; Silver

et al., 2016). Learning consists in starting from a given table and

updating it during action choices, potentially reflected in neural

processing in the PMC, which take the agent to different table

entries.

4.2.3 | Self-training and the loss function

Successful learning in brains and computer algorithms may not be

possible without a defined optimization goal—the loss function. The

action a chosen in state s according to the policy matrix defined in

Equation (6) yields a reward r collected by the agent, after which the

environment transitions to a new state s0∈S . One such cycle yields a

new experience e = (s, a, r, s0). Each cycle represents a behavior unit of

the agent and is recorded in replay memory buffer—which we hypoth-

esize to involve especially the HC—, possibly discarding the oldest

entries to make space: D append D,eð Þ . At time step k, the agent

seeks an update θk θk−1 + δθk of the parameters for its approximate

model of the Q-value function. Step-by-step model parameter

updates warrant a learning process and definition of a loss function.

The Bellman Equation (4) provides a way to obtain such a loss func-

tion (9) as we outline in the following.

Experience replay consists in sampling batches of experiences

e s,a,r,s0ð Þ ~D from the replay memory D . The agent then tries to

approximate the would-be Q-value for the state-action pair (s, a) as

predicted by the Bellman Equation (4), namely

yk≔yk s,a,s0ð Þ= r + γmax
a0

~Q s0 ,a0jθk−1ð Þ, ð7Þ

with the estimation of a parametrized regression model

s,að Þ↦~Q s,a j θk−1ð Þ . From a neurobiological perspective, experience

replay can be manifested as the reoccurrence of neuron spiking

sequences that have also been measured during specific prior actions

or environmental states. The HC is a strong candidate for contributing

to such neural reinstantiation of behavioral episodes as neuroscience

experiments have repeatedly indicated in rats, mice, cats, rabbits,

songbirds, and monkeys (Buhry, Azizi, & Cheng, 2011; Dave &

Margoliash, 2000; Nokia, Penttonen, & Wikgren, 2010; Skaggs

et al., 2007). Importantly, neural encoding of abstract representations

of space and meaning may extent to several parts of the DMN

(Constantinescu, O'Reilly, & Behrens, 2016; see Figure 4).

At the current step k, computing an optimal parameter update

then corresponds to finding the model parameters θk which minimize

the following mean-squared optimization loss

ℒ θQk

� �
= s,a,r,s0ð Þ ~D

1
2

~Q s,a j θkð Þ−yk
� �2

� �
, ð8Þ

where yk is obtained from Equation (4). A recently proposed, practi-

cally successful alternative approach is to estimate the representation

using an artificial deep neural-network model. This approach leads to

the so-called deep Q-learning (Mnih et al., 2015; Silver et al., 2016)—a

family of methods which is the current state-of-the-art in RL research.

The set of model parameters θ that instantiate the nonlinear interac-

tions between layers of the artificial neural network may find a neuro-

biological correspondence in the adaptive strengths of axonal

connections between neurons from the different levels of the neural

processing hierarchy (Mesulam, 1998; Taylor, Hobbs, Burroni, &

Siegelmann, 2015).

4.2.4 | A note on bias in self-training

Some bias may be introduced by self-training due to information

shortage caused by the absence of external stimulation. One way to

address this issue is using importance sampling to replay especially

those state-transitions from which there is more to learn for the agent

(Hessel et al., 2017; Schaul, Quan, Antonoglou, & Silver, 2015). New

transitions are inserted into the replay buffer with maximum priority,

thus shifting emphasis to more recent transitions. Such insertion strat-

egy would help counterbalance the bias introduced by the information

shortage incurred by absent external input. Other authors noticed

(Hessel et al., 2017) that such prioritized replay reduces the data com-

plexity and the agent shows faster increases in learning performance.

4.2.5 | Optimal control via stochastic gradient
descent

Efficient learning of the entire set of model parameters can effectively

be achieved via stochastic gradient descent, a universal algorithm for

finding local minima based on the first derivative of the optimization

objective. Stochastic here means that the gradient is estimated from

batches of training samples, which here corresponds to blocks of

experience from the replay memory:
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δ= −αkrθkℒ θkð Þ= −αk s,a,r,s0ð Þ ~D ~Q s,a j θkð Þ−yk
� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

prediction error

rθk
~Q s,a j θkð Þ|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
aversion

2
664

3
775,

ð9Þ

where the positive constants α1, α2, … are learning rates. Thus, the

subsequent action is taken to drive reward prediction errors to perco-

late from lower to higher processing layers to modulate the choice of

future actions. It is known that under special conditions on the learn-

ing rates αk—namely, that the learning rates are neither too large nor

too small, or more precisely that the sum
P∞
k =0

αk diverges while
P∞
k =0

α2k
—the thus generated approximating sequence of Q-value functions

~Q :, :jθ0ð Þ! ~Q :, :jθ1ð Þ! ~Q :, :jθ2ð Þ!…

are attracted and absorbed by the optimal Q-value function Q*

defined implicitly by the Bellman Equation (4).

