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Abstract

The topology of metabolic networks is recognisably modular with modules weakly con-

nected apart from sharing a pool of currency metabolites. Here, we defined modules as sets

of reversible reactions isolated from the rest of metabolism by irreversible reactions except

for the exchange of currency metabolites. Our approach identifies topologically independent

modules under specific conditions associated with different metabolic functions. As case

studies, the E.coli iJO1366 and Human Recon 2.2 genome-scale metabolic models were

split in 103 and 321 modules respectively, displaying significant correlation patterns in

expression data. Finally, we addressed a fundamental question about the metabolic flexibil-

ity conferred by reversible reactions: “Of all Directed Topologies (DTs) defined by fixing

directions to all reversible reactions, how many are capable of carrying flux through all reac-

tions?”. Enumeration of the DTs for iJO1366 model was performed using an efficient depth-

first search algorithm, rejecting infeasible DTs based on mass-imbalanced and loopy flux

patterns. We found the direction of 79% of reversible reactions must be defined before all

directions in the network can be fixed, granting a high degree of flexibility.

Author summary

Genome-scale metabolic reconstructions represent all biochemical reactions that an

organism can accomplish. These reconstructions are complex and often difficult to study

in great detail. A way to overcome this limitation is to focus on specific pathways or sub-

systems. We present a novel method to identify metabolic modules based on the network

topology. The method relies on reaction directions and ignores currency metabolites,
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which artificially connect distant metabolic reactions. In this way, topologically indepen-

dent modules are built, where inputs and outputs are controlled by irreversible reactions.

The method is automatic and unbiased, and, the result is a set of condition specific mod-

ules with defined metabolic functions. As a proof-of-concept we generated biologically

relevant modules for the E.coli and Human genome-scale metabolic reconstructions sup-

ported by transcriptomic data. Finally, we applied the novel approach to study the net-

work flexibility conferred by reversible reactions. In the case of the E. coli model, we

found that the direction of 79% of structurally reversible reactions (those not directionally

constrained by surrounding irreversible reactions) must be fixed to determine all the reac-

tion directions in the network. Therefore, reversible reactions operate practically indepen-

dent of each other.

Introduction

A genome-scale metabolic model (GeM) is a comprehensive mathematical representation of

an organism’s metabolism [1, 2]. To date, GeMs for more than 6,000 organisms, including all

model organisms, have been reconstructed [3–8]. This network representation is widely

employed to study the metabolic phenotype of cells with applications ranging from strain

development, modelling interactions among multiple cells or organisms, understanding

human diseases to the study of evolutionary processes [8–13].

GeMs describe all metabolic capabilities of an organism, i.e., all biochemical reactions that can

carry flux under any condition. These detailed models contain thousands of reactions, which can

confound more detailed studies of network properties and functions. A common strategy to over-

come this limitation is to focus the analysis on one or a few model subsystems. Subsystems have

been defined by conventional biochemical pathways in online databases such as the Kyoto Ency-

clopedia of Genes and Genomes (KEGG) [14] and BioCyc [15]. Subsystems have been used to

map omics data [16] and for model reduction [17], yet their definition is arbitrary and identical

for all organisms. Recognising the diversity and uniqueness of the metabolism in individual

organisms, a more satisfying alternative would be to generate model subsystems in an unsuper-

vised manner relying exclusively on the specific topology of the studied metabolic network.

The topology of metabolic networks has been widely studied by graph theory methods.

Early work by Barabasi and colleagues concluded that metabolic networks are scale-free, hier-

archical networks with highly connected modules overlapping known metabolic functions [18,

19]. However, these analyses did not consider the nature of the edges and it soon became

apparent that the extremely short average pass length observed was realized through cofactors

(e.g., ATP, NADH, NADPH), whereas the flow of carbon from a substrate to a product often

is quite long. Following a more biologically meaningful interpretation of the network topology,

by excluding currency metabolites (cofactors and moieties) and accounting for directionality

of irreversible reactions, Ma [20, 21] observed that metabolic networks can be broken into a

modest number of strong networks (i.e., networks where each metabolite can be reached from

every other metabolite). The network arranged as a directed bow-tie structure with a substrate

subset connected to a product subset through a giant strong component corresponding to cen-
tral carbon metabolism [20, 22]. Another approach for inferring and studying metabolic mod-

ules/pathways is based on structural (stoichiometric) analysis [23–26]. For this task, classical

Elementary Flux Modes (EFMs) has been adapted for enumerating flux patterns in metabolic

subnetworks (i.e., modules) under biomass-optimal growth [23, 25], incorporating even loop-

less criteria [27] avoiding thermodynamically infeasible flux cycles [24]. While these approches
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have yielded deep insights about the flexibility and functioning of metabolic newtorks, their

applicability still remains limited to small- to medium-sized models.

This work presents a novel approach to generate topologically independent metabolic mod-

ules exploiting the network topology and directionality constraints. The E.coli iJO1366 [4] and

Recon 2.2 [7] GeMs were subdivided in topologically independent modules and evaluated for

their biological relevance under specific growth conditions. The clustering approach provides

fundamental insights into the role and flexibility conferred to metabolic networks by reversible

reactions. We quantitatively estimated the network flexibility by counting in each module the

number of feasible Directed Topologies (DTs), which represent consistent flux solutions [28]

where all reactions carry flux, and hence, the directions are fixed. Notably, these DTs are maxi-

mal pathways known as Flux Topes (FTs) [23], which have been recently applied for exploring

the flexibility of optimal network states, and correcting thermodynamically infeasible cycles

[29]. Under the assumption of ‘thermodynamic’ isolation, the (Cartesian) product of the DTs

of the different modules provides an unprecedented upper bound estimate of the ‘topological’

degree of freedom of the network.

