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The Phytophthora genus comprises of some of the most destructive plant pathogens and attack a wide range of
hosts including economically valuable tree species, both angiosperm and gymnosperm. Many known species
of Phytophthora are invasive and have been introduced through nursery and agricultural trade. As part of a larger
project aimed at utilizing genomic data for forest disease diagnostics, pathogen detection and monitoring (The
TAIGA project: Tree Aggressors Identification using Genomic Approaches; http://taigaforesthealth.com/), we se-
quenced the genomes of six important Phytophthora species that are important invasive pathogens of trees and a
serious threat to the international trade of forest products. This genomic data was used to develop highly sensi-
tive and specific detection assays and for genome comparisons and to make evolutionary inferences and will be
useful to the broader plant and tree health community. TheseWGS data have been deposited in the International
Nucleotide Sequence Database Collaboration (DDBJ/ENA/GenBank) under the accession numbers
AUPN01000000, AUVH01000000, AUWJ02000000, AUUF02000000, AWVV02000000 and AWVW02000000.
Crown Copyright © 2016 Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Specifications
rganism/cell line/tissue
 Six Phytophthora species, see Table 1.

x
 Not applicable

quencer type or array
 Illumina Hi-Seq

ata format
 Analyzed; i.e. raw data filtered and assembled

xperimental factors
 Genomic sequence of pure microbial cultures

xperimental features
 Genomic sequence of pure microbial cultures

onsent
 Not applicable. Data are available without restriction

mple source location
 Various; see Table 1
Sa
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2. Experimental design, materials and methods

Woodlands and trees are under serious threat from an increasing num-
berofPhytophthora species [1]. Several speciesof these fungus-likemicroor-
ganisms may attack over 100 different host species and possess the ability
to infect woody tissues, making them potentially destructive in plantations
and native forest ecosystems worldwide [2,3]. Early detection, monitoring
and surveillance are important aspects in preventing such outbreaks but
are hindered by a lack of genomic resources. Genome sequencing and com-
parisons should help to develop biosurveillance tools and to predict patho-
genic outcome of the interaction of these microorganisms and their host.

Here, we present the draft genome sequence of six Phytophthora
species threatening trees, which were selected on the basis of their
potential to cause significant economic losses and large-scale damage
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Table 1
Phytophthora species and isolates sequenced.

Species Isolate Host Location

Phytophthora alni sp. alni CBS_117376 Alnus sp., roots Hungary
P. cambivora CBS_114087 Abies procera Oregon, USA
P. cryptogea CBS_418.71 Gerbera sp. The Netherlands
P. kernoviae CBS_122049 Rhododendron sp. United Kingdom
P. lateralis CBS_168.42 Chamaecyparis lawsoniana Oregon, USA
P. pinifolia CBS_122922 Pinus radiata, needles Arauco, Chile
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to forest ecosystems. Phytophthora lateralis is an invasive pathogen that
infects Port Orford Cedar (Chamaecyparis lawsoniana) and has spread
throughout the natural range of the tree [2,4]. P. lateralis is a sister spe-
cies of P. ramorum, a species that has been responsible for the deaths of
millions of trees in North America and Europe as a result of Sudden Oak
Death and Sudden Larch Death [1,5,6]. The P. lateralis epidemic has af-
fected both the wood export market as Port Orford Cedar is a valued
species in foreign markets as well as the nursery trade as it is also a val-
ued horticultural species [2]. Phytophthora alni sp. alni, the cause of
Alder decline has been a serious threat to riparian ecosystems in Europe
over the last 20 years [7]. The emergence of this disease is linked to an
interspecific hybridization event, as P. alni subsp. alni. P. alni subsp.
uniformis and P. alni subsp.multiformis, initially identified as genetic var-
iants of P. alni sp. alni [8], were shown to be the parental species of the
more aggressive hybrid P. alni sp. alni [9]. Phytophthora kernoviae first
found in 2003 in the UK, primarily causes bleeding stem lesions on
Fagus sylvatica and foliar and stem necrosis on Rhododendron ponticum,
but has also been found on other hosts [10]. Phytophthora cambivora
originally associated with Castanea species is a widespread root and
canker pathogen of many woody hosts, but is most problematic on
hardwoods in Europe, in particular on European beech and European
chestnut [11–13]. Phytophthora pinifolia was first described in Chile
and caused widespread disease on the needles and shoots of Pinus
radiata [14]. Phytophthora cryptogea is a widespread pathogen of nu-
merous ornamental hosts infecting roots, stems and leaves, and is an
important pathogen in the nursery industry often isolated during sur-
veys of infected plant material [15].