4.2.6 | Does the hippocampus subserve Monte
Carlo sampling?

In RL, Monte Carlo simulation is a common means to update the

agent's belief state based on stochastic sampling of environmental

states and possible transitions (Daw & Dayan, 2014; Silver &

Veness, 2010). Monte Carlo simulation provides a simple method for

evaluating the value of a state. This inference procedure provides an

effective mechanism both for tree search of the considered action tra-

jectories and for belief state updates, breaking the curse of dimen-

sionality and allowing much greater scalability than a RL agent

without stochastic resampling procedures. Such methods scale as a

function of available data (i.e., sample complexity) that is determined

only by the underlying difficulty of the MDP, rather than the size of

the state space or observation space, which can be prohibitively large.

In the human brain, the HC could contribute to synthesizing imag-

ined sequences of world states, actions, and rewards (Aronov,

Nevers, & Tank, 2017; Boyer, 2008; Chao, Nikolaus, Brand~ao, Hus-

ton, & de Souza Silva, 2017). These stochastic simulations of experi-

ence batches reassembled from memory would be used to update the

value function, without ever looking inside the black box describing

the model's dynamics. A brain-imaging experiment in humans for

instance identified hippocampal signals that specifically preceded

upcoming choice performance in prospective planning in new environ-

ments (Kaplan et al., 2017). It would be a simple strategy to evaluate

all legal actions and selecting the action with highest expected cumu-

lative rewards. In MDPs, MC simulation provides an effective mecha-

nism both for tree search and for belief-based state updates, breaking

the curse of dimensionality and allowing much greater scalability than

has previously been possible (Silver et al., 2016). This is because

expected consequences of action choices can be well evaluated

although only a subset of the states are actually considered (Daw &

Dayan, 2014).

F IGURE 4 Default mode network: possible neurobiological implementation of reinforcement learning. Overview of how the constituent
regions of the DMN (refer to Section 3; blue horizontal dashed line indicates the border between BA9 and BA10) may map onto computational
components necessary for a RL agent. Axonal tracing in monkeys and diffusion tractography in humans suggested that the NAc of the reward
circuitry has monosynaptic fiber connections to the vmPFC (Croxson et al., 2005; Haber et al., 1995b). Evaluation of propagated value
information and triggered affective states encoded in the vmPFC may then feed into the functionally connected partner nodes of the DMN, such
as the dmPFC and PMC (Andrews-Hanna et al., 2010; Bzdok, Langner, Schilbach, Engemann, et al., 2013)
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4.2.7 | A note on implicit and explicit memory

While Markov processes are usually memoryless, it is mathematically

feasible to incorporate a set of previous states of such model into the

current state. This extension may partly account for implicit memory

at the behavioral level, but may not explain the underlying neurobio-

logical implementation or accommodate explicit memory. Implicit

memory-based processing arises in our MDP account of DMN func-

tion in several different forms: successive updates of (a) the action

policy and the value function, both being products of the past, as well

as (b) the deep nonlinear relationships within the hierarchical connec-

tions of biological neural networks (especially in the association cor-

tex). The brain's adaptive synaptic connections can be viewed as a

deep artificial neural-network architecture affording an implicit form

of information compression of life experience. Such memory traces

are stored in the neural machinery and can be implicitly retrieved as a

form of knowledge during simulation of action rather than accessed

as a stored explicit representation (Pezzulo, 2011). (c) Certain neural

processes in the hippocampus can be seen as some type of Monte

Carlo sampling for memory recall, which can also be a basis for proba-

bilistic simulations across time scales (Axelrod, Rees, & Bar, 2017;

Schacter et al., 2007).

4.3 | Summary and hypotheses for future studies

The DMN is today known to consistently increase in neural activity

when humans engage in cognitive processes that are relatively

detached from the current sensory environment. The more familiar

and predictable the current environment, the more brain resources

may remain for allocating DMN activity to MDP-type processes

extending beyond the present time and sensory context. This specula-

tion receives quantitative support in that connectional links between

nodes of the DMN have been reported to be more consistent and reli-

able than functional couplings within any other macroscopical net-

works (Shehzad et al., 2009). As such, random-sampling-related

baseline evaluation of action possibilities and their consequences may

be subserved by the DMN and get partly suspended when novelty in

the external environment is encountered or immediate action is

required (Hong, 2007; Moscovitch, Cabeza, Winocur, & Nadel, 2016).

In line with this perspective, DMN engagement was shown to

heighten and relate to effective behavioral responses in the practiced

phase of a demanding cognitive flexibility task, as compared to acqui-

sition phase when participants learned context-specific rules. In major

depression patients, rumination and worry may lead to a lack of nov-

elty, not in the environment itself, but in its perception by the patient.

Such examples may thus explain an abnormal activity of both DMN

and the reward system. This involvement in automated decision-

making has led the authors to propose an “autopilot” role for the

DMN (Vatansever, Menon, & Stamatakis, 2017), which may contrib-

ute to optimizing intervention of the organism on the world in general.