Results

Model reduction and compression

GeMs are large models with thousands of reactions, some of which are isolated and unable to

carry flux, while others are part of linear pathways that can be compressed. As an initial step,

all blocked reactions were removed and the model compressed to generate a more manageable

model for clustering.

E. coli iJO1366

The E.coli iJO1366 [4] contains 2,583 reactions (941 reversible reactions) and 2,135 metabolites

(330 boundary metabolites). Under aerobic growth in medium with glucose as sole carbon

source, the initial 941 reversible reactions were reduced by 74% to only 248 “structurally”

reversible reactions after model reduction and compression (Table A in S1 Table). Using the

network topology and original directions, flux variability analysis (FVA) [30] was performed to

identify and remove blocked reactions resulting from singleton metabolites and, where possible,

constrain the flux direction of active reactions. The result was the identification of 242 blocked

reactions and 534 new irreversible reactions, causing a 57% reduction in reversible reactions as

well as a 60% reduction in metabolites involved in those reactions. Next, the reduced model was

compressed by lumping together reactions in linear pathways as they carry the same flux and

are fully coupled [31]. Overall, the model reduction process led to a total compression of the

model from 2,583 to 1,419 reactions (45% reduction), and from 2,135 to 971 metabolites (55%

reduction) (Table A in S1 Table). More importantly, the original 941 reversible reactions were

reduced to 248 (74% reduction). We denote these remaining reversible reactions as "structural"

reversible reactions. Notably, there is a considerable reduction in the number of metabolites

participating in reversible reactions from the initial 2,135 to just 382 (28%); if we know the con-

centration of these metabolites and the ΔrG’0 of the structural reversible reactions, we can deter-

mine the directions of all metabolic reactions in the model [32, 33].

Human model recon 2.2

The reduction of the human model Recon 2.2. [7] was performed following the same method-

ology used for the E. coli model. Recon 2.2 has 7,785 reactions (3,782 reversible reactions) and

6,047 metabolites (723 boundary metabolites).
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After the initial model reduction by FVA, 1,878 reactions were found to be blocked and

1,007 reactions became irreversible. The total number of metabolites in the model was reduced

by 36% and the reversible reactions by 52%. The compression of the model further reduced

the number of reversible reactions to 1,582 structurally reversible reactions, and the number of

metabolites participating in reversible reactions to 1,523, only 42% of the initial number of

reversible reactions (Table B in S1 Table).

Modular topology and clustering

Metabolism is organised into semi-autonomous modules sharing a common pool of currency

metabolites (co-factors and moieties) [21], but otherwise weakly connected. Here, we consid-

ered irreversible reactions as the natural boundary between modules. Irreversible reactions are

thermodynamic insulators preventing downstream products from affecting upstream reac-

tions. Moreover, they are in many cases the “committed pathway step” under allosteric regula-

tion, which greatly reduces the control exerted by the upstream substrate. Using irreversible

reactions to define the boundaries of modules, the metabolic models were subdivided by clus-

tering the reversible reactions by common metabolites connecting them, disregarding connec-

tions associated to currency metabolites (co-factors and moieties). As a result, we identified

functional modules in the E. coli and human metabolism.

E. coli iJO1366

The iJO1366 model split into 103 isolated modules, with each module comprising nearby

reversible reactions that can be assigned to a specific metabolic function or pathway (Fig 1, full

list of modules is found in Table C in S1 Table). Seventy-three modules only contained a single

structural reversible reaction, i.e., reversible reactions that are not constrained by surrounding

irreversible reactions. In other words, around 70% of the modules are made by a single linear

pathway of reversible reactions. Each of the six largest modules contained eight or more

reversible reaction, representing the following metabolic pathways: (I) glycolysis, pentose

phosphate pathway, ribonucleotides and sugars metabolism, (II) fatty acids metabolism, (III)

pyruvate metabolism, (IV) nucleotides metabolism, (V) folate, serine and glycine metabolism,

and (VI) TCA cycle (Table 1 and Fig 1).

In order to validate the biological relevance of the generated modules, we computed the

correlation in gene expression between structurally reversible reactions of the iJO1366 model

belonging to the same module (intra module) and to different modules (extra module). Even

without a modular structure, one would expect that proximity would enhance correlation.

Hence, we calculated all correlations with distance two, i.e. those separated by exactly one reac-

tion (Supporting text B in S1 Text and Table D in S1 Table). A distance of two was chosen

because this is the shortest distance between two reversible reactions that belong to different

modules. Correlation was computed using the PRECISE database [34], which contains 278

RNA-seq expression profiles for E. coli K-12 MG1655 and BW25113. Constitutively expressed

genes (38 out of 164 genes presented in the GPR of reversible reactions), those with standard

deviation of the normalized gene expression data less or equal to 0.6, as well as four genes that

are part of the gene protein relationship (GPR) of 99 of the structural reversible reactions, were

removed from the dataset. The latter four genes were removed in order to avoid artificially

high correlations. Overall, 74% of the genes belonging to the GPR of the structural reversible

reactions of iJO1366 were mapped onto the transcriptomic dataset.

