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Purpose and goals of original data 
collection
Electronic health record (EHR) data hold 
great promise for evaluating the quality and 
efficiency of care. Realization of the poten-
tial for EHRs requires that data be captured 
without interfering with clinical workflow 
and without requiring manual data entry 
into databases. Efforts to extract EHR data 
to date have largely depended on natural 
language processing and have not scaled 
beyond the settings in which they were 
developed.1–4

In 2012, the US Food and Drug Admin-
istration (FDA) funded a demonstration 
performed by Mercy Health (Mercy) whereby 
unique device identifiers (UDIs) were incor-
porated into Mercy’s electronic information 
systems, enabling assessments of cardiovas-
cular device performance using EHR data.5 
The goals and design of the demonstra-
tion have been previously described.6–8 In 
summary, between May and December 2012, 
a barcode scanning system was installed in 
5 Mercy cardiac catheterization laboratories 
(Cath Labs) for capturing data on all consum-
able supplies, including coronary stents. 
Coronary stent barcodes were used as proto-
type UDIs and were linked at the patient level 
with clinical data from the hemodynamic 
system (Merge Hemo, Merge, Chicago, Illi-
nois, USA) and Mercy’s EHR (EpicCare, 
Epic, Verona, Wisconsin, USA). A database 
termed the UDI research database (UDIR) 
was built that contains EHR-extracted data, 
UDI-associated coronary stent attributes, 
and data from other sources, for example, 
the Social Security Death Master File. The 
UDIR is updated weekly with EHR data 
enabling longitudinal follow-up for purposes 
of device evaluation, including safety surveil-
lance. Details of UDIR content and structure 
have been published previously8 and initial 

evaluations of its utility appear in the demon-
stration report on the FDA’s website.9

Data collected
Development of the UDIR
Mercy is an integrated delivery network in 
Missouri, Kansas, Oklahoma and Arkansas 
with over 40 hospitals and a total of 4396 
licensed beds. At the time of the demon-
stration, Mercy operated five Cath Labs 
at its hospitals in Joplin, Missouri; Rogers, 
Arkansas; Springfield, Missouri; St Louis, 
Missouri; and Washington, Missouri. Mercy 
manages supply chain information with the 
Infor Lawson (Infor Lawson, New York, USA) 
enterprise resource processing (ERP) system 
and has the same EHR in all its inpatient 
facilities and clinician practices. In addition, 
during the time of the demonstration, all 
Mercy Cath Labs used Merge Hemo as their 
hemodynamic software for documentation of 
all procedures, including stent implantation. 
A point of use barcode scanning inventory 
system (OptiFlex CL, Omnicell, Mountain 
View, California, USA) was installed for 
capturing information on all Cath Lab 
consumable items (including the prototype 
coronary stent UDIs) at the point of care.7

When coronary stents are brought to the 
Cath Lab, their prototype UDIs (and now 
actual UDIs) are scanned into OptiFlex CL. 
When a stent is implanted in a patient, its 
UDI is scanned and automatically uploaded 
into Merge Hemo and OptiFlex CL. The 
device is linked to the patient in both Merge 
Hemo and OptiFlex CL. After case comple-
tion, Cath Lab personnel transmit the case 
record (including UDI) from Merge Hemo 
to the UDIR; OptiFlexCL data are automat-
ically transmitted to the UDIR. Conflicts 
in patient identification are then recon-
ciled through integration between UDIR 
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Figure 1  Patient and procedure selection.

and Mercy’s integrated patient data mart. Additionally, 
a preset group of baseline patient characteristics (labo-
ratory values, diagnoses and so on) are automatically 
extracted from the EHR and uploaded to the UDIR on 
a weekly basis. Finally, UDI-associated stent attributes 
are uploaded to the UDIR from the FDA’s Global UDI 
Database (GUDID)10 and from a supplemental database 
termed the Supplemental UDI Database (SUDID). The 
structure of the UDIR, then, supports analyses utilizing 
variables in three broad categories: baseline patient char-
acteristics, coronary stent attributes and patient outcomes 
including adverse events.