Among all parts of the DMN, the RTPJ is perhaps the most evident

candidate for a network-switching relay that calibrates between

processing of environment-engaged versus internally generated infor-

mation (Bzdok, Langner, Schilbach, Jakobs, et al., 2013; Downar

et al., 2000; Golland et al., 2006; Kernbach et al., 2018).

Additionally, the DMN was proposed to be situated at the top of

the brain network hierarchy, with the subordinate salience and dorsal

attention networks in the middle and the primary sensory cortices at

the bottom (Carhart-Harris & Friston, 2010; Margulies et al., 2016). Its

putative involvement in thinking about hypothetical experiences and

future outcomes appears to tie in with the implicit computation of

action and state cascades as a function of experienced events and col-

lected feedback from the past. A policy matrix encapsulates the

choice probabilities of possible actions on the world given a current

situation (i.e., state). The DMN may subserve constant exploration of

candidate action trajectories and nested estimation of their cumula-

tive reward outcomes. Implicit computation of future choices provides

a potential explanation for the evolutionary emergence and practical

usefulness of mind-wandering at day-time and dreams during sleep in

humans.

Our formal account on the DMN readily motivates several empiri-

cal predictions for future neuroscience research. Perhaps one of the

first experimental venues concerns the neural correlates of the Bell-

man equation in the DMN. There are already relationship between

the decomposition of consecutive action choices by the Bellman

equation and neuroscientific insights: specific neural activity in the

dorsal prefrontal cortex (BA9) was for instance linked to processing

“goal-tree sequences” in human brain-imaging experiments (Koechlin

et al., 1999; Koechlin, Corrado, Pietrini, & Grafman, 2000). Sub-goal

exploration may require multi-task switching between cognitive pro-

cesses as later parts of a solution frequently depend on respective

earlier steps in a given solution path, which necessitates storage of

expected intermediate outcomes. As such, “cognitive branching” oper-

ations for nested processing of behavioral strategies are likely to entail

secondary reallocation of attention and working-memory resources.

Further brain-imaging experiments corroborated the prefrontal DMN

to subserve “processes related to the management and monitoring of

sub-goals while maintaining information in working memory”

(Braver & Bongiolatti, 2002) and to functionally couple with the hip-

pocampus conditioned by “deep versus shallow planning” (Kaplan

et al., 2017). Moreover, neurological patients with lesions in this DMN

region were reported to be impaired in aspects of realizing “multiple

sub-goal scheduling” (Burgess, Veitch, de Lacy Costello, &

Shallice, 2000). Hence, the various advanced human abilities sub-

served by the DMN, such as planning and abstract reasoning, can be

viewed to involve some form of action-decision branching to enable

higher-order executive control.

We therefore hypothesize in humans a functional dissociation

between computations pertaining to action policy versus adapting

stimulus-value associations as we expect implementation in different

subsystems of the DMN. First, we expect that fMRI signals in the right

temporo-parietal junction relate to behavioral changes subsequent to

adaptation in the action choice tendencies (policy matrix) involved in

nonvalue-related prediction error. Second, fMRI signals in the ventro-

medial prefrontal cortex should relate to behavioral changes following
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adaptation in value estimation (value matrix) due to reward-related

stimulus-value association. We further expect that fMRI signals in the

PMC, as a potential global information integrator, are related to shifts

in overt behavior based on previous adaptations in both policy or

value estimation.

Our process model of the DMN has also implications for experi-

ments in neuroeconomy; especially for temporal discounting and con-

tinuous learning paradigms. More specifically, we hypothesize in

humans a functional relationship between the DMN closely associ-

ated with the occurrence of stimulus-independent thoughts and the

reward circuitry. During an iterative neuroeconomic two-player game,

fMRI signals in the DMN could be used to predict reward-related sig-

nals in the NAc across trials in a multi-step learning paradigm. We

expect that the more DMN activity is measured to be increased, sup-

posedly the higher the tendency for stimulus-independent thoughts,

the more the fMRI signals in the reward circuits should be indepen-

dent of the reward context in the current sensory environment. In the

case of temporal discounting, we hypothesize in humans that the rele-

vant time horizon is modulated by various factors such as age, acute

stress, and time-enduring impulsivity traits (Haushofer & Fehr, 2014;

Luksys, Gerstner, & Sandi, 2009). Using such a delayed-reward experi-

ment, it can be quantified how the time horizon is affected at the

behavioral level and then traced back to its corresponding neural rep-

resentation. Such experimental investigation can be designed to

examine between-group and within-group effects (e.g., impulsive pop-

ulation like chronic gamblers or drug addicts); and brought in context

with the participant's age, education, IQ, and personality traits.

