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Abstract

Biochemical systems consist of numerous elementary reactions governed by the law of

mass action. However, experimentally characterizing all the elementary reactions is nearly

impossible. Thus, over a century, their deterministic models that typically contain rapid

reversible bindings have been simplified with non-elementary reaction functions (e.g.,

Michaelis-Menten and Morrison equations). Although the non-elementary reaction functions

are derived by applying the quasi-steady-state approximation (QSSA) to deterministic sys-

tems, they have also been widely used to derive propensities for stochastic simulations due

to computational efficiency and simplicity. However, the validity condition for this heuristic

approach has not been identified even for the reversible binding between molecules, such

as protein-DNA, enzyme-substrate, and receptor-ligand, which is the basis for living cells.

Here, we find that the non-elementary propensities based on the deterministic total QSSA

can accurately capture the stochastic dynamics of the reversible binding in general. How-

ever, serious errors occur when reactant molecules with similar levels tightly bind, unlike

deterministic systems. In that case, the non-elementary propensities distort the stochastic

dynamics of a bistable switch in the cell cycle and an oscillator in the circadian clock.

Accordingly, we derive alternative non-elementary propensities with the stochastic low-state

QSSA, developed in this study. This provides a universally valid framework for simplifying

multiscale stochastic biochemical systems with rapid reversible bindings, critical for efficient

stochastic simulations of cell signaling and gene regulation. To facilitate the framework, we

provide a user-friendly open-source computational package, ASSISTER, that automatically

performs the present framework.

Author summary

As experimentally characterizing all underlying processes of reactions in biochemical sys-

tems is almost impossible, their combined effects have frequently been described by sim-

plified non-elementary reaction functions (e.g., Hill and Morrison functions). Recently,

the deterministically driven non-elementary reaction functions have been heuristically
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used for stochastic simulations with the Gillespie algorithm. While this approach has been

one of the most popular methods for efficient stochastic simulations, its accuracy has been

controversial. Here, we finally solve this enigmatic open question. Specifically, we derive a

complete condition under which this approach can accurately capture the stochastic

dynamics of reversible binding, the critical reaction to describe nearly all biochemical sys-

tems such as gene regulation and enzyme catalysis. We illustrate that the use of this

approach outside the identified range of validity seriously distorts the stochastic dynamics

of a bistable switch in the cell cycle and an oscillator in the circadian clock. Importantly,

to overcome this inaccuracy, we propose alternative simplified reaction functions for sto-

chastic reversible binding. Combining the existing and proposed reaction functions, we

have developed a computational package, ASSISTER, that performs universally valid sto-

chastic model reduction. This enables accurate and efficient stochastic simulations of mul-

tiscale biochemical systems with rapid reversible bindings under any conditions.

Introduction

To understand the complex dynamics of numerous molecular interactions in living cells,

quantitative analysis using mathematical models is essential [1]. While elementary reactions in

living cells can be modeled by the law of mass action, characterizing all their kinetics is chal-

lenging. Thus, over a century, the combined effect of a set of elementary reactions such as

rapid reversible bindings has been described with non-elementary reaction functions (e.g.,

Michaelis-Menten and Morrison equations) to simplify deterministic models [2–7]. Since the

early 2000s, these deterministically driven non-elementary reaction functions have also been

widely used to derive propensity functions for stochastic simulations, which greatly reduces

the computational cost [8–33]. This heuristic approach for efficient stochastic simulations was

believed to be valid as long as the non-elementary reaction functions are accurate in the deter-

ministic sense. However, unfortunately, this was not the case [33–40]. The reason for the dis-

crepancy between the deterministic and stochastic simulations has been recently identified for

some cases [37–40], but not for all [41]. Currently, guidelines for this popular but heuristic

method for efficient stochastic simulations with non-elementary propensity functions are

absent.

The non-elementary reaction functions are mainly the result of the reduction of determin-

istic models with the following reversible binding reactions:

Aþ BÐ
kf

kb
C: ð1Þ

The reversible binding between molecules, such as enzyme-substrate, receptor-ligand, and

protein-DNA, is the first step for nearly all biological functions of living cells [42]. However,

rather than the reversible binding itself, its outcome is usually our major interest. For instance,

rather than the binding between a transcription factor and DNA, we are interested in its out-

come, the transcription. Furthermore, the transcription factor binding to DNA takes at most

one second while transcription takes about 30 minutes in a mammalian gene [43], which

causes stiffness in numerical simulations [44].

Fortunately, such rapid reversible binding reactions can be eliminated from models using

the property: the levels of the species (A, B, and C) regulated by the reversible binding more

quickly equilibriate to their quasi-steady-states (QSSs) compared with the total levels of the

bound and unbound species, which are not affected by the reversible binding. In deterministic
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models, their quasi-steady-state approximations (QSSAs), which are non-elementary reaction

functions, can be obtained by finding the steady-state solution of the associated differential

equation in terms of the total variables. Because the QSSAs are determined by the total vari-

ables, they are known as the “total” QSSA (tQSSA). After replacing the variables that represent

the levels of A, B, and C with their tQSSAs, rapid reversible bindings have been successfully

eliminated from various deterministic models describing enzyme catalysis, gene regulation,

and cell cycle regulation [5–7, 23, 45–51]. Note that adopting the total variables leads to time-

scale separation among variables, while the sole rapidity of the reversible binding reactions

does not guarantee timescale separation between the original variables, A, B, and C [7] (see

Discussion for details).

In stochastic models, the QSSAs for the numbers of A, B, and C are their stationary average

numbers (i.e., the first moment) conditioned on the total numbers of the bound and unbound

species for uni- or bi-molecular reactions [27–30] (see S1 Appendix for details). These stochas-

tic QSSAs can be obtained by finding the steady-state solution of the chemical master equation

(CME). However, unlike the deterministic tQSSA, the stochastic QSSA has a complex form

(Eq (4)), which does not provide any intuition, and importantly, increases computational cost.

Thus, its approximation has been derived with the deterministic tQSSA. This approximation,

often referred to as the stochastic tQSSA (stQSSA) [7, 31, 38, 39], leads to non-elementary pro-

pensity functions for stochastic simulations using the Gillespie algorithm [52]. In this way, the

stochastic dynamics of various systems have been accurately captured with low computational

cost [7, 30–33, 38, 39, 53, 54]. However, a recent study reported that the stQSSA can be inaccu-

rate [41], which raises the question of validity conditions for the stQSSA.