If there is no modular organization underlying gene expression, we would expect no differ-

ence in the distance-2 correlation of structural reversible reactions between intra and extra

module reactions. In contrast, we observed a significant difference in their distributions. The
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correlation between distance-2 reactions belonging to different modules was generally low

with only 0.4% displaying absolute correlation values greater than 0.8 and 25% showing less

than 0.1 absolute correlation value (Fig B in S1 Fig). In contrast, more than 37% of intra-mod-

ule distance-2 reactions displayed an absolute correlation value greater than 0.8 and only 12%

Fig 1. Modules of structural reversible reactions of iJO1366. The network was subdivided into modules of reversible reactions that share metabolites. Each

node represents a reversible reaction and each edge a metabolite connecting two reversible reactions. The topology of the network is given by the invisible

presence of irreversible reactions that connect the reversible reactions. The six largest modules that contain more than seven reversible reactions: TCA cycle

(green), Fatty acids metabolism (yellow), Glycolysis, PPP, ribonucleotides and sugars metabolism (red), Pyruvate metabolism (purple), Folate, serine and

glycine metabolism (pink), and Nucleotides metabolism (orange). Insert left corner shows the reaction adjacency matrix of the structural reversible reactions,

which also represents the reversible reaction modules.

https://doi.org/10.1371/journal.pcbi.1010203.g001
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displayed an absolute correlation value less than 0.1. While there is substantial overlap in dis-

tributions, the two distributions are not only significantly different (p-value = 8.2x10-59
, Kol-

mogorov–Smirnov test for equal distributions), but the median of the intra module

distribution is significantly higher than the extra module reactions (p-value = 1x10-39
, Wil-

coxon sum rank test). We conclude that the module structure is biological relevant as reflected

in differential gene expression.

Human model Recon 2.2

Analogous to iJO1366 model, Recon 2.2 clustered into 251 isolated modules. However, 53% of

the 1,582 structural reversible reactions in the reduced model were allocated to a single large

cluster, describing a major share of the central carbon metabolism. Inspection of the topologi-

cal features of this cluster revealed that the high connectivity was caused by a large number of

antiporter reactions coupling metabolism of otherwise distinct metabolites. For example,

Recon 2.2 contains 102 antiporter reactions catalysed by the L-type neutral amino acid trans-

porter (LAT1) generated by pairwise combination of the possible substrates. These antiporters

play a critical homeostatic role as “harmonizers”, maintaining a balanced cytosolic pool of all

amino acids [35]. In order to explore the intracellular metabolism, however, the majority of

antiporter reactions (414 reactions) were removed from the model, keeping the uniporter

transport reactions and the co-transport reactions that were needed to enable the transport of

all metabolites in the model. Notably, this reduction of reversible antiporter reactions does not

affect the overall model capabilities in terms of metabolites that the model is able to consume

and produce and maximum specific growth rate (details of simulations in Supporting text A in

S1 Text and Table E in S1 Table). Clustering of the reduced model produced 321 modules (list

of modules in Table F in S1 Table), with the larger module containing 111 reversible reactions.

Almost half of the modules (45%) contained only one structural reversible reaction (Fig A in

Table 1. Topologically independent modules of iJO1366. The 294 structural reversible reactions were grouped in 103 modules (see Table C in S1 Table for the full list of

modules). Here features of the six largest modules are presented.

Number of Reactions

Module Pathway Reversible Irreversible Internal Irreversible External Total

7 TCA cycle 8 5 26 39

11 Fatty acids metabolism 20 6 35 61

15 Glycolysis, PPP, ribonucleotides and sugars metabolism 42 25 147 214

18 Pyruvate metabolism 16 16 53 85

63 Folate, serine and glycine metabolism 9 11 32 52

86 Nucleotides metabolism 16 33 62 111

https://doi.org/10.1371/journal.pcbi.1010203.t001

Table 2. Topologically independent modules of Recon 2.2. The remaining 1,168 structural reversible reactions, after removal of antiporter reactions, were grouped in

321 modules (see Table F in S1 Table for the full list of modules). Here features of the six largest modules are presented.

Number of Reactions

Module Pathway Reversible Irreversible Internal Irreversible External Total

4 Fatty acids metabolism 46 47 86 179

6 Glutamate and glutathione metabolism and TCA cycle 81 221 78 380

7 Nucleotides metabolism 111 119 63 293

9 Pyruvate, lactate, alanine and cysteine metabolism 38 99 59 196

19 Glycolysis, PPP and galactose metabolism 32 13 54 99

27 Glycine, serine and taurine metabolism 47 109 48 204

https://doi.org/10.1371/journal.pcbi.1010203.t002
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S1 Fig), while the six largest modules contained more than 30 reversible reactions each

(Table 2 and Fig 3).

As with the iJO1336 model, the biological relevance of the Recon 2.2 model modules was

validated by computing the Pearson correlation in gene expression data between the genes of

structurally reversible reactions with distance 2 (Supporting text B in S1 Text and Table G in

S1 Table). The human expression data from the GTEx (The Genotype-Tissue Expression)

project [36] was used to compute gene correlations. This dataset contains RNA-seq data for

17,382 samples representing 54 different human tissues from 948 donors. Gene TPMs were

obtained from the GTEx portal on 13/04/21 (dbGaP Accession phs000424.v8.p2). The data

was initially filtered by removing genes with less than 10 samples with at least 1 TPM and nor-

malized by log-transformation log2(TPM+1). Out of the 397 genes present in the reversible

reactions of the Recon 2.2 model, only the gene expressing phosphoglycerate mutase 2

(HGNC:8889) was not found in the GTEx database.

