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ABSTRACT
microRNA regulation network is important for the cancer genetic heterogeneity. 

Relative to the increasing numbers of microRNA’s targets identified, upstream 
regulatory mechanisms that control functional microRNAs are less well-documented. 
Here, we investigated the function of miR-31, a pleiotropically-acting microRNA, in 
esophageal squamous cell cancer (ESCC). We demonstrated that miR-31 only exerted 
tumor-suppressive effects in TE-7 ESCC cells, but not in TE-1 ESCC cells, although both 
of these cell lines harbor inactive p53. Interestingly, TE-1 cells highly expressed p21, 
while p21 levels were virtually undetectable in TE-7 cells, suggesting a p21-dependent 
mechanism of miR-31-mediated tumor suppression. Accordingly, knockdown of p21 
in TE-1 cells reversed the tumor suppressive actions of miR-31. In patient ESCC 
specimens, real-time RT-PCR analysis revealed that expression of E2F2 and STK40, 
two known miR-31 target oncogenes, was negatively correlated with the expression 
of miR-31 in a p21-dependent manner, supporting the conclusion that miR-31 only 
downregulates its target oncogenes when p21 levels are low. Collectively, these data 
suggest a novel mechanism through which the tumor-suppressive effect of miR-31 
is p21-dependent. In addition, we speculate that delivery of miR-31 could provide 
therapeutic benefit in the personalized management of a subgroup of ESCC patients 
with p21-deficient tumors. 

INTRODUCTION

Esophageal carcinoma ranks seventh in cancer 

incidence and sixth in cancer-related death worldwide, 
respectively, with esophageal squamous cell carcinoma 
(ESCC) accounting for 90% of all histological types of 
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esophageal carcinomas diagnosed at advanced stages [1-
3]. Even with improved surgical techniques, the median 
survival of ESCC patients after R0 resection (complete 
removal of the entire tumor, followed by microscopic 
examination of margins showing no tumor cells) is less 
than 2 years [4, 5]. Difficulty in treatment of ESCC is 
partly attributed to genetic heterogeneity of the disease, 
which is in part due to complex regulatory networks and 
is the challenge for personalized therapy [6-9]. Thus, the 
identification of regulatory pathways for stratification of 
this deadly disease is critical to developing personalized 
and precision therapeutics and enhancing survival.

microRNA network is of importance for genetic 
heterogeneity of diseases. microRNAs (miRs) are 
endogenous single-stranded non-coding RNAs ranging 
from 19 to 25 nucleotides in length which play important 
roles in epigenetic and post-transcriptional regulatory 
networks [10]. Considerable evidence has identified the 
involvement in cancer of one of these RNAs, miR-31, 
but its role is complicated because it can act as either a 
tumor suppressor or an oncogene: while it inhibits cell 
proliferation of serious ovarian carcinomas [11] and cell 
metastasis in breast cancer [12], and impairs migration 
of endometrial cancer cells [13] and growth of prostate 
cancer in vivo [14], miR-31 also promotes tumorigenesis 
in colorectal cancer [15] and cell migration and invasion 
in Kaposi’s sarcoma [16]. In ESCC, miR-31 has also 
been reported to be both a promoter and an inhibitor of 
carcinogenesis [17-20]. While microarray screening 
showed miR-31 to be upregulated in ESCC vs. normal 
epithelia [17, 18], patients with high miR-31 expression 
levels had an improved prognosis [20]. Further work 
suggested that miR-31-mediated downregulation of 
DNA repair genes contributes to an improved prognosis 
of ESCC patients after radiotherapy [19]. These findings 
suggested that the complex action of miR-31 might reflect 
genetic heterogeneity among ESCC patients.

The multifaceted role of miR-31 suggests that 
its action depends on cellular and molecular context. 
Relative to its known downstream targets, there is 
less knowledge regarding how miR-31 is regulated 
by upstream mechanisms or interactions with other 
molecules. Interestingly, effects of miR-31 have been 
linked to the status of p53, the most frequently mutated 
gene in all cancers. miR-31 plays an inhibitory role only 
in tumor cells harboring mutant p53, suggesting miR-31 as 
a therapeutic target in patients with p53-deficient tumors 
[11]. Of note, p53 mutation is an early signature event in 
ESCC; moreover, changes in p53 status could account 
for context-dependent effects of many molecules [21], 
including microRNAs such as miR-31 [11]. However, it 
is unknown whether there is an association between p53 
status and miR-31 in ESCC. Clarity regarding cellular 
mechanisms accounting for miR-31’s function in cancer 
will be beneficial in designing tailored diagnostic and 
therapeutic strategies for ESCC and other malignancies.