Here, we identify the complete validity condition for using the stQSSA to simplify stochas-

tic models containing rapid reversible bindings. Specifically, we find that the stQSSA is accu-

rate for a wide range of conditions. However, when two species whose molar ratio is*1:1

tightly bind, the stQSSA highly overestimates the number of unbound species. In this case,

using the stQSSA to simplify stochastic models distorts the stochastic dynamics of the tran-

scriptional repression, the transcriptional negative feedback loop of the circadian clock, and

the bistable switch for mitosis. Importantly, by using the fact that the number of the unbound

species is low due to the tight binding when the stQSSA is inaccurate, we develop an alternative

approach, stochastic “low-state” QSSA (slQSSA). In this way, when reversible bindings are

tight and not tight, slQSSA and stQSSA can be used, respectively, which enables one to obtain

accurately reduced stochastic models for any case. This proposes a complete and straightfor-

ward strategy for efficiently simulating multiscale stochastic biochemical systems containing

the fundamental elementary reaction, i.e., rapid reversible binding. To facilitate this frame-

work, we provide a user-friendly open-source computational package, ASSISTER (Adaptive

Simplification of StochastIc SystEm with Reversible binding).

Results

stQSSA can overestimate the number of the unbound species

In the reversible binding reaction (Eq (1)), the concentration of A, denoted by ~A, is governed

by the following ODE:

d~A
dt
¼ � kf ~A � ~B þ kb ~C ¼ � kf ~A � ð~BT �

~AT þ
~AÞ þ kbð~AT �

~AÞ; ð2Þ

where ~AT ¼
~A þ ~C and ~BT ¼

~B þ ~C are the total concentrations of the bound and unbound
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species. By solving d~A
dt ¼ 0 in terms of ~AT and ~BT, the tQSSA for ~A can be obtained as follows:

~Atq≔
1

2

(

ð~AT �
~BT �

~K dÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð~AT �
~BT �

~K dÞ
2
þ 4~AT

~K d

q )

; ð3Þ

where the ~K d ¼ kb=kf is the dissociation constant. Note that if the reversible binding (Eq (1))

is embedded in a larger system, there could be other reactions affecting the dynamics of ~A and

thus additional terms in Eq (2). However, as long as the reversible binding is fast (i.e., kf and kb

are much larger than the other reaction rates), ~Atq is still an accurate tQSSA for ~A. Similarly,

by solving d~B
dt ¼ 0 and d~C

dt ¼ 0, the tQSSAs for ~B and ~C can be obtained. These tQSSAs, also

known as the Morrison equations [6], are generally valid, unlike the Michaelis-Menten type

equations which are valid only when the enzyme concentration is negligible [7, 47, 48, 50].

Thus, the tQSSAs have been used to simplify models containing not only interactions between

metabolites but also proteins whose concentrations are typically comparable [7].

Unlike the deterministic QSSA (Eq (3)), the stochastic QSSA, which is the stationary aver-

age number conditioned on the total numbers of the bound and unbound species, has a com-

plex form [41, 55, 56]. For instance, the stochastic QSSA for the number of A (hAi) can be

expressed in terms of the dimensionless variables and parameters, X ¼ ~XO, whereO is the vol-

ume of a system (e.g., A ¼ ~AO, Kd ¼
~K dO) as follows (see Methods for details):

hAi ¼
XAT

l¼A0

lKl
d

l!ðAT � lÞ!ðBT � AT þ lÞ!

 !

�
XAT

l¼A0

Kl
d

l!ðAT � lÞ!ðBT � AT þ lÞ!

 !� 1

; ð4Þ

where A0 = max{0, AT − BT}. This complex form of the stochastic QSSA does not provide any

intuition and importantly increases computational cost. Thus, as an alternative to the stochas-

tic QSSA, its approximation, the stQSSA was derived with the deterministic tQSSA [7, 22–26,

31]. Specifically, the stQSSA for A (Atq) can be derived from ~Atq (Eq (3)) after replacing the

concentration-based variables and parameters (~X) with dimensionless variables and parame-

ters (X) as follows:

hAi � Atq≔
1

2

(

ðAT � BT � KdÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðAT � BT � KdÞ
2
þ 4ATKd

q )

: ð5Þ

Similarly, the stQSSA for B and C (Btq and Ctq) can be obtained from their deterministic

tQSSAs as follows:

hBi � Btq≔
1

2

(

ðBT � AT � KdÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðAT � BT � KdÞ
2
þ 4ATKd

q )

;

hCi � Ctq≔
1

2

(

ðAT þ BT þ KdÞ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðAT � BT � KdÞ
2
þ 4ATKd

q )

:

ð6Þ

To identify the validity conditions for these stQSSAs, we calculated the relative error

(RX :¼
�
� Xtq � hXi
hXi

�
�, X = A, B, C) of the stQSSA (Xtq) to the stochastic QSSA (hXi) (Fig 1a–1c). The

errors are nearly zero in most of the parameter regions, which explains why various stochastic

models reduced with the stQSSA have been accurate in most previous studies [7, 30–33, 38, 39,

53, 54]. However, the relative errors of the unbound species (RA and RB) are high when AT�
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Fig 1. stQSSA overestimates the number of the unbound species when their molar ratio is *1:1 and binding is tight. (a-c) Heat maps of the relative

errors (RX ¼
�
� Xtq � hXi
hXi

�
�) of the stQSSA (Xtq) to the stochastic QSSA (hXi) for X = A, B, C in the reversible binding reaction (Eq (1)). Color in the heat maps

represents the maximum value of RX calculated by varying Kd from 10−4 to 102 for each total number of the bound and unbound species (AT = A + C and

BT = B + C). RA and RB can be extremely large when AT� BT while RC is always small. (d) RA calculated over BT/AT between 0 and 2 (gray arrow in a) for

three fixed Kd values (10−4, 10−3 and 10−2). RA becomes larger as BT/AT is similar to 1 and the Kd becomes smaller (i.e., the binding becomes tighter). (e)

RA mainly depends on the relative sensitivity of Atq (i.e., 2SA), which can be derived in a simple form, unlike RA (Eq (8)). The maximum value of 2SA is

given by 1ffiffiffiffiffiffiffiffi
ATKd
p , which is achieved when BT/AT is similar to 1 as in the case of RA. (f) A trajectory (left) and the stationary probability distribution (right)

of A for a parameter set where RA is large (green triangle in d, AT = BT = 100, kf/O = 104 s−1, kb = 1s−1), simulated using the Gillespie algorithm. Since AT

= BT and A binds with B tightly, A = 0 (i.e., every A is bound) most of the time, and it rarely becomes 1 by the weak unbinding reaction (solid arrow) and

immediately comes back to 0 by the strong binding reaction (dotted arrow). As a result, when Kd = 10−4, the probability that A = 1 is*0.01, but the

stQSSA for A overestimates it as*0.1, which is 10 times larger (i.e., a 10-fold error).

https://doi.org/10.1371/journal.pcbi.1008952.g001
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BT. Specifically, the relative error of the bound species (RC) is at most *0.2 but that of the

unbound species (RA, RB) can be *100.