As another experimental prediction derived from our MDP

approach to the DMN, the HC may contribute to generating

perturbed action-transition-state-reward samples as batches of

pseudo-experience (i.e., recalled, hypothesized, and forecasted scenar-

ios). The small variations in these experience samplings allow

searching through a larger space of model parameters and candidate

experiences. Taken to its extreme, stochastic recombination of experi-

ence building blocks can further optimize the behavior of the RL agent

by learning from scenarios in the environment that the agent might

encounter only very rarely or never. An explanation is thus offered for

experiencing seemingly familiar situations that a human has however

never actually encountered (i.e., déjà vu effect). While such a situation

may not have been experienced in the physical world, the DMN may

have previously stochastically generated, evaluated, and adapted to

such a randomly synthesized event. Generated representations argu-

ably are “internally manipulable, and can be used for attempting

actions internally, before or instead of acting in the external reality,

and in diverse goal and sensory contexts, that is, even outside the

context in which they were learned” (Pezzulo, 2011). In the context of

scarce environmental input and feedback (e.g., mind-wandering or

sleep), mental scene construction allows pseudo-experiencing possible

future scenarios and action outcomes.

A possible interplay between memory retrieval and “mind-

searching” moreover suggests that experience replay for browsing

problem solutions subserved by the DMN contributes to choice

behavior in mice. Hippocampal single-cell recordings have shown that

neural patterns during experimental choice behavior are reiterated

during sleep and before making analogous choices in the future. We

hypothesize that, in addition to the hippocampus, there is a necessity

of cortical DMN regions for “mind-searching” candidate actions during

choice behavior in humans or monkeys. It can be experimentally cor-

roborated by causal disruption of DMN regions, such as by cir-

cumscribed brain lesion or optogenetic intervention in the inferior

parietal and prefrontal cortices. From the perspective of a RL agent,

prediction in the DMN reduces to generalization of policy and value

computations from sampled experiences to successful action choices

and reward predictions in future states. As such, plasticity in the

DMN arises naturally. If an agent behaving optimally in a certain envi-

ronment moves to a new, never experienced environment, reward

prediction errors will largely increase. This feedback will lead to adap-

tation of policy considerations and value estimations until the intelli-

gent system converges to a new steady state of optimal action

decisions in a volatile world.

A last experimental prediction for future studies concerns how

synaptic epigenesis may shape the policy matrix. Indeed, we did not

address the additional layer of learning which concerns the addition

of new entries in the state and action spaces. Extension of the action

repertoire could be biologically realized by synaptic epigenesis

(Gisiger, Kerszberg, & Changeux, 2005). The tuning of synaptic

weights through learning can stabilize additional patterns of activity

by creating new attractors in the neural dynamics landscape

(Takeuchi, Duszkiewicz, & Morris, 2014). Those attractors can then

constrain both the number of factors taken into account by decision

processes and the possible behaviors of the agent (Wang, 2008). To

examine this potential higher-level mechanism, we propose to probe

how synaptic epigenesis is related to neural correlates underlying pol-

icy matrix updates: in humans the changes of functional connectivity

between DMN regions can be investigated following a temporal dis-

counting experiment and in monkeys or rodents anterograde tracing

can be used to study how homolog regions of the DMN present

increased synaptic changes compare to other parts of the brain.

5 | RELATION TO EXISTING ACCOUNTS

5.1 | Predictive coding

Predictive coding mechanisms (Clark, 2013; Friston, 2008) are a fre-

quently evoked idea in the context of default mode function (Bar,

Aminoff, Mason, & Fenske, 2007). Cortical responses are explained as

emerging from continuous functional interaction between higher and

lower levels of the neural processing hierarchy. Feed-forward sensory

processing is constantly calibrated by top-down modulation from

more multi-sensory and associative brain regions further away from

primary sensory cortical regions. The dynamic interplay between cor-

tical processing levels may enable learning about aspects of the world

by reconciling gaps between fresh sensory input and predictions com-

puted based on stored prior information. At each stage of neural

processing, an internally generated expectation of aspects of
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environmental sensations is directly compared against the actual envi-

ronmental input. A prediction error at one of the processing levels

induces plasticity changes of neuronal projections to allow for gradu-

ally improved future prediction of the environment. In this way, the

predictive coding hypothesis offers explanations for the constructive,

nondeterministic nature of sensory perception (Buzsáki, 2006;

Friston, 2010) and the intimate relation of motor movement to sen-

sory expectations (Kording & Wolpert, 2004; Wolpert, Ghahramani, &

Jordan, 1995). Contextual integration of sensorimotor perception-

action cycles may be maintained by top-down modulation using inter-

nally generated information about the environment.

In short, predictive coding processes conceptualize updates of

the internal representation of the environment to best accommodate

and prepare the organism for processing the constant influx of sen-

sory stimuli and performing action on the environment (Figure 5).

