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Abstract

The deep ocean is the largest biome on Earth and faces increasing anthropogenic pres-

sures from climate change and commercial fisheries. Our ability to sustainably manage this

expansive habitat is impeded by our poor understanding of its inhabitants and by the difficul-

ties in surveying and monitoring these areas. Environmental DNA (eDNA) metabarcoding

has great potential to improve our understanding of this region and to facilitate monitoring

across a broad range of taxa. Here, we evaluate two eDNA sampling protocols and seven

primer sets for elucidating fish diversity from deep sea water samples. We found that deep

sea water samples (> 1400 m depth) had significantly lower DNA concentrations than sur-

face or mid-depth samples necessitating a refined protocol with a larger sampling volume.

We recovered significantly more DNA in large volume water samples (1.5 L) filtered at sea

compared to small volume samples (250 mL) held for lab filtration. Furthermore, the number

of unique sequences (exact sequence variants; ESVs) recovered per sample was higher in

large volume samples. Since the number of ESVs recovered from large volume samples

was less variable and consistently high, we recommend the larger volumes when sampling

water from the deep ocean. We also identified three primer sets which detected the most

fish taxa but recommend using multiple markers due the variability in detection probabilities

and taxonomic resolution among fishes for each primer set. Overall, fish diversity results

obtained from metabarcoding were comparable to conventional survey methods. While

eDNA sampling and processing need be optimized for this unique environment, the results

of this study demonstrate that eDNA metabarcoding can facilitate biodiversity surveys in the

deep ocean, require less dedicated survey effort per unit identification, and are capable of

simultaneously providing valuable information on other taxonomic groups.
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Introduction

The deep ocean is the largest biome on Earth by volume and also one of the planet’s most

understudied environments [1]. The biodiversity of the deep ocean has not been fully

explored nor is the distribution and biology of many deep-water species well understood

[1–3]. Despite our limited knowledge of deep-water fauna, several species are commercially

targeted and, along with many other taxa, face increasing pressure from climate change

[4–6]. Monitoring and managing the impacts of commercial fishing and climate change

in this environment is difficult due to logistic constraints and the high cost of sampling

such challenging environments [7]. Despite these impediments, documenting the

biodiversity of this region is integral to sustainable management and ecosystem

monitoring.

Deep ocean biodiversity surveys are often done using a combination of methods, each

targeting a particular taxonomic group. For fish and micronekton, trawling, long-lining,

and acoustic monitoring are often used. Small nets and filtration systems can target small

zooplankton and phytoplankton and autonomous video camera systems can capture

a range of macrofauna [8]. Each of these methods have limitations in their ability to

capture a community based on morphological and behavioral selectivity as well as taxo-

nomic resolution. Additionally, not all of these methods can be employed equally well in

all areas of the ocean. For example, bottom trawling is ineffective for surveying along

steep slopes and rocky surfaces and is undesirable in areas with sensitive epifauna,

such as deep-water corals and sponges [9, 10]. The need to employ multiple sampling

methods to assess the biodiversity of the deep sea increases the sampling effort required,

complicates the interpretation of data, and thereby adds to the challenges of surveying this

environment.

Metabarcoding using environmental DNA (eDNA) is a relatively new approach to biodi-

versity analysis that can facilitate surveys by reducing the sampling effort and taxonomic

expertise required and thus far metabarcoding has been underutilized in the deep ocean

[11]. Marine eDNA studies have primarily surveyed coastal and/or surface water (e.g. [12,

13]), with very few studies sampling water at depths > 1000m for eukaryotic eDNA (but

see [14]). Much of the eDNA work on deep-sea communities has focused on sediment sam-

pling to study benthic communities (e.g. [15–17]) as opposed to fish and pelagic

communities.

Using eDNA from deep sea water samples to characterize biodiversity has the potential to

provide critical insight into deep ocean biodiversity however, eDNA sampling protocols need

to be optimized for this environment. Abiotic factors, such as the reduced light levels and com-

paratively low variability in temperature and salinity in deep ocean water [2], affect the persis-

tence of eDNA while biotic factors, such as the predominant life histories and/or metabolism

of the organisms living in the deep ocean (e.g. slower metabolism; [18]), may affect the amount

of eDNA released into the water. Therefore, the optimal protocols for eDNA sampling in the

deep ocean must be determined separately from coastal and surface marine water sampling

and furthermore, sample processing should be optimized for the particular target groups of

deep-sea organisms (e.g. fish).