To investigate why RA is high when AT� BT, we derived the exact upper and lower bounds

for RA (see Methods for details):

FASA � RA � 2FASA; ð7Þ

where FA is the Fano factor of A (i.e.,
VarðAÞ
hAi ), and SA is the relative sensitivity of Atq with respect

to BT (i.e., 1

Atq
j
dAtq
dBT
j). Furthermore, we proved that the Fano factor (FA) is less than 1 (i.e., A has

a sub-Poissonian stationary distribution; see S1 Appendix for details). Therefore, RA, especially

its upper bound, mainly depends on SA (Fig 1d and 1e, and A in S1 Appendix) whose formula

can be derived in the following simple form, unlike RA:

SA ¼
1

Atq

�
�
�
�
dAtq

dBT

�
�
�
� ¼

1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðAT � BT � KdÞ
2
þ 4ATKd

q : ð8Þ

Because SA attains the maximum value 1ffiffiffiffiffiffiffiffiffi
4ATKd
p at BT = AT − Kd, SA has a large maximum value

when Kd� 1 at AT = BT + Kd� BT. This explains why RA, whose upper bound is mainly deter-

mined by 2SA, is large when the binding is tight (Kd� 1) and the total numbers of the bound

and unbound species are similar (AT� BT) (Fig 1d). In this case, the majority of A is bound

with B, and thus A = 0 most of the time (Fig 1f left). That is, A rarely becomes 1 by the weak

unbinding reaction and then immediately A becomes 0 by the strong binding reaction. As a

result, the probability that A = 1 is approximately 1% (i.e., hAi � 0.01), but the stQSSA for A
(Atq) overestimates it as 10%, which is 10 times larger (Fig 1f right). Since A and B are symmet-

ric, the above analysis can be applied to B, analogously.

stQSSA can overestimate the transcriptional activity

We found that the stQSSA for the number of the unbound species is inaccurate if their molar

ratio is*1:1 and their binding is tight (Fig 1d–1f). Thus, we expected that in such cases, using

the stQSSA to eliminate a rapid reversible binding in a stochastic model can distort its dynam-

ics. To illustrate this, we constructed a simple gene regulatory network where gene expressions

are determined by a reversible binding between transcription factors and genes (Fig 2a left,

Table A in S1 Appendix); DNA (D) and a transcription factor (P) reversibly bind to form a

complex (D:P). As P acts as a repressor of MR transcription, the transcription rate of MR is pro-

portional to the number of the unbound DNA (D). On the other hand, as P acts as an activator

of MA transcription, the transcription rate of MA is proportional to the number of the bound

DNA (D:P). Note that the number of unbound and bound DNA can be interpreted as the

number of unbound and bound DNA binding sites. In this model, because the reversible bind-

ing reaction between D and P is much faster than the other reactions (i.e., the production and

the decay of MR and MA), the variables (D and D:P) rapidly reach their QSSs. Thus, by replac-

ing them with their stQSSAs (Dtq and D:Ptq), we can obtain a reduced model (Fig 2a right,

Table B in S1 Appendix). The reduced model consists of only the slow variables, MR and MA,

because Dtq and D:Ptq are fully determined by the conserved total number of the DNA (DT = D
+ D:P) and the conserved total number of the transcription factor (PT = P + D:P), as illustrated

in Table B in S1 Appendix. This elimination of the fast variables, which are the major source of

computational cost, greatly reduces the computation time of stochastic simulations [27–29].

To test whether the reduced model accurately captures the dynamics of the full model, we

compared their stochastic simulations with the Gillespie algorithm (see Tables A and B in
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S1 Appendix for propensity functions) [52]. When DT and PT are the same and the binding

between D and P is tight, MR simulated with the reduced model largely exceeds MR simulated

with the full model (Fig 2b top) because the stQSSA (Dtq) overestimates the stochastic QSSA

for the number of the unbound DNA (hDi) which determines the transcription rate of MR

(Fig 2a), as seen in Fig 1f. On the other hand, when DT is not similar to PT (Fig 2c top) or the

binding is weak (Fig 2d top), Dtq accurately approximates hDi as seen in Fig 1d, and thus the

reduced model accurately captures the dynamics of MR in the full model.

Fig 2. When DNA and a transcription factor bind tightly and their levels are similar, the stQSSA overestimates the number of the unbound

DNA. (a) Full model diagram of a gene regulatory network containing a rapid reversible binding between DNA (D) and a transcription factor (P) to

form a complex (D:P) (left, Table A in S1 Appendix). The transcription rates of MR and MA are proportional to D and D:P, respectively. By replacing D
and D:P with their stQSSAs (Dtq and D:Ptq), we can obtain a reduced model which consists of only slowly varing MR and MA (right, Table B in S1

Appendix). (b-d) Trajectories of MR (top) and MA (bottom) from the full model (red) and the reduced model (blue) simulated using the Gillespie

algorithm (see Tables A and B in S1 Appendix for propensity functions). The lines with colored ranges and the histograms represent the

mean ± standard deviation and the stationary distribution of 104 trajectories, respectively. When DT and PT are the same (DT = PT = 10) and the

binding is tight (Kd = 10−2), the MR trajectories simulated with the reduced model largely exceed those simulated with the full model (b top) because Dtq

overestimates the stochastic QSSA for D (hDi). On the other hand, D:Ptq accurately approximates the stochastic QSSA for D:P (hD:Pi), and thus the

reduced model accurately captures the dynamics of MA (b bottom). If DT is not similar to PT (DT = 15, PT = 10) (c) or the binding is weak (Kd = 10) (d),

Dtq and D:Ptq accurately approximate hDi and hD:Pi, respectively, so that the reduced model accurately captures the dynamics of both MR and MA of

the full model.

