
Research Article
Investigating the Molecular Mechanism of Quercetin
Protecting against Podocyte Injury to Attenuate Diabetic
Nephropathy through Network Pharmacology, Microarray
Data Analysis, and Molecular Docking

Xiaoqin Ma ,1,2 Chenxia Hao ,1,3 Meixiang Yu ,1 Zhaokang Zhang ,1

Jingjing Huang ,1 and Wanhua Yang 1

1Department of Pharmacy, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China
2Department of Pharmacy, Xi’an Children’s Hospital, Xi’an, China
3Department of Pharmacy, Shanghai Children’s Medical Center, Shanghai Jiao Tong University School of Medicine,
Shanghai, China

Correspondence should be addressed to Jingjing Huang; huangjingjing0112@163.com and Wanhua Yang;
yangwanhuaxy@163.com

Received 20 July 2021; Revised 3 March 2022; Accepted 29 April 2022; Published 16 May 2022

Academic Editor: Valeria Sülsen
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Quercetin (QUE), a health supplement, can improve renal function in diabetic nephropathy (DN) rats by ameliorating podocyte
injury. Its clinical trial for renal insufficiency in advanced diabetes (NCT02848131) is currently underway. 0is study aimed to
investigate the mechanism of QUE protecting against podocyte injury to attenuate DN through network pharmacology,
microarray data analysis, and molecular docking. QUE-associated targets, genes related to both DN, and podocyte injury were
obtained from different comprehensive databases and were intersected and analyzed to obtain mapping targets. Candidate targets
were identified by constructing network of protein-protein interaction (PPI) of mapping targets and ranked to obtain key targets.
0e major pathways were obtained from Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) term
enrichment analysis of candidate targets via ClueGO plug-in and R project software, respectively. Potential receptor-ligand
interactions between QUE and key targets were evaluated via Autodocktools-1.5.6. 41. Candidate targets, of which three key
targets (TNF, VEGFA, and AKT1), and the major AGE-RAGE signaling pathway in diabetic complications were ascertained and
associated with QUE against podocyte injury in DN. Molecular docking models showed that QUE could closely bind to the key
targets. 0is study revealed that QUE could protect against podocyte injury in DN through the following mechanisms:
downregulating inflammatory cytokine of TNF, reducing VEGF-induced vascular permeability, inhibiting apoptosis by stim-
ulating AKT1 phosphorylation, and suppressing the AGE-induced oxidative stress via the AGE-RAGE signaling pathway.

1. Introduction

Podocyte injury is a critical event resulting in the eventual
podocyte loss in the development and progression of dia-
betic nephropathy (DN), accounting for 40–45% of patients
with diabetes mellitus [1–3]. Moreover, podocytes and
podocyte-specific proteins are potential urinary markers to
detect the early diagnosis of DN, and low podocyte density,
correlating directly with the magnitude of proteinuria, is a

strongest predictor for progression of DN [4]. Furthermore,
podocyte injury results in permanent alterations in the
glomerular filtration barrier in DN [5, 6]. Podocytes are core
cells of the glomerular filtration barrier and terminally
differentiated parietal epithelial cells with a very limited
proliferation ability [7].

Recently, podocyte injury has been regarded as a novel
early mechanism involved in DN [8]. In the progress of DN,
hyperglycemia (HG) induces the excessive accumulation of
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advanced glycation end products (AGEs) with reactive
oxygen species (ROS), initiating podocyte injury accom-
panied with proteinuria and ultimately accelerating the
development of DN [9, 10]. Podocytes are also targets of
AGEs in diabetes by increasing AGE receptor (RAGE) ex-
pression [11]. 0e activated AGE-RAGE signaling pathway
(AGEs binding to RAGE) increasing expressions of proin-
flammatory cytokine and oxidative stress is closely associ-
ated with podocyte injury and has been confirmed exactly
one of the mechanisms of DN occurrence [12, 13]. However,
the alleviation of podocyte injury in DN is mainly to control
HG or proteinuria for the management of renal damage
[3, 14], but lacks targeted agents. So, drugs targeting
podocyte injury are urgently needed to treat DN and will be
one of the most promising field of inquiry [13].