The objectives of this study were to develop an eDNA metabarcoding sampling protocol for

the deep sea, evaluate the performance of multiple primer sets for the detection of deep-sea

fishes and compare eDNA results to conventional fish surveys. We collected seawater samples

over two sampling years and refined the sampling and lab protocols in the second season to

improve the detection of deep-sea fishes. While fishes were the target group, we also report

general biodiversity results that were detected concurrently.
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Methods

Study area

We surveyed fish communities in the Labrador Sea, in the Northwest Atlantic Ocean, in the

summer (June-August) over three sampling years. Surveys using conventional sampling tech-

niques (2017–2019) and eDNA water sampling (2018–2019) were conducted along three tran-

sects each covering a water depth gradient of approximately 500 m to 3000 m (see S1 Fig for

map and S1 Table for GPS coordinates). All field sampling was conducted under experimental

licenses from Fisheries and Oceans Canada.

Conventional fish surveys

Harvester logbooks and research vessel (RV) surveys using Campelen trawls are typically used

to monitor and manage demersal fish communities in Canadian waters but these collections

are restricted to waters less than 1500m and are relatively sparse for northern areas [19]. In

deeper waters (>1500 m) of the Labrador Sea, there is very limited information on demersal

or pelagic fish communities. Therefore, to augment species lists from RV surveys and log-

books, targeted sampling of demersal (baited hooks and cameras; [19]) and pelagic (Isaac Kidd

Midwater Trawls (IKMT) [20]) fish was conducted in the study area. Demersal fish sampling

was conducted along two transect lines in 2017 and 2019, whereas pelagic fish communities

were sampled across three transect lines in 2018 and 2019. Baited hooks and cameras were

deployed on the ocean bottom whereas IKMT samples were collected from the mesopelagic

deep-scattering layer (an area of concentrated pelagic biomass [21]; sampled depths ranged

from 360–536 m) as detected by hull-mounted echosounders. Fish captured using both meth-

ods were identified morphologically. While the exact sampling sites differed for pelagic and

demersal sampling sites, pelagic sampling was conducted over the same transects as the demer-

sal sampling but was restricted to a maximum water depth of 2500 m (versus a maximum

depth of ~3000 m for demersal sampling).

eDNA water sample collection

eDNA water samples were collected from seven stations along one transect in 2018. In 2019, two

of these stations were resampled and water samples were collected from an additional eight sta-

tions along the two other transects. At each station, samples were collected from the surface, the

deep scattering layer and just above the bottom up to a depth of ~2,500 m depth (n = 144, S1

Table). Water samples were co-located in time and space with pelagic fish (IKMT) sampling. Sam-

ples were collected using a Niskin-style rosette sampler. Rosette bottles were assigned to eDNA

sampling for the duration of the field mission and were decontaminated prior to sampling and

between stations using ELIMINase (Decon Labs, Inc., King of Prussia, PA, USA). At each sam-

pling station, a field blank was collected using distilled water to control for potential contamina-

tion. In 2018, we employed a sampling strategy adapted from previous coastal surface water

sampling in the North Atlantic [22], where triplicate 250 mL samples were collected at each sam-

pling depth. Water samples were then frozen at -20˚C and shipped frozen to the lab for subse-

quent processing. Water filtration took place in a clean lab, thereby reducing the potential for

sample contamination, however cold storage space was required on the vessel to store water sam-

ples. Based on the results of 2018 sampling, the sampling strategy was modified for 2019. We

increased the water volume collected by a factor of 6, collecting triplicate 1.5 L water samples in

2019, however the larger volume of water collected could not be kept in cold storage on the vessel

due to space limitations. As such, water samples in 2019 were filtered on the vessel. Filter car-

tridges (requiring less storage space) were stored at -20˚C for the duration of the expedition.
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Laboratory procedures

All water samples were filtered through 0.22 μm PVDF Sterivex filters (MilliporeSigma, Bur-

lington, MA, USA) using a peristaltic pump. Filtration on the vessel took place in a dedicated

lab space that included a positive pressure ventilation system. Before each filtration session,

surfaces and equipment were all decontaminated with ELIMINase and rinsed with deionized

water. Filtration began immediately after sample collection (average volume filtered

1.35 ± 0.15 L). For samples filtered in the lab, filtration took place in a PCR clean lab under a

laminar flow hood (AirClean Systems, Creedmoor, NC, USA) which was decontaminated

using ELIMINase, lab-grade water and 70% ethanol prior to each sample set. Water samples

were thawed at 4˚C and immediately filtered. DNA was extracted from all filter membranes

using the DNeasy PowerWater Kit (Qiagen, Hilden, Germany). DNA extracts were quantified

using the Quant-iT PicoGreen dsDNA assay with a Synergy HTX plate fluorometer (BioTek,

Winooski, VT, USA).