There are hence a number of common properties between the predic-

tive coding account and the proposed formal account of DMN func-

tion based on MDPs. Importantly, a generative model of how

perceived sensory cues arise in the world would be incorporated into

the current neuronal wiring. Further, both functional accounts are

supported by neuroscientific evidence that suggest the human brain

to be a “statistical organ” (Friston, Stephan, Montague, & Dolan, 2014)

with the biological purpose to generalize from the past to new experi-

ences. Neuroanatomically, axonal back projections indeed outnumber

by far the axonal connections mediating feedforward input processing

in the monkey brain and probably also in humans (Salin &

Bullier, 1995). These many and diverse top-down modulations from

higher onto downstream cortical areas can inject prior knowledge at

every stage of processing environmental information. Moreover, both

accounts provide a parsimonious explanation for why the human

brain's processing load devoted to incoming information decreases

when the environment becomes predictable. This is because the inter-

nal generative model only requires updates after discrepancies have

occurred between environmental reality and its internally rein-

stantiated representation. Increased computation resources are how-

ever allocated when unknown stimuli or unexpected events are

encountered by the organism. The predictive coding and MDP

accounts hence naturally evoke a mechanism of brain plasticity in that

neuronal wiring gets increasingly adapted when faced by unantici-

pated environmental challenges.

While sensory experience is a constructive process from both

views, the predictive coding account frames sensory perception of the

external world as a generative experience due to the modulatory top-

down influence at various stages of sensory input processing. This

generative top-down design is replaced in our MDP view of the DMN

by a sequential decision-making framework. Further, the hierarchical

processing aspect from predictive coding is re-expressed in our

account in the form of nested prediction of probable upcoming

actions, states, and outcomes. While both accounts capture the con-

sequences of action, the predictive coding account is typically

explained without explicit parameterization of the agent's time hori-

zon and has a tendency to be presented as emphasizing prediction

about the immediate future. In the present account, the horizon of

that look into the future is made explicit in the γ parameter of the

Bellman equation.

Finally, the process of adapting the neuronal connections for

improved top-down modulation takes the concrete form of stochastic

gradient computation and back-propagation in our MDP

F IGURE 5 Situating Markov
decision processes among other
accounts of default mode function.
The Venn diagram summarizes the
relationship between four previously
proposed explanations for the
functional role of the DMN and our
present account. Viewing empirical
findings in the DMN from the MDP
viewpoint incorporates important
aspects of the free energy principle,
predictive coding, sentinal hypothesis,
and semantic hypothesis. The MDP
account may reconcile several
strengths of these functional
accounts in a process model that
simultaneously acknowledges
environmental input and behavioral
choices as well as the computational
and algorithmic properties (How? and
What?) underlying higher-order
control of the organism
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implementation. It is however important to note that the neurobiolog-

ical plausibility of the back-propagation procedure is controversial

(Goodfellow, Bengio, & Courville, 2016).

In sum, recasting DMN function in terms of MDPs therefore nat-

urally incorporates the majority of aspects from the prediction coding

hypothesis. The present MDP account of DMN function may there-

fore serve as a concrete implementation of many predictive coding

ideas. MDPs have the advantage of exposing an explicit mechanisms

for modulating the horizon of future considerations and for how the

internal representation of the world is updated, as well as why certain

predictions may be more relevant to the agent than others.

5.2 | The semantic account

This frequently embraced cognitive account to explain DMN function

revolves around forming logical associations and abstract analogies

between experiences and conceptual knowledge derived from past

behavior (Bar, 2007; Binder et al., 1999; Constantinescu, O'Reilly, &

Behrens, 2016b). Analogies might naturally tie incoming new sensory

stimuli to explicit world knowledge (i.e., semantics, Figure 5;

Bar, 2009). The encoding of complex environmental features could

thus be facilitated by association to known similar states. Going

beyond isolated meaning and concepts extracted from the world,

semantic building blocks may need to get recombined to enable men-

tal imagery to (fore)see never-experienced scenarios. As such, seman-

tic knowledge would be an important ingredient for optimizing

behavior by constantly simulating possible future scenarios (Binder &

Desai, 2011; Boyer, 2008). Such cognitive processes can afford the

internal construction and elaboration of necessary information that is

not presented in the immediate sensory environment by recombining

building blocks of concept knowledge and episodic memories

(Hassabis & Maguire, 2009). Indeed, in aging humans, remembering

the past and imagining the future equally decreased in the level of

detail and were associated with concurrent deficits in forming and

integrating relationships between items (Addis, Wong, &

Schacter, 2008; Spreng & Levine, 2006).

Further, episodic memory, language, problem solving, planning,

estimating others' thoughts, and spatial navigation represent neural

processes that are likely to build on abstract world knowledge and

logical associations for integrating the constituent elements in rich

and coherent mental scenes (Schacter et al., 2007). “[Foresight] and

simulations are not only automatically elicited by external events but

can be endogenously generated when needed. […] The mechanism of

access via simulation could be a widespread method for accessing and

producing knowledge, and represents a valid alternative to the tradi-

tional idea of storage and retrieval” (Pezzulo, 2011). Such mental

scene-construction processes could contribute to interpreting the pre-

sent and foreseeing the future. Further, mental scene imagery has

been proposed to imply a distinction between engagement in the sen-

sory environment and internally generated mind-wandering

(Buckner & Carroll, 2007). These investigators stated that “A compu-

tational model […] will probably require a form of regulation by which

perception of the current world is suppressed while simulation of pos-

sible alternatives are constructed, followed by a return to perception

of the present.”