Quercetin (3,3′,4′,5,7-pentahydroxyflavone, QUE) be-
longs to natural flavonoids that are commonly defined as
dietary antioxidants [15]. It has significant therapeutic ef-
fects on DN by reducing proteinuria which is a typical
clinical manifestation mostly resulted from the podocyte
injury [16, 17]. Moreover, it can reduce the oxidative stress,
inflammatory responses and apoptosis involved in the
progression of DN [18, 19]. Many clinical trials of QUE,
including clinical research for renal insufficiency in ad-
vanced diabetes (clinicaltrials.gov ID NCT02848131) are
currently underway (https://www.clinicaltrials.gov/)
[20, 21]. In vitro experiments have confirmed that QUE
reverses diabetes-induced podocyte injury by increasing the
expression level of nephron and podocin in podocytes
[20, 22, 23].

QUE is a phytochemical contained in many Chinese
herbs such as Astragalus membranaceus (ASM) and Salvia
miltiorrhiza bunge (SMB). ASM has been reported to have
protective effects on podocyte injury and SMB can ame-
liorate diabetic vascular injury in streptozotocin-induced
diabetic rats [24, 25]. However, the molecular mechanism of
protects against podocyte injury in DN is lacking. Fortu-
nately, network pharmacology can decipher the mechanism
of drugs action with a holistic perspective, which breaks
through the “one drug, one target” in the traditional drug
discovery model and realizes the synergy of multiple targets
[26]. Hence, this study aimed to investigate the mechanism
of QUE protecting against podocyte injury to treat DN
through network pharmacology [26], microarray data
analysis, and molecular docking.

2. Materials and Methods

0e flowchart of this study design about the network
pharmacology method used to clarify the key targets and the
major pathway of QUE protecting against podocyte injury is
shown in Figure 1, including six parts: searching QUE-as-
sociated targets, screening genes related to DN and podocyte
injury, retrieving of mapping target interaction proteins,
constructing protein-protein interaction (PPI) network,
enrichment analysis, and molecular docking.

2.1. Searching QUE-Associated Targets. Targets of QUE were
searched from the following three databases with the keyword

“quercetin.” One is the Traditional Chinese Medicine Systems
Pharmacology database [27] (TCMSP, https://lsp.nwu.edu.
cn/) which focuses on the exploration of the targets from the
HIT database, SysDT model, and targets validated by ex-
periments [27]. Another is the SwissTargetPrediction data-
base [28] (https://www.swisstargetprediction.ch) which
estimates the most probable targets of QUE in view of 2D and
3D similarity between QUE and known activities in this
database [29].0e third is the SymMap database [30] (https://
www.symmap.org/) which builds a large heterogeneous
network by combining 19595 herbal ingredients and 4302
target genes related to symptoms [30]. After deleting repeated
targets, all the unique targets obtained were considered to be
regulated by QUE.

2.2. Obtaining Genes Related to DN and Podocyte Injury.
Genes associated with DN were retrieved from five com-
prehensive databases, including the Online Mendelian In-
heritance in Man database [31] (OMIM, https://www.omim.
org/), DrugBank database [32] (https://www.drugbank.ca/),
the Kyoto Encyclopedia of Genes and Genomes Pathway
Database [33] (KEGG, https://www.kegg.jp/), and 0era-
peutic Target Database [34], (TTD, https://db.idrblab.net/
ttd/) with the keyword “diabetic nephropathy,” as well as
GeneCards database [35] (https://www.genecards.org/),
with the keyword “[all] (diabetic nephropathy) and [all]
(Homo sapiens).”