https://doi.org/10.1371/journal.pcbi.1008952.g002
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Unlike MR (Fig 2b top), the stochastic dynamics of MA of the reduced model and the full

model are identical (Fig 2b–2d bottom) because the stQSSA for D:P (D:Ptq) always accurately

approximates the stochastic QSSA for the number of the bound DNA (hD:Pi) which deter-

mines the transcription of MA (Fig 1c). Taken together, the stQSSA can be used to describe

transcriptional activation depending on bound DNA under any conditions (Fig 2b–2d bot-

tom). On the other hand, it needs to be restrictively used to describe transcriptional repression

depending on unbound DNA (Fig 2b–2d top).

stQSSA can distort oscillatory dynamics

To illustrate how the stQSSA distorts the dynamics when the molar ratio between tightly bind-

ing species is *1:1, we investigated the simple model where the molar ratio is conserved (Fig

2). However, the total copy numbers of binding species and thus their molar ratio can be var-

ied (e.g., oscillate) in a living cell due to other reactions in a larger system. This raises the ques-

tion of whether the model reduction based on the stQSSA is accurate or not if the molar ratio

is temporarily *1:1. To investigate this, we used a modified Kim-Forger model, which

describes the transcriptional negative feedback loop of the mammalian circadian clock [24, 49,

51]. In this model (Fig 3a top, Table C in S1 Appendix), free activator (A) promotes the tran-

scription of mRNA (M), and the protein translated from M produces repressor (R) passing

through several steps (Pi, i = 1, 2, 3). Then R reversibly binds with A to form a complex (A:R)

which no longer promotes the transcription, and thus represses its own transcription. In this

model, the reversible binding between R and A is much faster than the other reactions (i.e.,

production and decay). Thus, by replacing the fast variable A, which determines the transcrip-

tion rate of M, with its stQSSA (Atq), we can obtain a reduced model (Fig 3a bottom, Table D

in S1 Appendix). The reduced model consists of only the slow variables, RT, M and Pi, because

Atq is fully determined by the conserved total number of the activator (AT = A + A:R) and the

slowly varying total number of the repressor (RT = R + A:R), as illustrated in Table D in S1

Appendix.

In the model, because R tightly binds with A, when RT/AT� 1, Atq overestimates the sto-

chastic QSSA for A (hAi) and thus the transcription rate of M. As a result, when the trajectory

of RT/AT reaches close to 1 (dashed lines in Fig 3b), the transcription more frequently occurs

in the reduced model (Fig 3b bottom) compared to the full model (Fig 3b top). This overesti-

mated transcriptional activity leads to the shorter peak-to-peak periods of the reduced model

compared to the full model (Fig 3c). On the other hand, when the degradation rate of R

increases and thus the trajectory of RT/AT stays near 1 for an extremely short time (Fig 3d

dashed lines), the reduced model accurately captures the dynamics of the full model (Fig 3e).

Taken together, if *1:1 molar ratio between the tightly binding activator and repressor of the

transcriptional negative feedback loop persists for a considerable time, using the stQSSA over-

estimates the transitional activity and thus the frequency of oscillation.

stQSSA can distort bistable dynamics

To investigate how the misuse of the stQSSA distorts the dynamics of a bistable switch, we

used a previously developed bistable switch model for the maturation promoting factor, cyclin

B/Cdc2, whose activation promotes mitosis (Fig 4a top, Table E in S1 Appendix) [46, 57]. In

the model, the inactive form of cyclin B/Cdc2 (P) is converted to an active form (M) by Cdc25

(D). Furthermore, as M activates D which converts P to M, M promotes its own activation

(i.e., form a positive feedback loop; see [46, 57] for details). The positive feedback loop is sup-

pressed by Suc1 protein (B) as it binds with M to form a complex (M:B) which no longer acti-

vates D. The total activated cyclin B/Cdc2 (M and M:B) become P with the same constant rate.
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In this model, the reversible binding between M and B is much faster than the other reactions.

Thus, by replacing the fast variable M with its stQSSA (Mtq) a reduced model can be derived

(Fig 4a bottom, Table F in S1 Appendix). The reduced model consists of only the slow vari-

ables, MT and P, because Mtq is fully determined by the conserved total number of Suc1 (BT =

B + M:B) and the slowly varying total number of the activated cyclin B/Cdc2 (MT = M + M:B),

as illustrated in Table F in S1 Appendix.

When M and B tightly bind, both the full model and the reduced model show the bistable

behaviors (i.e., bimodal stationary distributions) of MT (Fig 4b). However, the trajectory of the

reduced model is more attracted to the upper mode of MT compared to the full model (Fig 4b

and 4c). This dynamics biased to the upper mode occurs because Mtq overestimates the sto-

chastic QSSA for M (hMi) near the MT/BT = 1 region (Fig 4b dashed line) which separates the

upper and lower modes. On the other hand, when the binding between M and B becomes

weak, Mtq accurately approximates the stochastic QSSA for M even when MT is similar to BT.

Thus, the reduced model accurately captures the dynamics of the full model, which no longer

shows bistable behavior (Fig 4d and 4e). Taken together, when the binding between activated

Cyclin B/Cdc2 and Suc1 protein is tight, which is essential to generate the bistable switch,

Fig 3. stQSSA can distort the dynamics of a biological oscillator. (a) Full model diagram of an oscillatory transcriptional negative feedback loop (top, Table C

in S1 Appendix). Unbound activator (A) promotes the transcription of mRNA (M), and the protein translated from M produces repressor (R) passing through

several steps (Pi, i = 1, 2, 3). Then R binds with A to form a complex (A:R) which is transcriptionally inactive, and thus represses its own transcription. As the

reversible binding between R and A is rapid, by replacing A with its stQSSA (Atq), we can obtain a reduced model which consists of only slowly varying RT, M,

and Pi (bottom, Table D in S1 Appendix). (b-c) Oscillatory trajectories of M (green) and RT/AT (orange) simulated with the full model (b top) and the reduced

model (b bottom), using the Gillespie algorithm (see Tables C and D in S1 Appendix for propensity functions). When R binds with A tightly (Kd = 10−4) both the

full model and the reduced model show the oscillatory behaviors. However, when the trajectory of RT/AT stays near 1 (dashed lines in b), Atq overestimates the

stochastic QSSA for A (hAi), and thus the transcription more frequently occurs in the reduced model (b bottom) compared to the full model (b top). As a result,

the reduced model predicts a shorter period than the full model (c). (d-e) On the other hand, when the degradation rate of R increases and thus the trajectory of

RT/AT stays near 1 for a short time (d; dashed lines), the reduced model accurately captures the dynamics of the full model (e).

https://doi.org/10.1371/journal.pcbi.1008952.g003

PLOS COMPUTATIONAL BIOLOGY Universally valid reduction of multiscale stochastic biochemical systems

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008952 October 18, 2021 9 / 21

https://doi.org/10.1371/journal.pcbi.1008952.g003
https://doi.org/10.1371/journal.pcbi.1008952


using the stQSSA overestimates the activation of Cyclin B/Cdc2 and distorts the dynamics of

the bistable switch.