In comparison, both the semantic hypothesis and the present for-

mal account based on MDPs expose mechanisms of how action con-

siderations could be explored. In both accounts, there is also little

reason to assume that contemplating alternative realities of various

levels of complexity, abstraction, time scale, and purpose rely on

mechanisms that are necessarily qualitatively different. This interpre-

tation concurs with DMN activity increases across time, space, and

content domains demonstrated in many brain-imaging studies (Binder

et al., 2009; Bzdok et al., 2012; Laird et al., 2009; Spreng et al., 2009).

Further, the semantic hypothesis and MDP account offer explanations

why HC damage does not only impair recalling past events, but also

imagining hypothetical and future scenarios (Hassabis et al., 2007).

While both semantic hypothesis and our formal account propose

memory-enabled, internally generated information for probabilistic

representation of action outcomes, MDPs render explicit the grounds

on which an action is eventually chosen, namely, the estimated cumu-

lative reward. In contrast to many versions of the semantic hypothe-

sis, the MDPs naturally integrate the egocentric view (more related to

current action, state, and reward) and the world view (more related to

past and future actions, states, and rewards) on the world in a same

optimization problem. Finally, the semantic account of DMN function

does not provide suffcient explanation of how explicit world knowl-

edge and logical analogies thereof lead to foresight of future actions

and states. The semantic hypothesis does also not fully explain why

memory recall for scene construction in humans is typically fragmen-

tary and noisy instead of accurate and reliable. In contrast to existing

accounts on semantics and mental scene construction, the random

and creative aspects of DMN function are explained in MDPs by the

advantages of stochastic optimization. Our MDP account provides an

algorithmic explanation in that stochasticity of the parameter space

exploration by Monte Carlo approximation achieves better fine-tuning

of the action policies and inference of expected reward outcomes.

That is, the purposeful stochasticity of policy and value updates in

MDPs provides a candidate explanation for why humans may have

evolved imperfect noisy memories as the more advantageous adapta-

tion. In sum, mental scene construction according to the semantic

account is lacking explicit time and incentive structure, both of which

are integral parts of the MDP interpretation of DMN function.

5.3 | The sentinel account

Regions of the DMN have been proposed to process the experienced

or expected relevance of environment cues (Montague, King-Casas, &

Cohen, 2006). Processing self-relevant information was perhaps the

first functional account that was proposed for the DMN (Gusnard,

Akbudak, Shulman, & Raichle, 2001; Raichle et al., 2001). Since then,

many investigators have speculated that neural activity in the DMN

may reflect the brain's continuous tracking of relevance in the envi-

ronment, such as spotting predators, as an advantageous evolutionary
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adaptation (Buckner et al., 2008; Hahn, Ross, & Stein, 2007).

According to this cognitive account, the human brain's baseline main-

tains a “radar” function to detect subjectively relevant cues and unex-

pected events in the environment (Figure 5). Propositions of a

sentinel function to underlie DMN activity have however seldom

detailed the mechanisms of how attention and memory resources are

exactly reallocated when encountering a self-relevant environmental

stimulus. Instead, in the present MDP account, promising action tra-

jectories are recursively explored by the human DMN. Conversely,

certain branches of candidate action trajectories are detected to be

less worthy to be explored. This mechanism, expressed by the Bell-

man equation, directly implies stratified allocation of attention

resources and working memory load over relevant cues and events in

the environment.

Further, our account provides a parsimonious explanation for the

consistently observed DMN implication in certain goal-directed experi-

mental tasks and in task-unconstrained mind-wandering (Bzdok

et al., 2016; Smith et al., 2009). Both environment-detached and

environment-engaged cognitive processes may entail DMN recruitment

if real or imagined experience is processed, manipulated, and used in

service of organism control. During active engagement in tasks, the pol-

icy and value estimates may be updated to optimize especially short-

term action. At passive rest, these parameter updates may improve

especially mid-and long-term action. This horizon of the agent is

expressed in the γ parameter in the MDP account. We thus provide

answers for the currently unsettled question why the involvement of

the same neurobiological brain circuit (i.e., DMN) has been documented

for specific task performances and baseline “house-keeping” functions.

In particular, environmental cues that are especially important for

humans are frequently of social nature. This may not be surprising given

that the complexity of the social systems is likely to be a human-

defining property (Dunbar & Shultz, 2007; Kiesow et al., 2020;

Tomasello, 2009). According to the “social brain hypothesis,” the human

brain has especially been shaped for forming and maintaining increas-

ingly complex social systems, which allows solving ecological problems

by means of social relationships (Whiten & Byrne, 1988). In fact, social

topics probably amount to roughly two-thirds of human everyday com-

munication (Dunbar, Marriott, & Duncan, 1997). Mind-wandering at

daytime and dreams during sleep are also rich in stories about people

and the complex interactions between them. In line with this, DMN

activity was advocated to be specialized in continuous processing of

social information as a physiological baseline of human brain function

(Schilbach, Eickhoff, Rotarska-Jagiela, Fink, & Vogeley, 2008). This view

was later challenged by observing analogues or protoforms of the DMN

in monkeys (Mantini et al., 2011), cats (Popa, Popescu, & Paré, 2009),

and rats (Lu et al., 2012), three species with social capacities that can be

expected to be less advanced than in humans (Mars et al., 2012).