Seven DNA markers from three gene regions (cytochrome c oxidase I (COI), 12S and 18S)

were selected to assess eukaryotic biodiversity in the 2018 samples (Table 1A), including three

primer sets specifically for bony fish. The 2019 samples were analyzed with only these three

fish-targeting primer sets. Each PCR reaction contained 1X reaction buffer, 2 mM MgCl2,

0.2mM dNTPs, 0.2 μM of each of the forward and reverse Illumina-tailed primers, 1.5U Plati-

num Taq (Invitrogen, Carlsbad, CA, USA) and 1.2 μL of DNA in a total volume of 15 μL.

Due to the higher concentration of DNA recovered from 2019 samples, diluted DNA was used

for 2019 samples (1/10 and 1/2 for surface samples and samples at depth, respectively). The

mean concentration of template DNA used was 0.44 ± 0.96 ng/μL. See Table 1B for PCR con-

ditions for all primer sets. Three PCR replicates were performed for each primer set from each

sample and then pooled for a single PCR cleanup with the QIAquick 96 PCR purification kit

(Qiagen).

Amplicons were visualized using agarose gel (1.5% w/v) electrophoresis to verify amplifica-

tion of DNA markers and to assess negative controls generated during PCR, extraction, filtra-

tion, and field collection. Negative controls were carried through to sequencing as an added

level of verification. Amplicons were then indexed using unique dual Nextera indexes (IDT,

Coralville, IA, USA; 8-bp index codes). Indexing PCR conditions were initiated for 3 mins at

95˚C, followed by 12 cycles of 95˚C for 30 s, 55˚C for 30 s, and 72˚C for 30 s, and a final exten-

sion at 72˚C for 5 mins. Amplicons were quantified with Quant-iT PicoGreen dsDNA assay

and pooled together in equimolar concentrations by DNA marker. Amplicon pools were

cleaned using AMPure XP cleanups, quantified with a Qubit fluorometer (Thermo Fisher,

Waltham, MA, USA) and the size distribution of each pool was verified with the DNA 7500 kit

on the Agilent 2100 Bioanalyzer. The 2018 12SV5, COI Leray, COI MiniFishE, 18SV9M, and

COI F230 amplicon pools were combined into one library. The 2019 12Steleo, 12S MiFishU

and COI MiniFishE amplicons pools were combined with the 2018 12Steleo and 12S MiFishU

amplicon pools in a second library. The libraries were sequenced with a 300-cycle S1 kit and a

500-cycle SP kit, respectively, on the Illumina NovaSeq 6000 following the NovaSeq standard

workflow with a target minimum sequencing depth of 1 million sequences per sample per

amplicon. Raw sequence reads are available in NCBI’s sequence read archive under project

PRJNA643526.

Bioinformatics

Base calling and demultiplexing were performed using Illumina’s bcl2fastq software

(v2.20.0.422). Primers were trimmed from sequences using cutadapt v1.16 [30] and then

DADA2 v1.8.015 [31] was used for quality filtering, joining paired end reads (maxEE = 2,
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minQ = 2, truncQ = 2, maxN = 0) and denoising using default parameters to produce exact

sequence variants (ESVs). Taxonomy was assigned to ESVs using NCBI’s blastn tool v1.9.0

[32] and the nt database (downloaded: November 30, 2019) with an e-value cut-off of 0.001. In

cases where a sequence matched multiple taxa with an equally high score, we only assigned tax-

onomy to the lowest common ancestor of the ambiguous hits. The resulting taxonomic hits

were filtered using a selection criterion (% sequence similarity multiplied by % overlap

between the query sequence and the reference sequence). Family-level matches were reported

using a minimum of 95% selection criterion, genus-level matches were reported using a mini-

mum of 98% selection criterion and species-level matches were reported using a 100% or per-

fect match. All taxa detected were verified using the WoRMS [33] and EOL [34] databases and

spurious or irrelevant hits (e.g. terrestrial or domestic species) were omitted.

Statistical analysis

All statistical analyses were performed using R v3.5.1 [35]. Sampling sites in 2018 (250 mL)

and 2019 (1.5 L) did not overlap completely therefore samples with different volumes were col-

lected in different locations and different years, meaning no direct comparisons between sam-

ples can be made. However, we made general comparisons across all small volume samples

and all large volume samples. Additionally, previous studies in this region suggest that spatial

differences in community structure are small compared to community changes by water depth

[19]. We used a robust two-way ANOVA (α = 0.05) implemented using the ‘Rfit’ package

v0.24.2 [36] to compare the DNA concentrations in each sample between sampling volumes

and between sampling depths, categorized as shallow (<500 m), mid-depth (500–1400 m) or

deep (>1400 m). Shallow includes samples from the surface and the deep scattering layer for

some stations. Mid-depth includes samples from the deep scattering layer and the bottom for

some stations. Deep includes only samples from the bottom. Depth categories were chosen

based on the distribution of depths sampled at each site and preliminary data exploration (see

S2 Fig). Using data from the three markers used on 2018 and 2019 samples (COI MiniFishE,

12Steleo, 12S MiFishU), we used a robust two-way ANOVA to compare the number of ESVs

recovered in each sample between sampling volumes and between sampling depths. Post-hoc

comparisons between groups were performed using the ‘rcompanion’ package v1.13.2 [37].