Genes related to podocyte injury were searched from
four databases: OMIM and DigSee database [36] with the
keyword “Podocyte injury” (https://210.107.182.61/
digseeOld/), GeneCards database with the keyword “[all]
(podocyte injury) and [all] (Homo sapiens),” and Gene
Expression Omnibus (GEO) database [37] with the keyword
“(Podocyte injury) AND “Homo sapiens”[porgn:
txid9606].” From the GEO database, a human gene ex-
pression data series (GSE51834) [38] titled “Indoxyl sulfate,
a uremic toxin and aryl-hydrocarbon receptor ligand, me-
diates progressive glomerular disease by damaging podo-
cytes” published in 2014, was selected to explore differential
genes (DEGs) of podocyte injury. 0ere was a series matrix
file that included three podocyte injury samples and three
control samples in this series. 0e DEGs were gathered by
comparing these two types of samples with fold change (FC)
of genes expression (|logFC|≥ 1) and false discovery rate
(P< 0.05) using the Limma package [39] of the R project
software.

2.3. Constructing Protein-Protein Interaction (PPI) of Map-
ping Targets and Identifying Candidate Targets.
QUE-associated targets, podocyte injury-related genes, and
DN-associated genes were subjected to intersection analysis
to identify the mapping targets that were considered to be
highly relevant to QUE protecting against podocyte injury in
DN. 0e “protein-protein interaction (PPI)” topological
network of the mapping targets was constructed using the
STRING database [40] (https://string-db.org) using Cyto-
scape 3.71 [41].0e nodes of this network represent proteins,
and the edges represent the interactions between the two
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proteins. 0e targets having interactions with a probabilistic
association confidence a score ≥0.4 were identified candidate
targets. 0e network topology parameters, including the
“degree” of targets in the PPI network were analyzed using
the Network Analyzer plug-in of Cytoscape. 0e top three
targets with the highest “degree” values were defined as three
key targets for QUE protecting against podocyte injury in
DN.

2.4.EnrichmentAnalysis ofGOTermandKEGGforCandidate
Targets using ClueGO and R Project, Respectively. 0e can-
didate targets were imported into the ClueGO plug-in [42]
of Cytoscape and R project for Gene Ontology (GO) term
and KEGG enrichment analysis, respectively, to decipher the
molecular mechanisms of QUE protecting against podocyte
injury. 0e results gathered from above two enrichment
software were further analyzed and compared, and the most
reliable signaling pathway (the largest percentage or the
lowest P value) was considered to be the major pathway for
QUE protecting against podocyte injury in DN.

GO terms describe the biological function of genes
through three semantic terms, namely, biological process
(BP), cellular component (CC), and molecular function
(MF) [43]. KEGG consists of artificially annotated meta-
bolic pathways and defines the complex interrelationship
between genes and metabolites [33]. R project software has
been widely used in network pharmacology studies for
screening of DEGs, enrichment, and annotation analysis
[37, 44].

2.5. Docking QUEwith Key Targets. 0e interaction between
QUE (ligand) and key targets (receptors) were evaluated
using Autodocktools-1.5.6 [45] and visualized through

PyMOL [46], being able to calculate and analyze the binding
affinity and binding energy.0e structure of QUE (as a mol2
file) and the targets (as a PDB file) were downloaded from
PubChem (https://pubchem.ncbi.nlm.nih.gov/) and the
Protein Data Bank database (PDB) (https://www.rcsb.org/
pages/contactus), respectively.

3. Result

3.1. QUE-Associated Targets. A total of 355 targets of QUE
(Supplementary Table 1) were obtained from TCMSP (148
targets), SwissTargetPrediction (99 targets), and SymMap
(108 targets) databases, and 247 unique targets of QUE were
gathered after deleting 108 repeated targets. And, there were
six targets (AKT1, TOP1, PARP1, MMP9, MMP3, and
MMP2) recorded in those three databases.

3.2. 3387 Genes Associated with DN and 816 Genes Related to
Podocyte Injury. A total of 4895 human genes (Supple-
mentary Table 2) associated with DN were identified from
those five databases, and 3387 unique genes of DN were
obtained after deleting 1508 duplications.