An alternative approach when the stQSSA is not applicable

In the presence of a rapid and tight reversible binding between species whose molar ratio is

*1:1, the reduction of stochastic models with the stQSSA for the number of the unbound spe-

cies can cause errors (Figs 2b, 3c, and 4c). In such cases, due to the tight binding, the two spe-

cies tend to bind until no molecules of one species are left (Fig 1f). Specifically, if AT� BT (AT

� BT), the majority of the A (B) will be bound. Thus, in the presence of tight binding, we can

assume that the stationary distributions of A or B are concentrated on 0 and 1. This low-state

assumption allows us to derive the simple approximation for the stochastic QSSA (hAi in Eq

(4)) (see Methods for details):

hAi � Alq ¼

ðAT � BT þ 1ÞðAT � BT þ BTKdÞ

AT � BT þ BTKd þ 1
if AT � BT;

ATKd

BT � AT þ ATKd þ 1
if AT < BT:

8
>>>><

>>>>:

ð9Þ

Fig 4. stQSSA can distort the dynamics of a bistable switch. (a) Full model diagram of a bistable switch for mitosis (top, Table E in S1 Appendix). The inactive

form of cyclin B/Cdc2 (P) becomes an active form (M) by Cdc25 (D). In this process, M enhances its own activation by activating D, and thus forms a positive

feedback loop (see [46, 57] for details). The positive feedback loop is suppressed as Suc1 protein (B) binds with M to form a complex (M:B) which does not

activate D. The total activated cyclin B/Cdc2, M and M:B, becomes P with the same constant rate. As the reversible binding between M and B is rapid, by

replacing M with its stQSSA (Mtq), we can obtain a reduced model which consists of only slowly varying MT and P (bottom, Table F in S1 Appendix). (b-c)

Simulated trajectories (b) and the stationary distributions (c) of MT from the full model and the reduced model using the Gillespie algorithm (see Tables E and F

in S1 Appendix for propensity functions). When M binds with B tightly (Kd = 10−3), both the full model and the reduced model show the bistable behaviors

between the upper and lower modes, which are separated by MT/BT = 1 (dashed line in b). However, because Mtq overestimates the stochastic QSSA for M (hMi)
when MT/BT is close to 1, the trajectory from the reduced model is more attracted to the upper mode compared to the full model (b). As a result, the bimodal

distribution of MT from the reduced model is biased to the upper mode (c). (d-e) On the other hand, when the binding between M and B becomes weak (Kd =

10), Mtq accurately estimates hMi, and thus the reduced model accurately captures the dynamics of the full model, which no longer shows the bistable behavior.

https://doi.org/10.1371/journal.pcbi.1008952.g004
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We will refer to this approximation as the stochastic “low-state” QSSA (slQSSA). Since this

approximation relies on the property that the state space is restricted at the low level, the sto-

chastic QSSA with singular perturbation analysis introduced in [58] could be used to derive an

alternative approximation.

The accuracy of the slQSSA for A (Eq (9)) is expected to increase when AT Kd decreases

because AT Kd is an approximated number of the unbound A. On the other hand, the accuracy

of the stQSSA for A decreases as AT Kd decreases (Fig 1d). To investigate this, we calculated

the maximum relative error of Atq (RA ¼ j
Atq � hAi
hAi j) and Alq (Rlq

A ¼ j
Alq � hAi
hAi j) to the stochastic

QSSA for A (hAi) for each AT Kd and Kd (Fig 5a and 5b). As expected, when AT Kd is low and

high, the slQSSA and the stQSSA are accurate, respectively. In particular, when AT Kd < 10−1

and AT Kd > 101, Rlq
A and RA are less than 0.1 (i.e., the relative errors are less than 10%),

respectively.

The parameters used in Fig 2b (triangle), Fig 3b (circle), and Fig 4b (square) are located in

the region where the stQSSA is inaccurate (Fig 5a) but the slQSSA is accurate (Fig 5b). There-

fore, with these parameters, the reduced models obtained by using the slQSSAs accurately cap-

ture the dynamics of the full models for the simple gene regulatory network (Fig 5c, Table B in

S1 Appendix), the transcriptional negative feedback loop (Fig 5d, Table D in S1 Appendix),

and the bistable switch for mitosis (Fig 5e, Table F in S1 Appendix), unlike the stQSSA (Figs

2b, 3c, and 4c). Furthermore, by allowing A or B to reach more than two states (e.g., 0, 1, and

2), more accurate slQSSAs can be derived (see Methods for details). In particular, the relative

errors of the slQSSAs derived by allowing the 3/4/5 states are less than 0.1 when AT Kd is less

than 2/5/10, respectively (Fig B in S1 Appendix). Consequently, for the error tolerance of 0.1,

if AT Kd < 101 and thus the stQSSA is inaccurate, the slQSSA can be used to approximate the

stochastic QSSA for A (Fig 5f). Taken together, by using either stQSSA or slQSSA depending

on AT Kd, we can always accurately reduce multiscale stochastic biochemical systems with

rapid reversible bindings. Of course, for a different error tolerance, we need a different thresh-

old of AT Kd and the number of states for the slQSSA. To facilitate the calculation of such

change depending on the error tolerance, we have developed a user-friendly open-source

computational package, ASSISTER (Fig 6). In particular, the function Gillespie_Reduc-
tion in the package automatically constructs a reduced model adaptively using the more

accurate one between the two approximation methods and performs accurate and efficient sto-

chastic simulations (see S1 Appendix for the manual).