Moreover, the principal connectivity gradient in the cortex

appears to be greatly expanded in humans compared to monkeys,

suggesting a phylogenetically conserved axis of cortical expansion

with the DMN emerging at the extreme end in humans (Margulies

et al., 2016). Computational models of dyadic whole-brain dynamics

demonstrated how the human connectivity topology, on top of

facilitating processing at the intraindividual level, can explain our pro-

pensity to coordinate through sensorimotor loops with others at the

inter-individual level (Dumas, Chavez, Nadel, & Martinerie, 2012). The

DMN is moreover largely overlapping with neural networks associated

with higher-level social processes (Alcalá-López et al., 2018; Schilbach

et al., 2012). For instance, the vmPFC, PMC, and RTPJ together may

play a key role in bridging the gap between self and other by integrat-

ing low-level embodied processes within higher level inference-based

mentalizing (Alcalá-López et al., 2017; Lombardo et al., 2009).

Rather than functional specificity for processing social information

in particular, the present MDP account can parsimoniously incorporate

the dominance of social content in human mental activity as high value

function estimates given the general relevance of information about

humans (Baker, Saxe, & Tenenbaum, 2009; Bzdok et al., 2011; Kampe,

Frith, Dolan, & Frith, 2001; Krienen, Tu, & Buckner, 2010). The DMN

may thus modulate reward processing in the human agent in a way

that prioritizes appraisal of and action toward social contexts, without

excluding relevance of environmental cues of the physical world. In

sum, our account on the DMN directly implies its previously proposed

“sentinel” function of monitoring the environment for self-relevant

information in general and inherently accommodates the importance

of social environmental cues as a special case.

5.4 | A note on the free-energy principle and
active inference

According the free-energy principle (FEP) and theories of active infer-

ence (Dayan, Hinton, Neal, & Zemel, 1995; Friston, 2010; Friston,

Daunizeau, & Kiebel, 2009), the brain corresponds to a biomechanical

reasoning engine. Much of neural computation is dedicated to mini-

mizing the long-term average of surprise: the log-likelihood of the

observed sensory input—more precisely, an upper bound thereof—

relative to the expectations about the external world derived from

internal representations. The brain would continuously generate

hypothetical explanations of the world and predict its sensory input

x (analogs to the state-action (s, a) pair in an MDP framework).

However, surprise is challenging to optimize numerically because

we need to solve the intractable problems of summing over all hidden

causes z of the sensations. Instead, FEP therefore minimizes an

upper-bound on surprise given by

generative surprise≔− log pG xð Þð Þ= FG xð Þ
= FRG xð Þ|fflffl{zfflffl}

accuracy

−KL pR zjxð ÞkpG zjxð Þð Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
complexity

≤ FRG xð Þ,with equality ifpR zjxð Þ= pG zjxð Þ for all z:

ð10Þ

where

FRG xð Þ≔ − log pG z,xð Þð Þh ipR zjxð Þ−H pR zjxð Þð Þ ð11Þ

is the free energy. Here, the angular brackets denote the expectation of

the joint negative log-likelihood −log(pG(z, x)) w.r.t the recognition
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density pR(z|x), H is the entropy function defined by

H pð Þ≔−
P
z
p zð Þlogðp zð Þ , while KL(.k.) is the usual Kullback–Leibler

(KL) divergence (also known as relative entropy) defined by

KL pkqð Þ≔P
z
p zð Þlog p zð Þ=q zð Þð Þ≥0 , which is a measure of difference

between two probability distributions. In this framework, the goal of

the agent is to iteratively refine the generative model pG and the rec-

ognition model pR so as to minimize the free energy FRG xð Þ over sen-
sory input x.

Importantly, FRG xð Þ gets low in the following cases:

• pR(z|x) puts a lot of mass on configurations (z, x) which are pG-likely

• pR(z|x) is as uniform as possible (i.e., have high entropy), so as not

to concentrate all its mass on a small subset of possible causes for

the sensation x

Despite its popularity, criticism against the FEP has been voiced

repeatedly, which we allude to in the following. The main algorithm

for minimizing free energy FRG xð Þ is the wake–sleep algorithm (Dayan

et al., 1995). As these authors noted, a crucial drawback of the wake–

sleep algorithm (and therefore of theories like the FEP [Friston, 2010])

is that it involves a pair of forward (generation) and backward (recog-

nition) models pG and pR that together does not correspond to optimi-

zation of a bound of the marginal likelihood because KL divergence is

not symmetric in its arguments.