Fig 2B shows the distribution of correlations between structurally reversible reactions of

distance 2 from the Recon 2.2 model. The distribution of the correlation for extra module reac-

tions resembled a normal distribution, centred at zero, with 53% of correlations presenting

absolute values of less than 0.1 and only 10% displaying absolute correlation values higher

than 0.5. In contrast, for the intra module correlations, the maximum absolute correlation fre-

quency was between 0.55 and 0.6. Less than 30% of correlations were between -0.1 and 0.1 and

more than 30% showed absolute correlation values over 0.5. Unlike the E. coli data, the correla-

tion between human genes rarely exceeds 0.8, possibly due to the inherent expression variation

between individuals compared to isogenic E. coli. While seemingly less profound, the differ-

ence between the distributions of correlation of intra and extra module genes is highly signifi-

cant (p-value < 5x10-324
, Kolmogorov–Smirnov test for equal distributions) with a tendency

of the genes belonging to the same module to have higher correlations (p-value < 5x10-324
,

Wilcoxon sum rank test).
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Fig 2. Distribution of correlation between structural reversible reactions of distance 2. A. Results for the iJO1366 model. B. Results for the Recon 2.2 model. The

distribution of the (absolute) correlations between the structural reversible reactions with distance 2 that belong to the same module (Intra Module) and to different

modules (Extra Module), are shown in red and blue, respectively.

https://doi.org/10.1371/journal.pcbi.1010203.g002
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Topological flexibility in iJO1366
Irreversible reactions direct flux from substrates towards biomass components and products.

Reversible reactions grant metabolic networks the flexibility to have alternative flow directions,

e.g. glycolysis versus gluconeogenesis, in order to adapt to a changing environment [12]. We

can characterize the level of flexibility by the possible directed topologies (DTs), defined as the

set of distinct network configurations where all reversible reactions are unidirectional and all

network reactions carry flux simultaneously at steady state.

The reduced and compressed E. coli model iJO1366 has 248 structural reversible reactions

(not directionally constrained by surrounding irreversible reactions) (Table A in S1 Table),

thus it can be described by a maximum of 2248 different DTs if these reactions were completely

independent. In reality, reactions are coupled [31], and the number of distinct feasible DTs

arising from the various combination of directions for each reversible reaction should be sub-

stantially less. We defined the "topological" degree of freedom (DoF) (Log2N) of the metabolic

network (N being the total number of feasible DTs), as the minimum number of reversible

Fig 3. Modules of structural reversible reactions of Recon 2.2 model. The network was subdivided into modules of

reversible reactions that share metabolites. Each node represents a reversible reaction and each edge a metabolite

connecting two reversible reactions. The topology of the network is given by the invisible presence of irreversible

reactions that connect the reversible reactions. The six largest modules that contain more than 30 reversible reactions:

Glutamate metabolism, glutathione metabolism and TCA cycle (green), Fatty acids metabolism (yellow), Glycolysis,

PPP, and galactose metabolism (red), Pyruvate, lactate, alanine and cysteine metabolism (purple), Glycine, serine and

taurine metabolism (pink), and Nucleotides metabolism (orange). On the right the reaction adjacency matrix of the

structural reversible reactions is presented, which also represents the reversible reaction modules.

https://doi.org/10.1371/journal.pcbi.1010203.g003
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reactions that must be directionally fixed in order to fix metabolism to a distinct feasible DT.

From a practical point of view, it may be possible to identify the metabolic state of the cell

under certain growth conditions by determining the direction of key reactions by the use of

metabolomics data and thermodynamic principles [32, 33, 37–39], if the “topological” DoF is a

relatively small number.

In order to quantify the flexibility of the iJO1366 model, the “topological” DoF was esti-

mated. It is possible to estimate the feasibility of each DT by FVA, however, this task is compu-

tationally prohibitive for 2248 DTs. By taking advantage of the modular topology of metabolic

models, where each module is semi-autonomous and consists of highly connected compo-

nents, we can estimate an upper bound of the model “topological” DoF as the Cartesian prod-

uct of the individual modules “topological” DoFs, greatly reducing the computation challenge.

The largest module contained n = 42 reversible reactions, therefore, 3.7x1014 (2 x n x 2n)

optimization problems would have to be solved to determine the “topological” DoF of this

module. As this is simply impractical, we constructed a set of rules to identify flux patterns

leading to infeasible DTs, i.e., unable to carry flux at steady state (see Methods). The rules were

constructed using patterns that either violate single metabolite mass balances (i.e., steady state)

or the second law of thermodynamics by generating infeasible closed loops (Fig 4A and 4B).

Finally, the “topological” DoF was estimated by performing a depth-first search in the direc-

tionality space of each module using the previously defined rules to remove infeasible DTs.

Importantly, by using this topological search approach and in contrast to previous methods

[23], no optimizations runs were required for the “topological” DoF estimation.

A comparison of this enumeration strategy against FVA for all but the largest module

revealed the above two principles for rule generation captured almost all the infeasible DTs

patterns. The majority of failures were found in metabolite pairs that behaved as one metabo-

lite due to the reactions connecting them. This issue was found, for example, in the Arginine

metabolism module, where Agmatine (agm[p]) and Arginine (arg_L[p]) are fully mixed by

reactions connecting them (Fig 4C). This issue was overcome by introducing a local mass bal-

ance around the two fully mixed metabolites to generate the missing infeasible patterns (see

Materials and Methods). A few failures remained in module 86 (nucleotides metabolism) even

after the inclusion of the local mass balance rule; the search strategy identified 446 feasible DTs

compared to 440 determined using brute force FVA. A heuristic approach was implemented

to find the missing infeasible flux patterns needed to find the correct number of DTs. The heu-

ristic approach generates potential new infeasible patterns based on the already identified

infeasible patterns with 3 or more fixed directionalities, by moving the constraint from one

reaction to another that was initially unconstrained (see Supporting text C in S1 Text for more

details).