We used Levene’s test to determine if the variance in DNA concentration and number of ESVs

differed between years and water depths.

We assessed the performance of different primer sets by comparing the number of taxa

detected and the resolution of taxonomic assignments for all markers, with a particular

focus on the recovery and resolution of fishes. In addition, we used a multi-species, multi-

scale occupancy modeling framework to compare the detection probabilities of all fish spe-

cific primer sets (12S MiFishU, 12Steleo, COI MiniFishE) across fish taxa while accounting

for false negatives following McClenaghan et al. [38]. We included water depth (meters) as

a covariate at the level of occupancy and primer set as covariate at the level of detection

probability (see S1 Text for model formulation and detailed methods). We ran two models

using observations from different levels of taxonomic resolution: fish species and fish

families.

We compared the fish taxa detected via eDNA metabarcoding to the fish taxa detected via

conventional survey methods for a single sampling expedition (2019 eDNA and 2019 pelagic

IKMT sampling). This represents approximately equal field sampling effort for both methods.

We summarized the total number of taxa detected using each method at multiple taxonomic

levels (family, genus, and species). Additionally, we summarize the total number of taxa recov-

ered from multiple years and methods of conventional sampling.
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Results

General sequencing summary

The mean number of sequences recovered per sample per amplicon after bioinformatic filter-

ing was 1,250,418 (range: 16–13,603,412) yielding an average of 706 (range: 1–6003) ESVs per

sample per amplicon and a total of 148,339 ESVs. 77.8% of the ESVs matched a sequence in

the reference database, although the taxonomic rank assigned to each ESV was variable and

resolution differed between amplicons (Table 2).

A total of 21 fish families, 23 genera and 15 species were identified using eDNA from 2018

and 2019 samples across all markers (Table 3). In the deep-water samples (>1400 m), 11 fish

families, 11 genera and 8 species were identified. The fish species detected included several

deep-water and demersal specialists, such as Bigelow’s Ray (Rajella bigelowi), Agassiz’ Slick-

head (Alepocephalus agassizii), Greenland Dwarf Snailfish (Psednos groenlandicus), along with

the Roundnose Grenadier (Coryphaenoides rupestris) and the Northern Wolffish (Anarhichas
denticulatus), which are listed as Critically Endangered and Endangered, respectively on the

IUCN Red List [39, 40]. Several globally important members of the mesopelagic community

were also detected, including Glacier Lanternfish (Benthosema glaciale) and Veiled Angle-

mouth (Cyclothone microdon). In addition to the fishes, 13 metazoan phyla were detected,

where 58 families, 39 genera, 25 species were assigned names (S2 Table).

Volume comparison

Based on a two-way ANOVA, there was a significant increase in the total amount of DNA

recovered (as measured by fluorometry of DNA extracts) from the 1.5-liter samples collected

in 2019 compared to the 250 mL samples from 2018 (F = 219.32, df = 1, p< 0.001; Fig 1A).

Table 2. ESV level summary of taxonomic identifications via metabarcoding for each primer set.

A Primer Set # ESV # ESV Tax # Metazoan ESV Family Genus Species

# ESV % # ESV % # ESV %

12SV5 890 245 70 69 98.6% 68 97.1% 14 20.0%

12Steleo 1,192 1,106 312 309 99.0% 184 59.0% 22 7.1%

12S MiFishU 13,228 12,935 73 69 94.5% 58 79.5% 14 19.2%

18SV9M 7,081 6,878 72 38 52.8% 24 33.3% 7 9.7%

COI F230 16,252 15,952 57 0 0.0% 0 0.0% 0 0.0%

COI FishE 89,506 61,647 498 422 84.7% 166 33.3% 70 14.1%

COI Leray 20,190 16,628 44 40 90.9% 35 79.5% 22 50.0%

B Primer Set # ESV # ESV Tax # Fish ESV Family Genus Species

# ESV % # ESV % # ESV %

12SV5 890 245 2 2 100.0% 2 100.0% 1 50.0%

12Steleo 1,192 1,106 110 107 97.3% 49 44.5% 7 6.4%

12S MiFishU 13,228 12,935 29 27 93.1% 21 72.4% 4 13.8%

18SV9M 7,081 6,878 9 2 22.2% 0 0.0% 0 0.0%

COI F230 16,252 15,952 2 0 0.0% 0 0.0% 0 0.0%

COI FishE 89,506 61,647 19 16 84.2% 12 63.2% 9 47.4%

COI Leray 20,190 16,628 0 0 0.0% 0 0.0% 0 0.0%

# ESV indicates the total number of ESVs detected, # ESV Tax represents number of ESVs with taxonomic matches at any level, # Metazoan ESV indicates the number