These considerations may render the brain less likely to implement a

variant of the wake–sleep algorithm. More recently, variational auto-

encoders (Kingma & Welling, 2013) emerged that may provide an effi-

cient alternative to the wake–sleep algorithm. Such compression-and-

reconstruction models overcome a number of the technical limits of the

wake–sleep algorithm by using a reparametrization maneuver, which

makes it possible to do differential calculus on random sampling proce-

dures without exploding variance. As a result, unlike the wake–sleep

algorithm for minimizing free energy, variational auto-encoders can be

efficiently trained via back-propagation of prediction errors.

The difference between the FEP and the MDP account may be

further clarified by a thought experiment. Since theories based on the

FEP (Friston, 2010; Friston et al., 2009) conceptualize ongoing behav-

ior in an organism to be geared toward the surprise-minimizing goal.

Hence, an organism entering a dark room would remain trapped in

this location because its sensory inputs are perfectly predictable given

the environmental state (Friston, Thornton, & Clark, 2012). However,

such a behavior is seldom observed in humans in the real world. In a

dark room, the intelligent agents would search for light sources to

explore the surroundings or aim to exit the room.

One may object that, for the FEP agent, a dark room would para-

doxically correspond to a state of particularly high relevance. Driven

by the surprise-minimization objective, the FEP agent would eventu-

ally not bootstrap itself out of such saddle points to explore more

interesting parts of the environment. In contrast, an organism operat-

ing under our RL-based theory would inevitably identify the sensory-

stimulus-deprived room as a local minimum. Indeed, hippocampal

experience replay (see Section 4.2.3) could serve to sample memories

or fantasies of alternative situations with reward structure. Such

artificially generated internal sensory input, potentially subserved by

the DMN, could then entice the organism to explore the room, for

instance by looking for and using the light switch or finding the

room exit.

We finally note that FEP and active inference can be reframed in

terms of our RL framework. This is possible by recasting the Q-value

function (i.e., expected long-term reward) potentially maximized by

the DMN to correspond to negative surprise, that is, the log-likehood

of current sensory priors the agent has about the world. More explic-

itly, this formulation corresponds to using free-energy as a Q-value

approximator for the MDP in the following way:

−Q ≈ FRG xð Þ|fflffl{zfflffl}
negative free energy

≈ − log pGð Þ|fflfflfflfflfflffl{zfflfflfflfflfflffl}
FEP generative surprise

:

Such a surprise-guided RL scheme has previously been advocated

under the equivalent framework of energy-based RL.

(Elfwing, Uchibe, & Doya, 2016; Sallans & Hinton, 2004) and

information compression (Mohamed & Rezende, 2015; Schmidhuber,

2010). More broadly, minimization of surprise quantities alone may be

insufficient to explain the diversity of behaviors that humans and

other intelligent animals are able to perform.

6 | CONCLUSION

Which brain function could be important enough for the existence

and survival of the human species to justify constantly high energy

costs? While previous experiments on the DMN frequently set out to

investigate what its subserved function may be, we have proposed a

way of reasoning how this major brain network may do what it is

doing. MDPs motivate an attractive formal account of how the associ-

ation cortex, expanded so much in the human brain, can be thought to

implement multi-sensory representation and high-level decision-

making to optimize the organism's behavioral strategies. This idealized

process model accommodates a number of previous observations

from neuroscience studies on the DMN by simple but nontrivial

mechanisms. Viewed as a Markovian sequential decision process,

human behavior unfolds by inferring expected reward outcomes

from hypothetical action cascades and extrapolation from past expe-

rience to upcoming events for guiding behavior in the present. MDPs

also provide a formalism how opportunity in the environment can be

deconstructed, evaluated, and exploited when an agent is con-

fronted with challenging interdependent decisions. This abstract pro-

cess interpretation may well be compatible with the DMN's poorly

understood functional involvement across autobiographical memory

recall, problem solving, abstract reasoning, social cognition, as well

as delay discounting and self-prospection into the future. For

instance, improvement of the internal world representation by

injecting stochasticity into the recall of past actions and inference of

action outcomes may explain why highly accurate memories have

been disfavored in human evolution and why human creativity is

adaptive.
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A major hurdle in guessing DMN function from cognitive brain-

imaging studies has been its similar neural engagement in different

time scales: thinking about the past (e.g., autobiographical memory

retrieval), imagining hypothetical presents (e.g., daytime mind-wander-

ing), and anticipating scenarios yet to come (e.g., delay discounting).

The MDP account of DMN activity offers a natural integration of a-

priori diverging classes of cognitive processes into a common frame-

work. It is an important advantage of the proposed artificial intelli-

gence perspective on DMN biology that it is practically computable

and readily motivates neuroscientific hypotheses that can be put to

the test in future research. We encourage neuroscience experiments

on the DMN to operationalize the set of action, value, and state vari-

ables that govern the behavior of intelligent RL agents. At the least,

we propose an alternative vocabulary to describe, contextualize, and

interpret experimental findings in neuroscience studies on higher-level

cognition. Ultimately, neural processes in the DMN may realize a

brain-wide information integration ranging from real experience over

purposeful dreams to predicted futures to continuously refine the

organism's intervention on the world.
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