The inclusion of the heuristic approach, as well as identifying the six missing infeasible DTs

on module 86, reduced the number of calculated feasible DTs on the largest module (module

15) by 43% (from 1.14x1011 to 4.89x1010), and the computational time by 88%. Due to the

large number of structural reversible reactions in module 15 (46 structural reversible reactions

after model compression, see Methods), it is infeasible to run the brute force search to fully val-

idate our search algorithm. Instead, sampling was used to validate the enumeration approach

for this module. Out of a random sample of 1x107 DTs analysed using FVA, only 0.055%

(5,519) were feasible. This percentage is similar to the 0.069% DTs found feasible for module

15 using our search algorithm. Furthermore, all of the infeasible DTs seen in the random sam-

ple could be explained with the existing infeasible flux patterns. We complemented random

sampling with a targeted sampling to ensure that for every combination of 5 structural revers-

ible reactions, the full combinatorial within those reactions was covered. Out of the 43,864,128
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accoa[c]acald[c]

ac[c]

accoa[c]acald[c]

ac[c]

accoa[c]acald[c]

ac[c]

aacoa[c]btcoa[c]

accoa[c]

coa[c]

ac[c]

aacoa[c]btcoa[c]

Fig 4. Example of rules to identify infeasible flux patterns. A. Loopless rules for the fatty acid metabolism module. In order to break the loop, the

acetaldehyde oxidoreductase reaction (acetaldehyde (acald[c]) to acetyl-coA (accoa[c])) cannot point in the direction of acetaldehyde synthesis (red arrow). B.

Local mass balance rules for the fatty acid metabolism module. Around each internal metabolite in the network, there must be at least one reaction in

(synthesis) and one out (consumption). In this example, there is one irreversible reaction around acetoacetyl-coA in the synthesis direction, thus at least one of

the reversible reactions should go in the consumption direction. C. Two metabolites that are fully mixed for the Arginine metabolism module. As Agmatine

(agm[p]) and Arginine (arg_L[p]) are fully mixed, both can actually be seen as only one metabolite, thus a mass balance rule around both metabolites was

added. Which means that around fully mixed metabolites there should be at least one reaction in (synthesis) and one out (consumption). In purple are

highlighted the 3 reversible reactions around these metabolites. In red are presented the infeasible rules for A and B. Black arrows represent irreversible

reactions and green arrows represent reversible reactions.

https://doi.org/10.1371/journal.pcbi.1010203.g004
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( n!

ðn� 5Þ!5!
x 25, for n = 46 structural reversible reactions) simulations, 31,118 (0.071%) were found

feasible. Again, the proportion of feasible DTs was very similar to the proportion found by our

algorithm (0.069%), and the infeasible DTs were fully explained by the computed infeasible

flux patterns. These results suggest that the presented topological enumeration algorithm is

most likely capable of finding all the feasible DTs in unprecedentedly large search spaces.

For the largest module (module 15), there were 29 infeasible flux patterns identified: 11 due

to loopless rules, 15 due to local mass balance rules, 2 due to two metabolites mixed mass bal-

ance rules and 2 from the heuristic algorithm (Fig B-H in S1 Fig). The infeasible patterns cov-

ered 38 of the 46 structural reversible reactions, leaving eight completely free reactions: G3PD,

RPI, DURIPP, PUNP2, EX_ade_e, EX_dha_e, EX_hxan_e and EX_ura_e. Based on the num-

ber of feasible DTs, the “topological” DoF of module 15 is 35.5 out of the theoretical maximum

46 (Fig 5).

In order to gain a better understanding of the flexibility of structural reversible reactions

within module 15, the directionality correlation between the reactions was studied (refer to

Supporting text B in S1 Text for more details). Overall, the correlation between the studied

reactions was poor, suggesting a weak coupling (Fig I in S1 Fig). We further investigated the

presence of clusters of highly coupled reversible reactions within this module by enumerating

the largest sets of fully connected reactions (maximal cliques) [40]. Here, connected reactions

were defined as those with an absolute correlation higher than a predefined cut-off. When a

cut-off of 0.85 was defined, only 5 cliques with 2 reactions each were found, each clique con-

necting an exchange and an internal reaction consuming the transported metabolite. The

small number of cliques found and the extremely small size of them is in agreement with the

previously found “topological” DoF of this module, confirming that the module structural

reversible reactions are highly independent from each other.

Fig 5. Theoretical maximum and actual “topological” DoF of the seven larger modules of the E.coli iJO1366

reconstruction.

https://doi.org/10.1371/journal.pcbi.1010203.g005
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The model “topological” DoF was estimated from the individual modules “topological” DoFs

assuming that the modules are independent of each other. The assumption that reversible reac-

tions within a module can operate independently of the state of reversible reactions in other mod-

ules largely appear to be valid because the structural reversible reactions in the model were

organized in nearly isolated modules upon the removal of currency metabolites. Thus, changes

inside a module are unlikely to have a high impact in a different module of the network [41]. The

model “topological” DoF was estimated to be 200, i.e., 79% of structurally reversible reactions are

independent of each other, which suggest a high level of flexibility. The simulation results of the

seven largest modules on “topological” DoF, after model pre-processing, are presented in Fig 5.