Assessment of the UDIR
The UDIR contains data from multiple sources: Epic-
Care (Clinical and Billing), Merge Hemo, OptiFlex CL, 
GUDID, SUDID and the Social Security Death Master 
File. Additionally, two of Mercy’s Cath Labs (Springfield 
and St Louis) participate in the National Cardiovascular 
Data Registry’s (NCDR) CathPCI Registry into which data 
from all percutaneous coronary interventions (PCIs) are 
entered by personnel from the hospitals’ clinical quality 
departments. These data are available for comparison 
with UDIR data.

UDIR data completeness was assessed using compari-
sons of data within the database as extracted from each 
of the data sources and with data obtained from reports 
submitted to the CathPCI Registry. Cath Lab personnel 
bar code scanning compliance was also assessed because 
it is a major contributor to data completeness. Details of 
data completeness and scan compliance evaluations are 
included in the online supplementary appendix B and 
online supplementary figures 1; 2. In summary, both were 
found to be at an acceptable level for safety surveillance 
purposes.

Data resource use
Example case study
To demonstrate the functionality of the database and face 
validity of UDIR data, analyses were performed of ‘all 
comers’ receiving coronary stents from 1 November 2012 
to 26 October 2013. We tracked the major adverse cardiac 
events of death, acute myocardial infarction (AMI), total 
coronary revascularization and stent thrombosis. Deaths 
were captured in the Social Security Death Master File 
and the other outcomes were found in Epic Clarity (the 
Epic data warehousing utility) using diagnosis and billing 
codes.9 We selected mortality as the outcome of interest 
because of its objectivity and data completeness and ‘drug’ 
as the stent attribute of interest. We hypothesized that 
there would be no difference in mortality among stents 
that eluted various drugs (drug eluting stent (DES))—or 
no drug in the case of bare-metal stents (BMS). During 
the time of the study, all implanted DES contained ever-
olimus, paclitaxel or zotarolimus. Patient and procedure 
selection are shown in figure 1.

Our analytic plan called for the UDIR to be an active 
surveillance dataset and we anticipated using unadjusted 
data to identify safety signals as we felt it would be diffi-
cult to apply propensity scoring to prospectively captured 
EHR data. When a safety signal was identified, we used 
propensity matching methods to adjust for poten-
tial selection bias in the choice of the stent’s drug. An 
implanter might, for instance, have chosen a BMS for a 
patient in shock because of the poor prognosis. Separate 
analyses were conducted using propensity matching and 
weighting techniques. Propensity scores were calculated 
using covariates based on the adjustment models used 
in the Massachusetts CathPCI data (Mass-DAC registry) 
with presenting diagnosis based on International Classifi-
cation of Diseases, Ninth Revision, Clinical Modification 
(ICD-9 CM) codes.11 Twelve of the clinical covariates, as 
listed in table 1, were available in the UDIR database and 
were used in our final model.

Finally, Cox proportional hazard models were conducted 
to compare mortality between patients receiving BMS 
versus DES. Analyses were performed using SAS V.9.3 
and Kaplan Meier curves were created using R V.3.1. The 
Mercy Hospital St Louis Institutional Review Board deter-
mined that the demonstration was exempt from review.

A total of 2250 patients were found undergoing PCI with 
stent implantation. Except for those patients who died 
within the first 30 days, a minimum of 30 days of follow-up 
data were available for each patient with data censored at 
1 year post-PCI. The mean follow-up time was 320.9±107.0 
days. After applying exclusions, there remained 1555 
procedures performed on 1445 patients with an average 
of 1.1 implanted stents per patient. Of these patients, 300 
(20.8%) had received BMS. The remaining received DES, 
consisting of 980 patients (67.8%) with everolimus, 148 
(10.2%) with zotarolimus and 17 (1.2%) with paclitaxel 
stents.
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Table 1  Baseline characteristics prior to propensity score approaches for patients with complete data and 30 days of follow-
up

Baseline characteristics
(n=1445)

Stent by drug attribute

P value
Standardised
difference*DES (n=1145) BMS (n=300)