Discussion

Reversible binding between molecules—for example, between DNA and a transcription factor,

a ligand and a receptor, and an enzyme and a substrate—is a fundamental reaction for numer-

ous biological functions [42]. As the reversible binding reactions occur typically on a timescale

of 1*1000ms, which is much faster than the other reactions (e.g., 30min for a mammalian

mRNA transcription or a protein translation and 10h for their typical lifetimes) [43], a system

containing the rapid reversible binding becomes a multi-timescale system. In such multi-time-

scale systems, the rapid reversible binding prohibitively increases the computational cost of

stochastic simulations. Accordingly, to accelerate stochastic simulations, various methods have

been developed [44, 60]. In particular, the model reduction using the stQSSA has successfully

simplified various stochastic models in numerous studies [7, 30–33, 38, 39]. Thus, it has been

commonly believed that the stQSSA is generally accurate for any conditions, until a recent

counterexample was identified [41]. In this work, we rigorously derived the validity conditions

for using the stQSSA to reduce stochastic models with a rapid reversible binding. Specifically,

we showed that the relative error of the stQSSA for the number of unbound species (RA)
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Fig 5. slQSSA can be used to reduce multiscale stochastic biochemical systems containing rapid reversible bindings when the stQSSA is not

applicable. (a-b) Heat maps of the relative errors (RA ¼ j
Atq � hAi
hAi j and Rlq

A ¼ j
Alq � hAi
hAi j) when the stQSSA (Atq) and the two-state slQSSA (Alq)

approximate the stochastic QSSA for A (hAi) in the reversible binding reaction (Eq (1)). Color represents the maximum value of RA and Rlq
A for each

AT Kd and Kd when BT varies, and the dashed lines represent when those values are 0.1. When AT Kd are high and low, the stQSSA and the slQSSA

are accurate, respectively. The parameters used in Fig 2b (triangle), Fig 3b (circle), and Fig 4b (square) are located in the region where the slQSSA
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mainly depends on the relative sensitivity of the stQSSA (SA, Eq (8)), which attains maximum

value 1ffiffiffiffiffiffiffiffiffi
4ATKd
p at AT = BT + Kd. This allowed us to find that the stQSSA for the number of the

unbound species is inaccurate if their molar ratio is *1:1 and their binding is tight (Fig 1f). In

that case, the stQSSA highly overestimates the number of the unbound species. Therefore, the

reduced models obtained by using the stQSSA distort the dynamics of the gene regulatory

model (Fig 2b), the transcriptional negative feedback loop model for circadian rhythms (Fig

3c), and the bistable switch model for mitosis (Fig 4c).

When the reversible binding reactions are sufficiently faster than the other reactions, the

deterministic tQSSA is known to be accurate [7, 48, 50]. Indeed, for all examples considered in

(b), but not the stQSSA (a), is accurate (the circle is actually located outside of the heat maps; AT Kd = 5 × 10−4 and Kd = 10−4). (c-e) As a result, the

full models are successfully reduced with the slQSSA (c-e) but not the stQSSA (Figs 2b, 3c, and 4c). See Tables B, D, and F in S1 Appendix for the

propensity functions used for the simulations and Fig C in S1 Appendix for a benchmark comparison with GillesPy2, one of the major, standard

software suites for stochastic simulation [59]. (f) The adaptive use of the stQSSA and the slQSSA to approximate the stochastic QSSA for A when AT

Kd > 101 and otherwise, respectively, guarantees the successful reduction of stochastic models containing rapid reversible bindings. Note that when

10−1 < AT Kd < 101, the slQSSAs with more than two states need to be used (see Fig B in S1 Appendix for details).

https://doi.org/10.1371/journal.pcbi.1008952.g005

Fig 6. Schematic diagram for the computational package, ASSISTER. When a stochastic model containing a rapid

reversible binding (Dþ PÐkb
kf
D : P) and the error tolerance (�) are given as inputs, the auxiliary function

QSSA_Threshold determines the threshold of the total number of binding molecules, Dthres, and the number of

states for the slQSSA, L. When the DT = D + D:P is less (larger) than Dthres, the L-state slQSSA (stQSSA) approximates

the exact stochastic QSSA with a relative error less than �. Based on the relationship between Dthres and DT, the more

accurate one between the two models is adaptively chosen. In this way, Gillespie_Reduction performs efficient

and accurate stochastic simulations, yielding the simulated trajectories as the final output. See the manual in S1

Appendix for a more detailed description of the input and output.

https://doi.org/10.1371/journal.pcbi.1008952.g006
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our work (Figs 2b, 3b and 4b), the deterministic simulations with the tQSSA are accurate,

unlike the stochastic simulations. This indicates that it is risky to investigate the validity condi-

tions of the stQSSA solely based on the validity conditions of the deterministic tQSSA. Instead,

the direct derivation of the relative error of the stQSSA is needed, as demonstrated in this

study (Eq (7)). It would be interesting in future work to perform such error analysis for more

complex examples, such as coupled enzymatic networks with multiple rapid reversible bind-

ings [26, 61, 62].

The rapid reversible reactions are typical conditions for model reductions using the “par-

tial-equilibrium approximation,” which confines species concentrations to the equilibrium

states. In general, this condition does not imply a timescale separation between the variables

(A, B, and C), limiting the application of the QSSA. However, the rapid reversible binding

guarantees that the total variables AT and BT always evolve more slowly than the variables A, B,

and C. Therefore, the QSSAs in terms of the total variables can lead to accurate model reduc-

tions in both deterministic [7, 47, 48, 50] and stochastic [27–30] regimes. In this work, we

investigated under which conditions the complex stochastic QSSA (Eq (4)) can be approxi-

mated by the corresponding simple deterministic QSSA (Eq (5)), referred to as the stQSSA.

We found that such an approximation becomes inaccurate when two species with similar lev-

els tightly bind. Thus, we derived an alternative approximation for the stochastic QSSA:

slQSSA. Using the two approximations for the stochastic QSSA, we developed the universally

valid reduction framework for stochastic models containing rapid reversible bindings. We also

provided the user-friendly open-source computational package, ASSISTER, for this frame-

work. On the other hand, in the absence of rapid reversible binding, one can reduce a model

by assuming that ‘highly reactive species’ are in their QSSs [58]. Interestingly, the reduced sto-

chastic models were often different from the heuristically reduced models obtained with the

deterministic QSSA. It would be interesting in future work to investigate when such discrepan-

cies occur.