848 human genes (Supplementary Table 3) related to
podocyte injury were identified, of which 316 were DEGs
(130 upregulated genes, including TNFAIP6, TNFAIP3, and
VEGFA and 186 downregulated genes, including TNFRSF19
and COL1A1) (Figure 2(a)), 532 of which were obtained
from the OMIM (191 genes), GeneCards (339 genes), and
DigSee (2 genes) databases. Totally 816 unique genes of
podocyte injury were gathered after deleting 32 duplications.

3.3. 41 Candidate Targets from PPI Network Analysis of 42
Mapping Targets Related to QUE, DN, and Podocyte Injury.
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Figure 1: Flow chart of network pharmacology method used in this study.
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0rough intersection analysis QUE-associated targets, DN-
associated genes and podocyte injury-related genes, 42
mapping targets (Figure 2(b), Supplementary Table 4) were
identified closely related to QUE protecting against podocyte
injury in DN.

In total, 41 candidate targets (Figure 3(a), Supplementary
Table 5), including 13 DEGs (2 downregulated and 11
upregulated genes (Figure 3(b)) were identified through the
PPI network of 42 mapping targets. 0e PPI network
contained 41 nodes, 340 edges with an average “degree”
value (the mean number of connections per node) of 16.585.
0ere were 21 candidate targets with a “degree”

value ≥average “degree” (Table 1), and the top three targets
TNF, VEGFA, and AKT1 ranked by degree were identified as
the key targets of protecting against podocyte injury in DN.

3.4. Results of Enrichment Analysis about Candidate Targets.
A total of five signaling pathways (Figure 4(a)) and 10 bi-
ological functions (P< 0.05, Figure 4(b)) involving in QUE
protecting against podocyte injury were obtained via
ClueGO, respectively. Detailed information of ClueGO
enrichment results is listed in Table 2. 118 signaling path-
ways (P< 0.05, Supplementary Table 6) and 52 biological
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Figure 2: (a) Volcano map of 316 differential genes of podocyte injury. 0e 130 upregulated genes are presented in red, whereas 186
downregulated genes are presented in green. (b) Venn diagram and PPI network showed the 42 mapping targets of QUE protects against
podocytes injury in DN.
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functions (P< 0.05, Supplementary Table 7) were obtained
via R project, respectively. 0e top 20 signaling pathways
with low P values are shown in Figure 5.

0e top pathway obtained in ClueGO (accounting for
94.44%) and R project (P � 3.655 × 10− 19; count� 15) both
was the AGE-RAGE signaling pathway in diabetic com-
plications that was also identified as the major signaling
pathway of QUE protecting against podocyte injury in DN.
Oxidoreductase activity, antioxidant activity, and peroxidase
activity from R project were consistent with the regulation of
reactive oxygen metabolism (36.92%) from ClueGO [47],

and growth factors, cytokine receptors, and protein phos-
phatase 2A from R project were consistent with endothelial
cell proliferation (26.92%) from ClueGO [48].

3.5. Results of Molecular Docking. 0e molecular docking
analysis showed that QUE (ZINC3869685) could easily enter
and bind to the key target TNF (2JG9), VEGFA (1MKK), and
AKT1 (1UNR) with several interactions, hydrogen bonds,
and amino acid residues, shown in Figure 6. QUE can form
five H-bonds with GLY-201 (2.1), HIS-101 (2.5), SER-207
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Figure 3: (a) 41 candidate targets obtained from network of “protein-protein” interaction (PPI), including three key targets TNF
(degree� 34), VEGFA (degree� 33), and AKT1 (degree� 31). 0e color of the nodes is shown in a gradient from to red to transparent
according to the degree value. (b) 13 DEGs contained in 41 candidate targets, the red bars represents11 upregulated genes (log C 1), and the
green bars represents 2 upregulated genes (log FC<−1).

Table 1: 21 candidate targets with a degree greater than average.