Female 376 (32.8%) 100 (33.3%) 0.871 −0.011

Age >65 years 600 (52.4%) 191 (63.7%) <0.001 −0.230

Caucasian 1095 (95.6%) 286 (95.3%) 0.822 0.014

Married 800 (69.9%) 168 (56.0%) <0.0001 0.290

Risk factors

 � Alcohol use 420 (36.7%) 90 (30.0%) 0.031 0.142

 � Illicit drug use 67 (5.9%) 28 (9.3%) 0.030 −0.132

 � Acute MI 400 (34.9%) 163 (54.3%) <0.0001 −0.398

 � Shock 21 (1.8%) 23 (7.7%) <0.0001 −0.277

 � COPD 148 (12.9%) 58 (19.3%) 0.005 −0.175

 � Diabetes mellitus 435 (38.0%) 102 (34.0%) 0.203 0.083

 � Dialysis 23 (2.0%) 8 (2.7%) 0.484 −0.044

 � EF <30% 24 (2.1%) 10 (3.3%) 0.208 −0.076

*Standardised difference=difference in means or proportions divided by SE; imbalance defined as an absolute value >0.10 (small effect size).
COPD, chronic obstructive pulmonary disease; EF, ejection fraction; MI, myocardial infaction.

Table 2  Baseline characteristics after propensity score weighting for patients with complete data and 30 days of follow-up

Baseline characteristics
(n=1445)

Stent by drug attribute

P value
Standardised
difference*DES (n=299)† BMS (n=300)

Female 97 (32.4%) 100 (33.3%) 0.739 −0.019

Age >65 years 189 (63.2%) 191 (63.7%) 0.888 −0.009

Caucasian 287 (96.0%) 286 (95.3%) 0.636 0.032

Married 168 (56.2%) 168 (56.0%) 0.955 0.004

Risk factors

 � Alcohol use 88 (29.4%) 90 (30.0%) 0.823 −0.012

 � Illicit drug use 26 (8.7%) 28 (9.3%) 0.771 −0.022

 � Acute MI 164 (54.8%) 163 (54.3%) 0.904 0.010

 � Shock 23 (7.7%) 23 (7.7%) 0.962 0.001

 � COPD 55 (18.4%) 58 (19.3%) 0.766 −0.024

 � Diabetes mellitus 102 (34.1%) 102 (34.0%) 0.979 0.002

 � Dialysis 9 (3.0%) 8 (2.7%) 0.787 0.021

 � EF <30% 10 (3.3%) 10 (3.3%) 0.972 0.001

*Standardized difference=difference in means or proportions divided by SE; imbalance defined as an absolute value >0.10 (small effect size).
†Weighted sum, Ns rounded to an integer.
COPD, chronic obstructive pulmonary disease; EF, ejection fraction; MI, myocardial infaction.

The distribution of baseline characteristics between 
patients receiving DES and BMS is shown in table  1. 
Patients receiving BMS were more likely to be older (over 
age 65 years) and single, to have COPD, to use drugs 
illicitly and to be experiencing AMI and shock at base-
line. Propensity score matching reduced the number of 
patients available for analysis to only 558 and the number 
of procedures to 584. Propensity score weighting, on the 
other hand, eliminated all the differences between groups 

for the covariates included in the propensity model and 
allowed us to keep all 1445 patients in our analysis. The 
results of propensity score weighting are shown in table 2. 
The weighted frequency for patients receiving DES stents 
was 299. We, therefore, selected it as our adjustment 
methodology.

A survival analysis of coronary stents by drug attribute 
(figure  2) demonstrated no significant differences in 
unadjusted mortality at 1 year among the various DES: 
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Figure 2  Unadjusted survival by drug attribute.

Figure 3  Survival by DES vs BMS. BMS, bare-metal stent; 
DES, drug eluting stent.

everolimus (27 deaths, 2.5%); zotarolimus (four deaths, 
2.6%); and paclitaxel (0 deaths, 0%). We, therefore, 
combined DES for subsequent comparisons with BMS. 
Figure  3 compares the survival of the combined DES 
cohort with BMS and demonstrates significantly higher 
unadjusted 1-year mortality in patients receiving BMS (32 
deaths, 10.4%) compared with DES (31 deaths, 2.5%) 
with separation of the curves occurring in the first 40 
days and leveling off thereafter. In a surveillance dataset, 
this would represent a safety signal prompting further 
evaluation.