While the deterministic tQSSA (Eq (3)) was used to approximate the stochastic QSSA for

the number of reversibly binding species in this work, a simpler deterministic QSSA referred

to as the “standard” QSSA (sQSSA) is more widely used to approximate the stochastic QSSA

due to its simplicity [8–20, 27, 32]. For instance, the stochastic sQSSA for C in Eq (1), which

has the Michaelis-Menten type form

Csq ¼
ATB

Bþ Kd
; ð10Þ

has been widely used as a propensity function for the Gillespie algorithm. Though this sQSSA

has been widely used, it is less accurate than the stQSSA (Eq (5)) [38, 39]. This is why many

examples showing the inaccuracy of the stochastic sQSSA have been reported [33–40], whereas

only one example showing the inaccuracy of the stQSSA has been reported [41]. Note that

while Eq (10) is different from the typical “Michaelis-Menten” equation, which uses the

Michaelis-Menten constant instead of the dissociation constant (Kd), they become nearly the

same when the timescale of reversible binding is faster than the catalytic reaction. Importantly,

our work also provides the validity condition for using the stochastic sQSSA (Eq (10)). That is,

when BT + Kd� AT, which is known as the low-enzyme concentration condition, Csq� Ctq

[7], indicating that the Michaelis-Menten type sQSSA for the bounded species (Eq (10)) can be

used to reduce models containing the rapid reversible binding. Similarly, when BT + Kd� AT,

Asq ¼
ATKd
BþKd

could also be used. This is consistent with the validity conditions for the stochastic

sQSSA derived under the assumption of either a low fluctuation level [32] or a low copy num-

ber [40]. Furthermore, the “pre-factor” QSSA (pQSSA), which is more accurate than the
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sQSSA, has also been used for stochastic simulations [63, 64]. However, recent studies have

shown that the stQSSA is more accurate than the stochastic pQSSA (see [38, 39] for details).

The accuracy of the stQSSA for the number of the unbound species depends on both the

molar ratio between reversibly binding species and the tightness of their binding (Fig 1d).

However, as the molar ratio typically varies in larger models containing reversible binding,

practically, the accuracy is mainly determined by the tightness of binding. Specifically, for the

relative error of the stQSSA to be less than 0.1, AT Kd (� the number of the unbound A) should

be larger than 10 (Fig 5a dashed line). This AT Kd value-based criteria explains the controversy

about the accuracy of the stQSSA in previous studies. That is, AT Kd was less than 10 in a previ-

ous study where the reduced model obtained by using the stQSSA was inaccurate [41]. On the

other hand, AT Kd were much greater than 10 in all of the examples investigated in previous

studies reporting the accuracy of the stQSSA [7, 33, 38, 39, 53, 54]. Furthermore, the stQSSA

always accurately approximates the stochastic QSSA for the number of the bound species (Fig

1c). This explains why the stQSSA was accurate in previous studies where the stQSSA was

used to approximate the number of enzyme-substrate complex [30–33].

In real biological systems, the validity condition of the stQSSA (AT Kd > 10) is not always

guaranteed. Specifically, the range of AT Kd can span approximately from 10−3 to 1010 in

human cells (O = 10−15 * 10−14 m3) since the protein-protein dissociation constant ( ~K d) is

10fM* 1μM (i.e., 1012 * 1020 m−3), and the numbers of molecules (AT) is 100 * 104 [43, 65].

Moreover, in smaller cells like budding yeast (O = 10−17 * 10−16 m3) or E. Coli (O = 10−19 *

10−18 m3) cells, the range of AT Kd can span from 10−7 to 108, which contains the region in

which the stQSSA can be extremely inaccurate. Accordingly, the slQSSA, which accurately

approximates the stochastic QSSA when AT Kd is less than 10, is necessary. Specifically, the rel-

ative error of the slQSSA, unlike that of the stQSSA (Fig 5a and 5b), decreases as AT Kd

decreases because the slQSSA relies on the assumption that the stationary distributions of the

number of the unbound species (� AT Kd) are concentrated on the few lowest states. Taken

together, by using the stQSSA and the slQSSA when the AT Kd value is greater and less than

10, respectively, one can always accurately simplify stochastic models containing rapid revers-

ible binding reactions to accelerate simulation and also facilitate stochastic analysis (Fig 5f).

This can be facilitated by the computational package, ASSISTER (Fig 6).

Methods

Exact bounds for the relative error of the stQSSA to the stochastic QSSA

In this section, we derive the exact upper and lower bounds for RA ¼
�
� Atq � hAi
hAi

�
� (Eq (7)) where

Atq and hAi are the stQSSA and the stochastic QSSA for A, respectively. From the CME

describing the reversible binding reaction (Eq (1)), the following steady-state moment equa-

tion can be derived:

hkfA � B=Oi ¼ hkbCi; ð11Þ

where h�i is the stationary expectation. Eq (11) becomes hA � (BT − AT + A)i = KdhAT − Ai by

using the definitions AT = A + C, BT = B + C, and Kd = kbO/kf. Since AT and BT are invariant

under the reversible binding reactions in Eq (1), we obtain hA2i − (AT − BT − Kd)hAi − AT Kd

= 0, and by using the relation hA2i = Var(A) + hAi2, we get the following quadratic equation:

hAi2 � ðAT � BT � KdÞhAi � ATKd þ VarðAÞ ¼ 0: ð12Þ
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The non-negative root of this quadratic equation becomes hAi:

hAi ¼
1

2

(

ðAT � BT � KdÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðAT � BT � KdÞ
2
þ 4ATKd � 4VarðAÞ

q �

: ð13Þ

By subtracting Eq (13) from Eq (5), we get

Atq � hAi ¼
1

2

( ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðAT � BT � KdÞ
2
þ 4ATKd

q

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðAT � BT � KdÞ
2
þ 4ATKd � 4VarðAÞ

q �

ð14Þ

¼
2VarðAÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðAT � BT � KdÞ
2
þ 4ATKd

q

þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðAT � BT � KdÞ
2
þ 4ATKd � 4VarðAÞ

q : ð15Þ

Since 0� (AT − BT − Kd)2 + 4AT Kd − 4Var(A)� (AT − BT − Kd)2 + 4AT Kd, we get the bounds

for Atq − hAi from Eq (15):

VarðAÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðAT � BT � KdÞ
2
þ 4ATKd

q � Atq � hAi �
2VarðAÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðAT � BT � KdÞ
2
þ 4ATKd

q : ð16Þ

By dividing Eq (16) by hAi, we can get the bounds for the relative error, RA ¼ j
Atq � hAi
hAi j as fol-

lows:

VarðAÞ
hAi

1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðAT � BT � KdÞ
2
þ 4ATKd

q � RA � 2
VarðAÞ
hAi

1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðAT � BT � KdÞ
2
þ 4ATKd

q :

This can be re-expressed as FA SA� RA� 2FA SA (Eq (7)) because
VarðAÞ
hAi is the Fano factor of A

(FA), and 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðAT � BT � KdÞ

2þ4ATKd

p is the relative sensitivity of Atq, i.e., SA ¼ 1

Atq
j
dAtq
dBT
j.