of ESVs identified as Metazoa (�0.9 selection criteria, kingdom = Metazoa) and # Fish ESV indicates the number of ESVs identified as fish (> 0.9 selection criteria,

class = Actinopteri or Chondrichthyes). Table (A) summarizes the number and percentage of metazoan ESVs assigned to each taxonomic level and table (B) summarizes

the number and percentage of fish ESVs assigned to each taxonomic level.

https://doi.org/10.1371/journal.pone.0236540.t002
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Table 3. Summary of all fish taxa identified in seawater samples, indicating whether or not the taxa was detected at each depth (shallow< 500 m, mid 500–1400 m,

deep> 1400 m) and the total number of samples in which the taxa was detected.

Order Family Genus Species Deep Mid Shallow # Samples

Alepocephaliformes Alepocephalidae Alepocephalus Alepocephalus agassizii Y 1

Alepocephaliformes Alepocephalidae Alepocephalus Y Y 4

Alepocephaliformes Alepocephalidae Y Y 2

Anguilliformes Synaphobranchidae Synaphobranchus Y Y 2

Argentiniformes Bathylagidae Bathylagus Bathylagus euryops Y Y 2

Argentiniformes Bathylagidae Bathylagus Y Y 3

Argentiniformes Bathylagidae Y 1

Aulopiformes Paralepididae Paralepis Paralepis coregonoides Y 1

Beryciformes Melamphaidae Poromitra Y Y 2

Beryciformes Melamphaidae Y 1

Clupeiformes Clupeidae Y Y 3

Gadiformes Macrouridae Coryphaenoides Coryphaenoides rupestris Y 1

Gadiformes Macrouridae Macrourus Y 2

Gadiformes Macrouridae Y Y Y 12

Gadiformes Moridae Antimora Antimora rostrata Y Y 4

Gadiformes Moridae Antimora Y Y 4

Myctophiformes Myctophidae Benthosema Benthosema glaciale Y Y Y 11

Myctophiformes Myctophidae Lampanyctus Lampanyctus macdonaldi Y Y Y 6

Myctophiformes Myctophidae Lampanyctus Y Y Y 7

Myctophiformes Myctophidae Notoscopelus Y 1

Myctophiformes Myctophidae Protomyctophum Y Y 5

Myctophiformes Myctophidae Y Y Y 41

Perciformes Anarhichadidae Anarhichas Anarhichas denticulatus Y 1

Perciformes Anarhichadidae Anarhichas Y Y 4

Perciformes Anarhichadidae Y Y 2

Perciformes Cottidae Icelus Y Y 2

Perciformes Liparidae Psednos Psednos groenlandicus Y Y 2

Perciformes Liparidae Psednos Y 1

Perciformes Pholidae Pholis Y 1

Perciformes Pholidae Y 2

Perciformes Sebastidae Sebastes Sebastes mentella Y 2

Perciformes Sebastidae Sebastes Y 2

Perciformes Zoarcidae Y 2

Pleuronectiformes Pleuronectidae Reinhardtius Reinhardtius hippoglossoides Y 1

Pleuronectiformes Pleuronectidae Y 1

Rajiformes Rajidae Amblyraja Y 2

Rajiformes Rajidae Rajella Rajella bigelowi Y 2

Rajiformes Rajidae Rajella Y 2

Rajiformes Rajidae Y 2

Salmoniformes Salmonidae Y Y 2

Stomiiformes Gonostomatidae Cyclothone Cyclothone microdon Y Y Y 6

Stomiiformes Gonostomatidae Cyclothone Y Y 9

Stomiiformes Gonostomatidae Y Y 4

Stomiiformes Stomiidae Stomias Stomias boa Y Y 2

Stomiiformes Stomiidae Stomias Y Y 2

Uranoscopiformes Ammodytidae Ammodytes Ammodytes hexapterus Y 1

https://doi.org/10.1371/journal.pone.0236540.t003
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Water depth also had a significant effect on the amount of DNA recovered (F = 35.64, df = 2,

p< 0.001), with a lower DNA concentration recovered from deep water samples (>1400 m)

compared to mid-depth (500–1400 m) and shallow (<500 m) samples.