Discussion

Metabolic networks are inherently modular [19, 20, 22]. This modular nature provides a

means for simplifying structural and functional analysis of large-scale metabolic networks.

Early work described the network topology using an undirected graph with no consideration

of the nature of the edges, hereby yielding artificial short path lengths and an ambiguous struc-

ture. By excluding currency metabolites and accounting for directionality of reactions, meta-

bolic networks have been previously described having a bow-tie structure with a substrate

subset connected to a product subset through a giant strong component corresponding to cen-
tral carbon metabolism [20, 21].

The deliberate omission of energy/redox co-factors was critical for the identification of

thermodynamically isolated modules. Clearly, these modules are coupled through energy and

redox to other reactions, however, the coupling is to the tightly maintained global pool rather

than between any two individual reactions. Arguably energy/redox homeostasis–maintaining

energy charge and the ratios of various redox partners–is a more global regulatory principle

(see for example [42]) than the modules identified. Conversely, assuming that coupling

through energy/redox links individual reactions would speak against modularity, e.g., suggest

that all gene regulation is globally coordinated with no modularity, which is clearly not accu-

rate (operons in bacteria is a clear example of modularity). The thermodynamic isolation

hereby employed focus on is the isolation achieved by irreversible reactions–commonly sub-

ject to allosteric regulation–that ensures the products have no impact on substrate concentra-

tions or the reactions upstream of the substrates. Importantly, once modules have been

indentified, currency metabolites (redox and co-factors) may be reincorporated to the respec-

tive reactions if desired. For example, a kinetic model of a module would typically include

cofactors as fixed concentration external metabolites [43, 44]. It is for the sole purpose of iden-

tifying modules that currency metabolites are reversibly removed. Altogether, the identified

modules unveiled the modular organization of the reversible reactions of the E. coli iJO1366

and the Recon 2.2 GeMs into metabolic modules connected by irreversible reactions. The

resulting organization resembles conventional metabolic pathways and subsystems known for

these organisms, but in this case, they emerged from the topological features of each network

leveraged by a novel clustering approach. The approach unravelled hundred and three nearly

isolated modules for the E. coli network growing aerobically in media with glucose as sole car-

bon source. The majority of the modules contained only one structural reversible reaction,

whereas thirty contained more than one. For comparison, Ma and Zeng [20] found 29 strong

components that include no less than three metabolites. When applying the clustering

approach to a much larger reconstruction, Recon 2.2, a large number of antiporter transport

reactions (e.g., the amino acid “harmonizers” such as LAT1) were removed, which artificially

connect different parts of metabolism [35]. After the removal of antiporters, the model was

subdivided into 321 thermodynamically isolated modules. The six largest modules in the
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human model displayed known metabolic functions similar to those found in E coli, namely:

TCA cycle, glycolysis, pentose phosphate pathway, fatty acids, nucleotides, sugars and amino

acids metabolism.

The biological relevance of the identified modules was demonstrated through gene expres-

sion analysis, which showed that the correlation between of reversible reactions of distance 2

was significantly higher between reactions within a cluster and low between reactions in sepa-

rate clusters. The majority of correlated enzymes catalysing reactions within the same module

are highly correlated (more than 0.8 absolute value correlation across 278 transcription data-

sets in the E.coli model and more than 0.5 absolute value correlation across 17,382 RNA-seq

samples in the Human model). In contrast, the majority of absolute correlations between reac-

tions in different modules concentrated around zero supporting the presence of the inferred

underlying modular structure.

The E. coli iJO1366 metabolic network flexibility was studied using the identified modules.

An efficient depth-first search algorithm using simple infeasible mass balance and loopless

rules was developed to explore the topological flexibility of the modules by enumerating all fea-

sible DTs. We note that this amounts to enumerating all the flux topes in these (currency-free)

subnetworks [23]. The analysis revealed only a weak coupling between structural reversible

reactions in the largest module, which points to an overall high topological flexibility providing

a high degree of robustness [45]. Strong coupling was only found between some boundary

(exchange) and internal reactions consuming a common metabolite, which is known to be the

case as exchange reactions can exert massive coupling and blocking of reactions at the bound-

ary of metabolic networks [31].This observation is true across the modules. Assuming that

modules operate independent of each other, the topological degree of freedom of the E. coli
iJO1366 model was determined to be 200 (79%) out of a theoretical maximum of 248. This

number represents an upper bound on the number of directionalities that must be determined

to fix the topological state of the metabolic network. A more exact estimate would be obtained

by enumerating all the feasible DTs in the entire network as whole, which is unfortunately

impractical at this scale [23]. Still, we can conclude that except for linear pathways, reversible

reactions operate practically independent of each other, granting both flexibility and robust-

ness against internal and external perturbations [22, 34, 46, 47].

Methods

Model reduction and compression

Prior to model reduction and compression, the models were modified for mass balance and

thermodynamic calculation consistency [32, 33]. In short, reactions catalyzed by different

enzymes in either direction were lumped together, the species HCO3, CO3, CO2, and H2CO3

were aggregated as CO2tot and H2O was added to the other side of the reaction. Additionally,

the oxidized and reduced FAD of mitochondria were replaced by the oxidized and reduced

FADenz to represent the enzyme-bound FAD cofactor. Finally, the models’ original direction-

ality constraints were used, which describe aerobic growth with glucose as main carbon source

(Tables H and I in S1 Table).