Target Uniprot ID Description Degree
TNF P01375 Tumor necrosis factor 34
VEGFA P15692 Vascular endothelial growth factor 33
AKT1 P31749 AKT serine/threonine kinase 1 31
TP53 P04637 Tumor protein p53 29
PTGS2 P35354 Prostaglandin G/H synthase 2 28
CXCL8 Q9UI36 C-X-C motif chemokine ligand 8 28
JUN P05412 Jun proto-oncogene, 27
IL10 P22301 Interleukin-10 25
IL1B P01584 Interleukin-1 beta 24
MAPK1 P10911 Mitogen-activated protein kinase 1 24
CCND1 P24864 Cyclin D1 22
HMOX1 P09601 Heme oxygenase 1 21
STAT1 P42224 Signal transducer and activator of transcription 1-alpha/beta 21
APP P05067 Amyloid beta precursor protein 21
VEGF2 P35968 Vascular endothelial growth factor receptor 2 20
PTEN P60484 Phosphatase and tensin homolog 20
CRP P02741 C-reactive protein 20
SELE Q5TI75 Selectin E 18
F2 P16930 Coagulation factor II, thrombin 17
HIF1A P01892 Hypoxia inducible factor 1 subunit alpha 17
SOD1 P00441 Superoxide dismutase 1 17
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(2.8), and HIS-101 (2.5 and 1.8) of TNF, eight H-bonds with
LEU-66 (2.8), CYS-26 (2.6 and 2.4), GLU-64 (2.4), PHE-47
(2.4), SER-50 (2.5), and SER-24 (2.2 and 3.5) of VEGFA.
And, the binding energy of QUE and TNF, VEGFA and
AKT1 were −6.35 kJ/mol, −6.75 kJ/mol, and −5.36 kJ/mol,
respectively.

4. Discussion

0e present study shows that QUE would protect against
podocyte injury in DNmainly by regulating the major AGE-
RAGE signaling pathway and three key targets: TNF me-
diating the proinflammatory, VEGF promoting vascular

permeability and proliferation, and AKT1 participating in
apoptosis. Furthermore, QUE, having the five hydroxy
groups (placed at the 3-, 3′-, 4′-, 5- and 7-positions), should
have suitable binding sites with three key targets and in-
teracts with amino acid residues of targets through multiple
hydrogen bonding and Van der Waals using molecular
docking analysis.

QUE regulates the oxidative stress-associated AGE-
RAGE signaling pathway to protect against podocyte injury
in DN. It is known that the binding of AGEs to the receptor
RAGE can induce oxidative stress and inflammation, elic-
iting podocyte injuries [49, 50]. Encouragingly, Li et al.
validated that QUE can reduce the production of AGEs by
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Figure 4:0e enrichment results of KEGG (a) and GO terms analysis (b) for the 41 candidate targets via ClueGO.0eAGE-RAGE signaling
pathway is the most reliable pathway in ClueGO (94.44%), regulation of reactive oxygen metabolism (36.92%) and endothelial cell
proliferation (26.92%) are top two reliable biological functions.
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trapping 50.5% of glyoxal and 80.1% of methylglyoxal which
are the crucial reactive dicarbonyl precursors of AGEs [51].
Moreover, QUE decreases the expression of RAGE [52] and
increases the expression of superoxide dismutase (SOD) to
suppress oxidative stress accelerated by the activated AGE-
RAGE pathway, protecting the cell from injury [53]. Ad-
ditionally, QUE is an antioxidant, it can not only increase the
expression of podocyte slit diaphragms and sensitive
markers of podocyte nephrin and podocin to the mainte-
nance of the skeletal structure and function of podocytes
[23, 54] but also lower the kidney hypertrophy index (KI),
blood urea nitrogen (BUN), and blood creatinine (Scr) to
improve kidney function in diabetic rats [52]. 0erefore, it
can be inferred that QUE can prevent podocytes from the
stimulation of oxidative stress by inhibiting HG which in-
duced excessive accumulation of AGEs, lowering ROS
synthesis. Furthermore, accumulating evidence has also
shown there is a close relation between the AGE-RAGE
signaling pathway and other complications of diabetes such
as diabetic peripheral neuropathy and diabetic retinopathy
[55–57]. 0erefore, QUE might also have preventive effects
on complications of diabetes.