Based on a two-way ANOVA, there were significantly more ESVs detected in the 1.5-liter

2019 samples compared to the 250 mL 2018 samples (F = 88.28, df = 1, p< 0.001; Fig 1B).

Fig 1. Comparison of (A) DNA concentration (pg/μL) in extracts and (B) number of ESVs recovered from small

volume samples collected in 2018 and large volume samples collected in 2019 at various depths (shallow< 500 m, mid

500–1400 m, deep>1400 m). The lines inside the boxes represents the median values, the top and bottom of the boxes

represent the 75% and 25% quartiles. The whiskers represent 1.5 times the inter-quartile range (IQR). Outliers (any

data beyond 1.5�IQR) are shown by circles. Different letters indicate significant differences.

https://doi.org/10.1371/journal.pone.0236540.g001
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Additionally, there was significantly less variance in the number of ESVs recovered from the

larger volume samples (F = 30.00, df = 1, p< 0.001). The different sampling volumes were col-

lected in different years and at different locations so no direct comparisons of the biodiversity

detected by volume could be made. There was a significant difference in the number of ESVs

recovered between sampling depths (F = 6.53, df = 2, p = 0.002). Post-hoc comparisons

revealed that large volume mid depth samples from 2019 recovered the most ESVs. The num-

ber of ESVs recovered from large volume deep samples in 2019 was not significantly higher

than the number of ESVs detected in any of the small volume water samples. See S3 Fig for a

comparison between DNA concentration and number of ESVs by sampling location (surface,

deep scattering layer, bottom).

Marker comparison

Of the seven primers sets tested on the 2018 samples, the fish-targeted 12Steleo, 12S MiFishU

and COI MiniFishE primer sets were the most effective at detecting fish with 11, 8 and 3 fami-

lies detected by each primer set respectively. 12Steleo also provided the highest resolution with

7 species identified. COI Leray and COI F230 failed to detect any fish families. The two primer

sets that identified the most metazoan families other than fish, were 18SV9M and COI FishE,

which detected 18 and 12 families in 2018 samples, respectively. The three primer sets which

performed well for fishes were run on samples from 2019 (12Steleo, 12S MiFishU and COI

FishE) to maximize fish detection while also identifying a range of metazoans. An additional

three fish families and 22 metazoan families were detected in the 2019 samples.

For the three primer sets used across both years, no single fish species was detected by all

primer sets and all three primer sets detected at least one species that was unique to that primer

set. Occupancy modeling revealed taxa specific variability in probabilities of detection between

primer sets at the species and family level (Figs 2 and 3), however when comparing the primer

sets across the whole fish community, there was little difference in the community mean prob-

ability of detection for each primer set (Fig 4).

Morphology & eDNA comparison

Conventional surveys were conducted using multiple methods on three transects in the sam-

pling area. These surveys were performed over multiple years and on multiple sampling expe-

ditions and allowed us to assemble an inventory of species for the region. Overall, these

morphological surveys identified 27 species, 25 genera and 18 families in the sampling area. To

directly compare between conventional methods and eDNA, we considered only morphologi-

cal data that was generated during the same sampling expedition as eDNA sample collections.

There was a high degree of overlap in taxa detected between eDNA and identified via mor-

phology (i.e. via IKMT pelagic trawls), but several taxa were unique to metabarcoding (Fig 5).

A total of 14 fish species, 21 genera and 16 families were identified using eDNA while 10 fish

species, 8 genera and 6 families were identified morphologically.

Discussion

We demonstrated a successful protocol for the detection of deep-sea fishes using eDNA from

seawater samples collected at depths down to 2500 m. Our results suggest that eDNA is less

abundant in seawater from depths > 1400 m, a factor which should be considered for sam-

pling designs of future deep-sea eDNA studies. The physical characteristics of the deep ocean

(e.g. lower temperature, less sunlight) suggest DNA persists longer in this environment than at

the surface [41, 42], however the lower DNA concentration may reflect the different biological

community present, with less abundant plankton and more species with low metabolic rates
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living in the deep ocean [18, 43, 44]. We recommend the sampling protocol followed in 2019

where larger water volumes (� 1.5 L) were collected, particularly for sampling the deep marine

environment where the amount of DNA recovered from samples was lower. While the number

of ESVs recovered from large volume deep samples was not significantly higher than the small

volume samples, the reduced variance in the number of ESVs recovered suggests a more

robust sampling method. Increasing the sequencing depth may be a means to make up for low

DNA recovery in samples such as this. Indeed, in this study, the samples were sequenced at

much higher depth (~1,000,000 reads per sample per amplicon) than most metabarcoding

studies [22]. Despite an equally high sequencing depth in the small volume and low DNA con-

centration samples, the number of ESVs recovered was consistently higher in large volume

and high DNA concentration samples. These results highlight the need for metabarcoding

sampling methods to be tailored to the sampling environment and for further research into

the origin, persistence, and degradation of eDNA in marine systems. Much of the research on

the dynamics of eDNA has focused on freshwater systems (e.g. [45–47]) and much less is

known about this cycle for eDNA in marine environments, particularly in the deep ocean (but

see [48, 49]). As our understanding of eDNA dynamics in the deep ocean progresses, eDNA

can be a reliable way of detecting deep sea organisms, provided appropriate sampling methods

are used.