Two steps of model reduction were performed:

1. Flux variability analysis (FVA), the minimum and maximum flux of all network reactions

were estimated by linear programming and blocked reactions were identified. Blocked reac-

tions are reactions that carry null flux as a result of being linked to singleton/dead-end

metabolites, or caused by contradicting reversibility specifications. Additionally, reversible

reactions that operate irreversible under the specified directionality constrains were
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identified. The model was reduced by removing blocked reactions and constraining flux

direction of the identified irreversible reactions.

2. Model compression, linear pathways were lumped into single reactions. Reactions orga-

nized into a linear pathway must carry the same flux value, therefore can be lumped

together [48]. If one of the reactions in the pathway is irreversible the lumped reaction will

be irreversible.

Clustering approach

1. A novel approach to divide the metabolic network into functional modules (metabolic

pathways) was developed. First, the currency metabolites (co-factors and moieties), defined

as highly connected metabolites with a carrier function (e.g., electrons and chemical

groups), were removed from the network reactions. The removal of currency metabolites

was done manually based on on their role in each reaction. For instance, if a currency

metabolite was participating as carrier in the reaction, it was removed, otherwise it was kept

(refer to Table J in S1 Table for the complete list of removed metabolites). In addition, if it

was not clear which metabolites were the co-factors and main substrates/products of the

reaction (e.g., K+-Cl- cotransport: cl[e]+k[e] = cl[c]+k[c]), all metabolites were kept. In

order to preserve the metabolic functions of the network, currency metabolites were kept in

all reactions that synthetise or degrade them, as well as when a metabolite was being used as

a building block (e.g. Acetoacetyl-CoA:acetate CoA-transferase: acac+coa = aacoa) (Tables

K and L in S1 Table). Then reversible reactions were clustered by common metabolites con-

necting them. The irreversible reactions were kept in the model to retain the network struc-

ture, but these reactions did not take part of any module. The reaction adjacency matrix

was used to reveal the generated modules.

Model flexibility and enumeration of directed topologies

In order to study the degree of flexibility conferred to the metabolic model due to reversible

reactions, two terms were introduced:

1. Directed Topologies (DTs), defined by fixing directions to all reversible reactions, i.e., all

reactions in the network are irreversible and carry flux in a DT.

2. Topological degree of freedom, defined as log2N where N the number of DTs that are capa-

ble of carrying flux in all reactions.

The DT enumeration problem was divided into sub-problems each contained in a pre-

defined module. Inside each module, duplicated reactions were lumped as one reaction and

irreversible reactions in opposite direction were lumped into new reversible reactions. Then,

the connections between reversible reactions inside the modules were studied using a set of

rules that define infeasible flux patterns rendering the candidate DT infeasible. These rules are

based on the mass balance around one or two metabolites and the loopless flux condition.

Next, a depth-first search was performed through the feasible space of reversible reactions

directions using the previously defined rules as a table of infeasible flux patterns (see next sec-

tion for details on the rules and search algorithm). In order to reduce the computational time,

the search algorithm was implemented in C, resulting in a 500 times faster search. To verify

that the feasible space was properly explored by the search algorithm, an FVA brute force algo-

rithm was implemented and their results were compared. It was found that for some of the

largest modules, few infeasible patterns were missing, therefore, a heuristic method for finding
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the missing infeasible flux patterns was added. For the largest module, a flux sampling strategy

was employed for validation as the brute force method was impractical to run. For more infor-

mation about the missing rules and the adjustment of the patterns check Supporting text A in

S1 Text. Finally, simulations were executed in MATLAB (The Math-Works, Natick, USA)

using the MEX file interface for C code. Gurobi Optimization solver was employed for the lin-

ear optimizations. Calculations were performed on a desktop computer.

Depth-first search for DT enumeration

Enumeration of all DTs in a given module of a determined model is likely NP-hard. Even

when directed topologies are considered and composed of configurations where all reactions

carry flux (i.e. a maximal flux mode)–common simplification applied to keep the problem

tractable [29]–, this enumeration amounts to counting all flux modes of size K (where K repre-

sents the size of the subnetwork), which can be assumed to be NP-complete from previous the-

oretical results [49]. Thus, implementation of a brute-force optimization algorithm where all

the DTs are checked for feasibility is simply naïve and does simply not scale well.

In order to overcome this obstacle, we developed and implemented a novel depth-first

search algorithm that traverses a directionality tree, where the current flux directionality pat-

tern is compared against a list of previously calculated infeasible flux patterns for early rejec-

tion. A similar graph-based approach has been used to efficiently enumerate elementary flux

modes using a reaction tree for rejecting on-the-fly pathways with two-futile cycles [50]. Partic-

ularly in our case, we constructed two types of infeasible flux patterns before each search in

each module: 1) mass-imbalanced flux patterns, and 2) loopy flux patterns. The first infeasible

pattern type is derived directly from inspection of the stoichiometric matrix, S. Each row j of S,

denoted by Sj, represents the mass balance for a metabolite j in the module, and more impor-

tantly, it provides necessary relations for reaching a mass balanced/imbalanced flux topology

based on a simple criterion: an imbalanced flux pattern has either all fluxes coming or leaving
from metabolite j. Such topologies will never reach steady state, and hence, they can be dis-

carded without the need of simulation. Moreover, since Sj is typically sparse due to the removal

of currency metabolites, exhaustive computation of all mass-imbalanced flux pattern combina-

tions for all the metabolites in the module can be efficiently performed.