The relative sensitivity, SA, attains the maximum value 1ffiffiffiffiffiffiffiffiffi
4ATKd
p when the term in the square

root of the denominator has the minimum value, i.e., BT = AT − Kd (Eq (8)). In particular, SA

has a large maximum value when Kd� 1 at AT = BT + Kd� BT. On the other hand, if AT�

BT, SA� 0 because the majority of A presents in the bound state regardless of BT (i.e.,
dAtq
dBT
� 0).

When AT� BT,
dAtq
dBT
� 1 because as BT decreases by one, approximately one A is released from

the complex. In this case, if AT� BT, the majority of A are free and thus 1

Atq
� 1

AT � BT
� 0, lead-

ing to SA� 0. However, if AT� BT, the majority of A is sequestered by B, Atq� 0, leading to

SA� 1. When binding is weak (Kd� 1), SA� 0 because the number of A, which is approxi-

mated by Atq, changes little as BT changes (i.e.,
dAtq
dBT
� 0). Taken together, SA is large only when

the binding reaction is tight (Kd� 1) and the binding species are present with 1:1 molar ratio

(AT� BT).

Since AT ¼
~ATO;BT ¼

~BTO; and Kd ¼
~K dO, SA = O(O−1) if the concentrations remain

constant. This implies that when the volume O goes to infinity (i.e., thermodynamic limit), SA
and thus RA become zero (i.e., the stochastic QSSA becomes nearly identical to the determin-

istic QSSA (tQSSA)). On the other hand, as O goes to zero (i.e., the volume of the system gets

smaller), SA goes to infinity.
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Derivation of the stochastic QSSA and the slQSSA

Here we derive the stochastic QSSA for A (hAi, Eq (4)). Let p(l) be the probability that A = l at

its stationary distribution (i.e., the probability that A(1) = l). Then the following recurrence

relation of p(l) can be obtained from the steady-state CME:

ðl þ 1ÞðBT � AT þ lþ 1Þpðl þ 1Þ � lðBT � AT þ lÞpðlÞ þ KdðAT � lþ 1Þpðl � 1Þ � KdðAT � lÞpðlÞ ¼ 0: ð17Þ

Let A0 = max{AT − BT, 0}. Since A0 is the lowest state that A can reach, p(l) = 0 for l< A0. Then

we can inductively prove that the following relation satisfies Eq (17):

pðlþ A0Þ ¼

(
pðl þ A0ÞpðA0Þ for 0 � l � AT � A0;

0 otherwise;
ð18Þ

where pðlÞ ¼ Kl� A0
d minðAT ;BTÞ!jAT � BT j!

l!ðAT � lÞ!ðBT � ATþlÞ!
. Then, because ∑p(l) = 1, pðlÞ ¼ pðlÞ � ð

PAT
l¼A0

pðlÞÞ� 1
if A0�

l� AT, and p(l) = 0 otherwise by Eq (18). Therefore, we can obtain the stationary average num-

ber of A (Eq (4)) as

hAi ¼
XAT

l¼A0

lpðlÞ � ð
XAT

l¼A0

pðlÞÞ� 1

¼
XAT

l¼A0

lKl
d

l!ðAT � lÞ!ðBT � AT þ lÞ!

 !

�
XAT

l¼A0

Kl
d

l!ðAT � lÞ!ðBT � AT þ lÞ!

 !� 1

:

Next we derive the slQSSA, which is the approximation for Eq (4). In the presence of tight

binding, we can assume that the stationary distributions of A and B are concentrated on the

states {0, 1} when AT < BT and AT� BT, respectively. Since when the distribution of B is con-

centrated on 0 and 1, the distribution of A is concentrated on AT − BT and AT − BT + 1, we can

simply say that the distribution of A is concentrated on A0 and A0 + 1. Thus, by assuming that

pðlÞ ¼ pðlÞ � ð
PAT

l¼A0
pðlÞÞ� 1

is approximately zero for l> A0 + 1 and
PAT

l¼A0
pðlÞ �

PA0þ1

l¼A0
pðlÞ,

we can derive the two-state slQSSA for A (Eq (9)) as follows:

hAi �
XA0þ1

l¼A0

lKl
d

l!ðAT � lÞ!ðBT � AT þ lÞ!

 !

�
XA0þ1

l¼A0

Kl
d

l!ðAT � lÞ!ðBT � AT þ lÞ!

 !� 1

¼

( AT � BT þ BTKdð Þ � 1þ
BTKd

AT � BT þ 1

� �� 1

if AT � BT

ATKd

BT � AT þ 1
1þ

ATKd

BT � AT þ 1

� �� 1

if AT < BT

¼

(
ðAT � BT þ 1ÞðAT � BT þ BTKdÞ

AT � BT þ BTKd þ 1
if AT � BT

ATKd

BT � AT þ ATKd þ 1
if AT < BT

:
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In general, for any integer k� 2, we can derive the k-state slQSSA as

Ak
lq≔

XA0þk� 1

l¼A0

lKl
d

l!ðAT � lÞ!ðBT � AT þ lÞ!

 !

�
XA0þk� 1

l¼A0

Kl
d

l!ðAT � lÞ!ðBT � AT þ lÞ!

 !� 1

: ð19Þ

Computational package for universally valid reduction of stochastic

models containing rapid reversible binding reactions

We have developed a user-friendly computational package ASSISTER that contains three

main codes implemented in MATLAB (Fig 6): LQSSA, QSSA_Threshold, and Gille-
spie_Reduction. LQSSA calculates the L-state slQSSA (Eq (19)) for given AT, BT, Kd, and

L. QSSA_Threshold determines which of the stQSSA and the L-state slQSSA ensures a

smaller error than a tolerance � for a given Kd value. This allows the function Gille-
spie_Reduction to perform accurate stochastic simulations for any values of the parame-

ters with the adaptive choice of the valid approximation method determined by using

QSSA_Threshold (Fig 6). See S1 Appendix for details and the manual. ASSISTER can be

found at https://github.com/Mathbiomed/ASSISTER.

Supporting information

S1 Appendix. Supplementary Methods, Tables A-F, and Figs A-C.

(PDF)
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