Fig 2. Estimated detection probability for each fish species with each primer set based on multi-species, multi-scale occupancy modeling. The lines inside

the boxes represents the median values, the top and bottom of the boxes represent the 75% and 25% quartiles. The whiskers represent 1.5 times the inter-

quartile range (IQR).

https://doi.org/10.1371/journal.pone.0236540.g002
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When field sampling protocols are optimized for a particular system, there are often logisti-

cal constraints that must be considered in addition to the biological factors. In this study, the

cold storage of large volume water samples on the sampling vessel was a limitation and there-

fore large volume samples were filtered in situ on the vessel rather than in a dedicated pre-PCR

lab where downstream processing occurred. While this allowed larger water volumes to be col-

lected, it required additional personnel time on the vessel and there may have been an

increased risk of contamination for filtering in situ on an operational vessel at sea. In this case,

precautions were taken to minimize the contamination risk including decontaminating the lab

and the addition of negative controls at every step in the field (sample collection, filtration)

and subsequent laboratory steps (extraction, PCR amplification). The adaptability of the filter-

ing process was essential for allowing the collection of large volume water samples in this

study. We acknowledge that these additional changes to the protocol may have contributed to

the different results seen in 2018 and 2019. Additionally, it is possible that the different results

obtained between years were due, in part, to changes in the fish diversity present in the sam-

pling area each year. Ideally, samples would have been collected during a single survey how-

ever, the logistics of sampling in this remote region prevented this. Based on data from

previous conventional surveys in the area, patterns of fish diversity in this area are thought to

Fig 3. Estimated detection probability for each fish family with each primer set based on multi-species, multi-scale occupancy modeling. The lines inside the

boxes represents the median values, the top and bottom of the boxes represent the 75% and 25% quartiles. The whiskers represent 1.5 times the inter-quartile range

(IQR).

https://doi.org/10.1371/journal.pone.0236540.g003
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be relatively homogenous over space and time [19, 50]. Furthermore, water sampling volume

is known to affect the biodiversity recovered from metabarcoding samples [51]. Therefore,

water volume was likely the primary factor contributing to the observed differences between

study years. The specific logistical constraints of sampling will be unique to each sampling mis-

sion and depend on the resources available, but they are an important consideration when

optimizing sampling protocols.

Fig 4. Community mean probabilities of detection for each primer set based on a multi-species, multi-scale

occupancy model using fish family level data only. Similar results were seen from the fish species-level model. The

lines inside the boxes represents the median values, the top and bottom of the boxes represent the 75% and 25%

quartiles. The whiskers represent 1.5 times the inter-quartile range (IQR).

https://doi.org/10.1371/journal.pone.0236540.g004

Fig 5. Comparison of the number of fish taxa detected at various taxonomic levels (species, genus, family) between sampling methods (eDNA

metabarcoding vs. capture and morphological identification using IKMT pelagic trawls) for a single sampling expedition in 2019. Conventional methods

are shown in purple and eDNA is shown in orange.

https://doi.org/10.1371/journal.pone.0236540.g005
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We identified multiple primers sets that performed well for deep-sea fishes, but we also

determined that these primer sets vary considerably in their detection probabilities within the

fishes. It should also be noted that the fish-specific 12S primers used in this study (12Steleo,

12S MiFishU) were designed to target bony fish and not cartilaginous fish. While we did detect

one species of cartilaginous fish (Rajella bigelowi) using 12Steleo, alternative primers should be

considered for studies targeting cartilaginous fish (e.g. 12S MiFishE [29]). The fish primer sets

used in this study recovered many fish taxa, however the species-level resolution was not

always consistently high. For example, for the 12Steleo primer set, 110 fish ESVs were recov-

ered and only 7 (6.4%) were identified to the species level (as seen in Table 2). The low resolu-

tion is due to a combination of low sequence diversity between species (where query

sequences matched multiple species in the reference database) and poor reference database

coverage (where query sequences did not match any reference sequences at our species-level

threshold) [52]. Other studies comparing primer sets for the detection of fish have found simi-

lar taxonomic biases and showed that a lack of reference database coverage negatively affects

the resolution of several targeted primer sets [53, 54]. This reinforces the importance of marker

selection and highlights the need to use multiple markers to maximize detection and taxo-

nomic resolution even within a relatively narrow target group, such as fish. Integrating data

from multiple primer sets from multiple marker regions is often recommended for metabar-

coding-based biodiversity surveys [55–58]. This also highlights the need for improved species

coverage in reference databases. We identified a primer set (COI MiniFishE [24]) that per-

forms well for a range of metazoan taxa in addition to fishes, suggesting this would be a useful

primer set for comprehensive biodiversity assessments in marine environments. Conversely,

one of the primer sets that has been used in a number of marine metabarcoding papers (COI