QUE inhibits key targets of TNF mediating the proin-
flammatory and regulates VEGF promoting vascular per-
meability and AKTmediating apoptosis to protect podocytes
from injury in DN. Experiments in the streptozocin-induced
diabetic rat have demonstrated that the inflammatory cy-
tokine of TNF-α, a member of the TNF receptors super-
family, is an intermediate factor for excessive ROS-induced
podocyte injury and apoptosis [58–60]. Moreover, TNF-α
plays a predictive role in DN, attributing to its involvement
in the onset and progression of DN [61]. Encouragingly,
QUE has been proven to decrease the renal TNF-α and ROS
synthesis [62] induced by high homocysteine (Hcy) [63]
which is an independent risk factor for DN [64]. High Hcy
can also directly cause podocyte injury, with subsequent
progression of glomerular permeability induced by oxidative
stress [64, 65], and can affect the function of renal endo-
thelium and mesangial cells during the progression of DN

[66, 67]. While, as DN progresses further, abnormal eleva-
tion of Hcy directly damages vascular endothelial cells and
aggravates microalbuminuria and ultimately forms a vicious
circle between DN and Hcy [65, 68]. Interestingly, QUE can
also reduce the level of Hcy and increase the level of the Hcy’s
metabolite, taurine, an antioxidant that has been demon-
strated to improve glomerular sclerosis and attenuate the
progression of DN in mice [69, 70]. Metabolomic studies
have consistently shown that QUE increases the level of
taurine in mice serum and urine [70, 71]. Treatment with
taurine significantly downregulates the protein levels of
podocyte homeostasis regulator and consequently the re-
duction of glucose-induced podocytes injuries in DN mice
model [72]. Furthermore, high Hcy-induced endothelial cell
apoptosis is commonly associated with increased VEGF [73].
VEGF is the important mediator in endothelial cell prolif-
eration and glomerular mesangial proliferation at the end-
stage of DN [74]. It is regulated by candidate target ERK1/2
(also known as MAPK1, degree� 24) and key target AKT
(degree� 31), and the excessive production of VEGF subtype
A (VEGFA), resulting from the interaction of AGEs and
RAGE, is a novel risk factor in the pathogenesis of the
endstage renal disease [55, 75]. But excessive inhibition of
VEGF causes glomerular injury with prominent podocyte
injury [76, 77]. So, it would be speculated that the therapeutic
index of VEGF for podocyte injury is narrow, which is in line
with the statements of Oe et al. [78]. Interestingly, QUE can
moderately regulate the expressions of VEGFA and alleviate
podocyte injury and kidney function in diabetic rats [23].
Hence, QUE is a new appropriate product that targeted
VEGFA to ameliorate podocyte injury. 0e phosphorylation
of another key target AKT can significantly prevent from
podocyte apoptosis, foot process shrinkage, and renin loss
[78]. However, the levels of phospho-Akt are downregulated
by long-term HG, causing the increased activation of p38
MAPK and renal proximal tubule cell apoptosis [79].
Noteworthily, QUE can increase the phosphorylation of
AKT to promote the synthesis of liver glycogen with low-
ering blood sugar and regulate the downstream proteins of

Table 2: KEGG (A) and GO (B) term enrichment results from ClueGO.