Figure  3 also contains a survival plot comparing the 
combined DES with BMS adjusted using propensity score 
weighting. It demonstrates significant attenuation of the 
mortality difference between DES and BMS although a 
statistically significant variance remains (HR for BMS 
1.82, 95% CI: 1.04 to 3.19, p=0.04).

Strengths and limitations of data source
While we linked to the Social Security Death Master File 
to capture mortality, the UDIR itself contains EHR data 
on the three major drivers of device performance: the 
patient, the operator and the device itself. It also contains 
several EHR-derived safety outcomes, for example, 

readmissions, revascularization procedures and stent 
thrombosis. This construct supports analyses and surveil-
lance capabilities that use various combinations of vari-
ables from all three EHR-based categories looking at a 
variety of safety endpoints. Hypothesis-driven analyses 
can be performed or events can be monitored longitudi-
nally to detect unanticipated safety signals.

Although our demonstration analysis was performed 
on coronary stents implanted in 2012–2013, Mercy Cath 
Labs have continued capturing UDI as part of inven-
tory management, thus, enabling continuation of the 
UDIR. The UDIR is currently undergoing revision as 
part of a larger initiative in which we are establishing a 
distributed data network with two other health systems. 
This requires updating code sets, for example, ICD-10, 
and development of a common data model to support 
distributed analytics. The SUDID requires continual 
updating to accommodate new devices with new UDIs. 
Additionally, analyses of more contemporary data 
will need to include changes in clinical practice. For 
instance, the use of BMS has decreased markedly since 
the time period of our original analysis. We will need 
to understand how changing device selection over time 
might affect the characteristics included in our propen-
sity score model.

Using UDI as the foundation for medical device identifi-
cation will permit our approach to extend to other classes 
of implanted devices. In this regard, Mercy is initiating 
UDI capture in our operating rooms enabling evalua-
tion of surgically implanted devices. Finally, as challenges 
related to data quality and completeness are resolved, it 
would also be possible to use UDIR data in the assessment 
of device effectiveness as well.

A major advantage of the data source is availability of 
the data extracts from Mercy’s systems obviating the need 
for case report forms and avoiding interference with 
workflow. However, not all covariates are available that 
are used in previously published stent survival predictive 
models.11 Further, the use of data extraction constrains 
our clinical data to discrete elements and therefore limits 
our ability to draw strong inferences as key information 
is often contained within clinical notes which are, at 
present, not available for analysis. There were also chal-
lenges in discerning the timing of events within specific 
days as data entry times were captured but not the event 
times themselves, thus making it impossible, for instance, 
to determine whether an AMI occurring on the same day 
as a PCI occurred before or after the procedure.

Data completeness presented challenges as well as we 
were using data collected in the routine course of care 
and because we required that data from stenting proce-
dures be transmitted to the UDIR by clinical personnel 
after completion of the procedure. Additionally, data 
completeness was found to vary over time. We devised 
a method for tracking data completeness that enables 
significant data gap identification in near real time. 
Another concern is the possibility of incorrect or incom-
plete information from the Social Security Death Master 
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File, which is becoming a less reliable source of mortality 
data as a result of policy changes.12

Our EHR longitudinal follow-up data reflected proce-
dures and tests performed at the discretion of the clini-
cian and were not required by protocol. Any signal related 
to these data can therefore only be considered ‘hypoth-
esis generating’. We selected mortality as the outcome of 
interest in this first demonstration analysis because we felt 
we could capture virtually all deaths minimizing the risk 
of incomplete ascertainment that would have challenged 
outcomes identified only in the EHR.

One of the greatest limitations is the lack of statistical 
power and data asymmetry illustrated in the case study. 
The analysis included 1445 patients and presented chal-
lenges in our efforts to do propensity modeling producing 
only 554 matched pairs, due to the significant imbalance 
in baseline risk between those patients receiving BMS as 
compared with those receiving DES. Further, one of three 
types of DES (everolimus) comprised 86% (980) of all 
DES in the analysis.
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