The second infeasible pattern type follows the same logic but addresses thermodynamically

infeasible loops. The presence of internal loops or closed cycles in flux solutions violate the second

law of thermodynamics, as they can potentially reach infinite flux without additional energy input

[27]. In order to identify and correct such situations, the ‘loopless´ flux optimization formulation

has been proposed and successfully applied to large metabolic models [44, 51–53]. Briefly,

thermodynamically infeasible flux solutions can be identified by checking if they contain any

active (non-zero) closed cycles [54]. These closed cycles are encoded in the ´loop-law´ matrix,

Nint, which describes a null space basis of the stoichiometric matrix of internal reactions Sint of the

network [53]. We have recently developed an efficient algorithm called Fast-SNP [44] for finding

a sparse representation of such basis in large-scale metabolic models [55, 56], substantially easing

the detection of closed cycles in flux patterns. Once Nint is computed for the particular submodule,

then complete enumeration of all ‘loopy’ flux patterns in the module can be efficiently performed.

It is important to highlight that Nint is constructed using the original reaction stoichiometries,

thereby avoiding distortion of the generated loop laws.

Supporting information

S1 Text. A: Checking model capabilities after removing antiporter reactions (in S1 Text).

B: Calculation of correlation in gene expression between structurally reversible reactions
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of distance 2 (in S1 Text).: Missing Infeasible Patterns (in S1 Text). D: Study of directional-

ity correlation between structural reversible reactions (in S1 Text).

(DOCX)

S1 Fig. A: Characterization of Recon 2.2 modules dimensions. Almost half of the generated

modules contain one reversible reaction, while 6% of the modules contain 10 or more revers-

ible reactions (in S1 Fig). B: Infeasible flux patters of module 15 due to loopless rules. 5 of

the 11 infeasible flux patterns are presented, each with a different colour. The arrows represent

the reactions in the module (both reversible and irreversible) and the nodes the metabolites (in

S1 Fig). C: Infeasible flux patters of module 15 due to loopless rules. 4 of the 11 infeasible

flux patterns are presented, each with a different colour. The arrows represent the reactions in

the module (both reversible and irreversible) and the nodes the metabolites (in S1 Fig). D:

Infeasible flux patters of module 15 due to loopless rules. 2 of the 11 infeasible flux patterns

are presented, each with a different colour. The arrows represent the reactions in the module

(both reversible and irreversible) and the nodes the metabolites (in S1 Fig). E: Infeasible flux

patters of module 15 due to mass balance rules. 14 of the 15 infeasible flux patterns are pre-

sented, each with a different colour. The arrows represent the reactions in the module (both

reversible and irreversible) and the nodes the metabolites (in S1 Fig). F: Infeasible flux patters

of module 15 due to mass balance rules. 1 of the 15 infeasible flux patterns are presented,

each with a different colour. The arrows represent the reactions in the module (both reversible

and irreversible) and the nodes the metabolites (in S1 Fig). G: Infeasible flux pattern of mod-

ule 15 due to two metabolites mixed mass balance rules. The infeasible pattern is highlighted

using red arrows. The arrows represent the reactions in the module (both reversible and irre-

versible) and the nodes the metabolites (in S1 Fig). H: Infeasible flux pattern of module 15

found using the heuristic algorithm. The two infeasible patterns are highlighted using red

and blue arrows. The arrows represent the reactions in the module (both reversible and irre-

versible) and the nodes the metabolites (in S1 Fig). I: Correlation analysis of the directionali-

ties of the structural reversible reactions in module 15. (A) Absolute correlation distribution

of the directionalities in the DTs sample. (B) Cliques distribution and (C) Cliques size distribu-

tion for different absolute correlation thresholds. The higher the absolute correlation cut off,

the least and smaller the size of the cliques found (in S1 Fig).

(DOCX)

S1 Table. A: Summary of reduction and compression of E.coli iJO1366 model. First a sin-

gleton reduction was realized where blocked reactions and singleton metabolites were

removed, and found new irreversibilities were added; then the model was compressed by

lumping linear pathways (in S1 Table). B: Summary of reduction and compression of Recon

2.2 model. First a singleton reduction was realized where blocked reactions and singleton

metabolites were removed, and found new irreversibilities were added; then the model was

compressed by lumping linear pathways (in S1 Table). C: Topologically independent mod-

ules of iJO1366. The 294 structural reversible reactions were grouped in 103 modules (in S1

Table). D: Correlation in gene expression between structurally reversible reactions of dis-

tance 2 of the iJO1366 model (in S1 Table) E: Effect of removing antiporter reactions. Flux

variability analysis shows that range fluxes do not differ between full [vminF,vmaxF] and

reduced [vminR,vmaxR] model (in S1 Table). F: Topologically independent modules of

Recon 2.2. The remaining 1,168 structural reversible reactions, after removal of antiporter

reactions, were grouped in 321 modules (in S1 Table). G: correlation in gene expression

between structurally reversible reactions of distance 2 of the Recon 2.2 model (in S1 Table)

H: Directionality constraints used for E.coli iJO1366 model (in S1 Table) I: Directionality

constraints used for Recon 2.2 model (in S1 Table) J: Currency metabolites that were
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removed from reactions (in S1 Table). Table K: Reversible reactions with and without cur-

rency metabolites of E.coli iJO1366 model (in S1 Table). Table L: Reversible reactions with

and without currency metabolites of Recon 2.2 model (in S1 Table) Table M: Cliques distri-

bution for different correlation thresholds in the largest metabolic modules of the iJO1866

model (in S1 Table).

(XLSX)

S1 Data. Code to calculate correlations and visualise the data.

(ZIP)

S2 Data. Correlations computed for Human Recon 2.2. Code to process large TPM files

from the GTEx (The Genotype-Tissue Expression) project and produce correlation tables.

(ZIP)
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