Leray; mlCOIintF/ jgHCO2198 [23]) did not detect any fish taxa and hence is not recom-

mended for analyses of fish biodiversity. Using deep sequencing with multiple primer sets is a

simple strategy that can capture deep sea biodiversity especially for less abundant and elusive

fish taxa.

The fish taxa detected using eDNA metabarcoding were comparable to those identified via

conventional fish survey methods, although several taxa were unique to each method. This is

consistent with other studies comparing eDNA to other methods of biodiversity assessment

(e.g. [59, 60]). When looking at a single sampling expedition, eDNA captured more fish diver-

sity than conventional methods, and did so from rosette deployments that were used to fulfil

other mission objectives (e.g. obtaining water for chemical analyses). Given the expense and

time constraints associated with large research vessels, achieving such efficiencies is notewor-

thy. Furthermore, the relative simplicity of eDNA sample collection allows for synchronous

usage of hydroacoustics and in-situ sensors. Metabarcoding also has the added benefit of

potentially detecting species outside the target taxa. While this is dependent on the primer sets

selected, the ability to detect species from all trophic levels and life histories from the same

sample drastically increases the efficiency of biodiversity assessments by minimizing the num-

ber of different sampling methods required to holistically survey an ecosystem (e.g. [61]). Fur-

thermore, various marine habitats (e.g. pelagic, demersal) can be sampled using the same

methods compared to conventional surveys where various capture methods, each with their

associated biases, are used in separate habitats. And finally, eDNA samples, once collected, can

be used for subsequent analyses with other primer sets to generate biodiversity data for other

groups or to target specific species or their populations without the need for additional sam-

pling campaigns. For example, while the samples used in this study were collected and pro-

cessed with the goal of detecting fishes, these same water samples could be processed with

primers targeting corals to provide insight into deep-sea coral diversity without the need for

additional sampling effort.
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While there is a lot to be gained by applying metabarcoding tools to surveying the deep

ocean, there are also limitations to this method. Since the biodiversity of this environment is

not well-known, the reference database coverage for deep sea species is unlikely to be as com-

prehensive as coastal or freshwater systems. Low reference database coverage can reduce the

taxonomic resolution of eDNA studies [62]. This limitation can be dealt with by generating a

reference library for key fish species in the deep ocean alongside eDNA metabarcoding moni-

toring efforts. Metabarcoding is also limited in its quantitative ability [63] and most studies

use a presence/absence approach (e.g. [64]). This method is very useful for assessing species

richness and community structure [65], and determining species distributions [66], but the

current methodology cannot be used to infer absolute abundance. Age structure, reproductive

stage, and contaminant load are other examples of data that cannot be determined via eDNA.

These factors will still rely on the capture of specimens, however eDNA can significantly

increase our understanding of spatial and temporal distribution of species, which can be used

to guide more detailed sampling where conventional sampling is required.

eDNA metabarcoding is a powerful approach for surveying biodiversity in the deep ocean.

While future work will continue to improve these methods, such as increasing the taxonomic

coverage in reference databases and refining sampling designs, this methodology can be

employed immediately to complement ongoing biodiversity monitoring efforts in the deep

ocean. Given the vastness of the deep ocean environment, our limited knowledge of this

region’s biodiversity and the increasing anthropogenic pressures facing this fauna, there is

huge potential for eDNA metabarcoding to revolutionize biodiversity monitoring and envi-

ronmental stewardship in these areas.
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Basemap. February 10, 2012. www.arcgis.com/home/item.html?id=
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S2 Fig. Scatterplot plot comparing water sampling depth and DNA concentration for eDNA

water samples collected in the Labrador Sea in 2019. The blue line represents the predicted val-

ues based on a generalized linear model with 95% confidence intervals shown in gray.
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S3 Fig. Comparison of (A) DNA concentration (pg/μL) in extracts and (B) number of ESVs

recovered from small volume samples collected in 2018 and large volume samples collected in

2019 at various depth sampling locations (surface, deep scattering layer, bottom). Different let-

ters indicate significant differences.
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S1 Text. Detailed occupancy modeling methods and model structure.
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