Genome assemblies were obtained by generating paired-end Illumina
reads using the Hiseq 2000 platform at Canada's Michael Smith Genome
Sciences Centre or GSC (Vancouver, Canada). For each species, DNA was
extracted frompure culture using theDNAextraction procedure ofMoller
et al. [16]. Two genomicDNA librarieswith fragment size of approximate-
ly 250 bp and 800 bp were constructed according to British Columbia
Cancer Agency Genome Sciences Centre's tube-based paired-end library
protocols. One μg of high molecular weight genomic DNA was sonicated
(Covaris E210) in 60 μL volume to 200-300 bp. The DNA fragments
were end-repaired, phosphorylated and bead purified in preparation for
A-tailing. Illumina sequencing adapters were ligated overnight at 16 °C.
Adapter ligated products were bead purified and enriched with 10 cycles
of PCR using primers containing a hexamer index that enables library
pooling. Paired-end 100 base reads were sequenced per pool in a single
lane of an Illumina HiSeq2000 instrument.

Illumina chastity failed reads were removed, and the remaining reads
were filtered by looking for exact read matches against Penicillium
chrysogenum (GCA_000710275.1, GCA_000523475.1, GCA_000816005.1
Table 2
Assembly statistics and gene content for the genome sequences reported in this study.

Species Isolate Genome assembly
accession #

Total size (Mbp) Genome

P. alni sp. alni CBS_117376 GCA_000439335.1 236.0 113.0×
P. cambivora CBS_114087 GCA_000443045.1 230.6 163.0×
P. cryptogea CBS_418.71 GCA_000468175.2 63.8 345.0×
P. kernoviae CBS_122049 GCA_000448265.2 39.4 474.0×
P. lateralis CBS_168.42 GCA_000500205.2 52.4 470.0×
P. pinifolia CBS_122922 GCA_000500225.2 94.6 470.0×
and GCA_000801355.1) and P. marneffei (GCA_000001985.1,
GCA_000227055.2 and GCA_000750115.1) genome sequences to
eliminate commensal fungi contaminants. Each library was assembled
into contigs using ABySS and a range of k-values from 32 to 96. ABySS
was also used to scaffold the contigs, taking care to minimize the dupli-
cation of highly repeated sequences that can proliferate on the ends of
scaffolds. The best assembly was then selected based on genome size
and contiguity (best N50). Completeness of the genome assemblies
was assessed using BUSCO (Benchmarking Universal Single-Copy
Orthologs).

Raw sequence data and the sets of gene and protein models are
available using the GenBank and Sequence Read Archive (SRA) acces-
sion numbers listed in Table 2. Genome assembly statistics obtained
for P. kernoviae and P. lateralis were in the range of those obtained for
Illumina de novo assemblies of two same species (P. kernoviae [n = 5],
assembly size: 40.3 Mbp ± 3.0; N50: 61,035 ± 2195; length of longest
scaffold: 796,176 bp ± 284,587 bp. P. lateralis [n = 4], assembly size:
50.6 Mbp ± 4.8; N50: 22,373 bp ± 6314; length of longest scaffold:
300,607 bp ± 247,251) (Table 2) [17]. Sequencing completeness was
estimated using BUSCO based on a set of 429 single-copy ortholog
genes common to Eukaryotes [18]. For the P. alni sp. alni assembly,
quality control values were largely under those obtained for the other
species with an assembly size twice the expected value of 114 Mbp
[19] and a N50 under 3Kb (Table 2). Only 299 (69.0%) out of the 429
eukaryotic BUSCOs were found in this genome; a majority of these
were fragmented and duplicated BUSCOs (121 fragmented and 61
duplicated; 60.9%), illustrating the difficulty to obtain an accurate de
novo assembly for this homoploid hybrid species [19] (Table 2;
Fig. 1A). With 344 (80.2%) to 355 (82.8%) BUSCO genes found all the
other genomes (Table 2; Fig. 1), assemblies looked complete relative
to the published Phytophthora and Oomycete de novo assemblies
(Table 2; Fig. 1) [17,20–22].

These genomic data were used to develop highly sensitive and
specific detection assays that will have applications in biosurveillance
of potentially invasive threats [23]. These genomes complete an initial
collection of forest-related Phytophthora species [17,21,24] and will be
used in comparative studies in conjunction with transcriptomic data,
to identify factors related to epidemic traits such as the capacity to
attack woody tissues and multiple host species.
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Fig. 1.Genome completeness (BUSCO results) for six Phytophthora genomes. Searches for single-copy Eukaryote orthologs (n=429)were conducted followingAugustus genepredictions.
A) Comparison of the six Illumina genomeswith published genome assemblies of P. ramorum (GCA_000149735.1) and P. sojae (GCA_000149755.2). B) Comparison of the P. kernoviae and
P. lateralis assemblies obtained in this study with five P. kernoviae (GCA_000333075.2, GCA_000333095.2, GCA_000333115.2, GCA_000785725.2 and GCA_000785735.2) and four P.
lateralis (GCA_000318465.2, GCA_000333055.2, GCA_000338795.2 and GCA_000338815.2) Illumina assemblies downloaded from NCBI.
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