ID Description Percentage Count
A
KEGG: 04933 AGE-RAGE signaling pathway in diabetic complications 94.44% 36
KEGG: 05418 Fluid shear stress and atherosclerosis 1.39% 15
KEGG: 04610 Complement and coagulation cascades 1.39% 4
KEGG: 05014 Amyotrophic lateral sclerosis (ALS) 1.39% 3
KEGG: 04923 Regulation of lipolysis in adipocytes 1.39% 3

B
GO: 1903409 Reactive oxygen species biosynthetic process 36.92% 18
GO: 0001937 Positive regulation of endothelial cell proliferation 26.92% 24
GO: 0048662 Positive regulation of smooth muscle cell proliferation 12.31% 20
GO: 0001936 Regulation of endothelial cell proliferation 8.84% 17
GO: 2000377 Regulation of reactive oxygen species metabolic process 5.34% 31
GO: 0014074 Response to purine-containing compound 5.34% 17
GO: 0045766 Positive regulation of angiogenesis 2% 17
GO: 0007589 Body fluid secretion 2% 6
GO: 0042730 Fibrinolysis 2% 5
GO: 0001937 Negative regulation of endothelial cell proliferation 2% 3

Evidence-Based Complementary and Alternative Medicine 7
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AKT to facilitate lipid metabolism [80]. 0us, it can be as-
sumed that QUE promotes glycogen synthesis via AKT
phosphorylation to prevent podocytes from injury. In ad-
dition, QUE inhibits the expression of candidate target TP53
being a key regulator of p53 apoptotic signaling pathways
which are involved in podocyte senescence and apoptosis
[80, 81], and the downstream signaling pathways of TP53,
such as NF-kB signaling pathways, that participate in HG-
induced podocyte injury [82, 83].

Moreover, this study also indicates that QUE protects
against podocytes injury having relation with autophagy
from enrichment analysis (P � 0.0048 from the R project).
Autophagy, which can accelerate the metabolism of ROS
induced by HG, significantly accelerates the metabolism of
ROS and inhibits the activation of VEGF, showing its im-
portance to maintain the postmitotic podocytes cells
[84, 85]. More and more researches prove that QUE can
suppress ROS synthesis through induction of autophagy to
cure liver fibrosis and CVD [86–88]. Additionally, QUE can
significantly upregulate autophagy by suppressing oxidative
stress and downregulating TNF-α and AKT and

ameliorating doxorubicin-induced podocyte injury in rats
[89, 90]. 0us, it can be hypothesized that QUE may act on
autophagy associated with the reduction of ROS to partic-
ipate in the protection of podocytes injury [91, 92].

Although it has been confirmed in different experi-
mental models that QUE regulates key targets at TNF,
VEGFA, and AKT1, as well as the AGE-RAGE signaling
pathway to protect against podocyte injury. In this article,
the findings suggest that the multipronged therapeutic effect
of QUE on podocyte injury, attributing to its synergistic
effects on these multiple targets. However, further experi-
mental studies will be needed to verify it.

5. Conclusion

0is study reveals that QUE can reduce the inflammatory
response (TNF and IL6), inhibit endothelial cell prolifera-
tion (VEGFA) and apoptosis of podocytes (AKT1 and
TP53), and suppress the AGE-induced oxidative stress by
regulating the AGE-RAGE signaling pathway activated by
HG to protect against podocytes injury in DN (Figure 7).

TNF AKT1VEGFA

Figure 6: 3D molecular binding model of QUE to key targets TNF, VEGFA, and AKT1. 0ree key targets are represented as light blue flat
strips, and amino acid residues of key targets are represented as colored sticks and QUE is represented as the yellow stick.0e yellow dashed
lines demarcate hydrogen bonds, and the interaction distances are indicated next to the bonds.

High 
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Quercetin

AGE-RAGE signaling
pathway 

Oxidative stress (ROS)

Inflammatory (TNF and IL6)

Apoptosis (AKT and TP 53)

Endothelial cell proliferation 
(VEGFA)

Podocytes 
injury/Glomerular 

permeability
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Figure 7: Effects of QUE protecting against podocytes injury in DN via key targets TNF, VEGFA, and AKT1 in AGE-RAGE signaling
pathways.
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0is study provides a scientific basis for developing QUE as a
potential natural medicine for the treatment of DN.
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