In this study, we attempted to study the molecular 
mechanism underlying miR-31-mediated inhibition of 
p53-deficient ESCC. Surprisingly, we found that while 
the ESCC cell lines TE-7 and TE-1 harbored deficient 
p53, miR-31 only exhibited tumor-suppressive activity 
in the p21-low-expressing cell line TE-7, and not in 
p21-high-expressing TE-1 cells. However, after p21 was 
silenced by shRNA, the suppressive function of miR-
31 was rescued in TE-1 cells. Moreover, we analyzed 
the correlation between miR-31 and its known target 
oncogenes, E2F2 and STK40, in 27 human ESCC tissues. 
As in our observations in cancer cell lines, the inhibitory 
effect of miR-31 on its targets was also p21-dependent. 
Our findings suggested a novel mechanism via which the 
tumor-suppressive function of miR-31 depends on p21 
status, suggesting the p21-miR-31 pathway as a potential 
therapeutic target in a subgroup of ESCC patients.

RESULTS

Differential effects of miR-31 in ESCC cell lines 
harboring inactive p53

A previous study demonstrated that miR-31 
functions as a tumor suppressor only in p53-deficient cells 
[11]. We tested this finding in several ESCC cell lines 
that harbored inactive p53, including TE-1 [22] and TE-7 
[23]. After overexpression of miR-31 in TE-7 cells, cell 
viability assessed by MTT assay decreased dramaticantly 
(p < 0.05) (Fig. 1A), colony formation ability tested using 
plate colony formation assay decreased by 43% (Fig. 1B), 
and cell invasion evaluated by transwell assay decreased 
by over 46% (Fig. 1C).

To explore molecular mechanisms underlying 
miR-31-mediated tumor- suppression, we examined the 
expression of E2F2 and STK40, two known downstream 
target oncogenes for miR-31 [14, 24]. Transfection and 
forced overexpression of miR-31 reduced E2F2 and 
STK40 by real-time RT-PCR (Fig. 1D), suggesting that 
miR-31 may suppress ESCC by downregulating target 
oncogenes, including E2F2 and STK40.

To our surprise, transfection of miR-31 had no effect 
on TE-1 cells in terms of cell growth, colony formation, or 
invasion (Fig. 2A-C), nor did miR-31 downregulate E2F2 
or STK40 (Fig. 2D). These results suggested that even 
though TE-1 cells harbor inactive p53, they express other 
factor(s) that inhibit miR-31 function.

p21 inhibits the effects of miR-31

Because miR-31-mediated tumor suppression was 
previously shown to depend on p53 deficiency, but our 
miR-31-resistant TE-1 cell line was also p53-deficient, we 
tested TE-1 and TE-7 cells for expression of the p53 target 
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Figure 1: Tumor suppressive effects of miR-31 in TE-7 ESCC cells. (A) Cell viability was determined by MTT assay. Transfection 
of miR-31 inhibited cell viability of TE-7 cells. (B) miR-31 treatment inhibited colony formation capacity of TE-7 cells by about 43% 
as shown in the lower panel, a representative colony formation assay was shown (upper panel). (C) Invasive ability of TE-7 cells was 
inhibited over 90% by miR-31 treatment. Representative pictures of invaded cells (upper panels); cell number per 1 mm2 was counted under 
100 X magnification and summarized (lower panel). (D) The effects of miR-31 on E2F2 and STK40 were shown by real time RT-PCR. 
Transfection of miR-31 can inhibit mRNA levels of E2F2 and STK40. The data were the average of three independent experiments and 
presented as means ± SEM. * indicating P < 0.05 con, control.

Figure 2: Lack of miR-31-mediated suppression in TE-1 ESCC cells. (A) Cell viability was determined by MTT assay. 
Transfection of miR-31 did not inhibit cell growth. (B) miR-31 treatment did not inhibit colony formation capacity of TE-1 cells (lower 
panel). The representative figures of stained colonies (upper panel). (C) TE-1 cells invasion was not inhibited by miR-31 treatment. 
Representative pictures of invaded cells (upper panels), cell number per 1 mm2 was counted under 100 X magnification and summarized 
(lower panel). (D) Effects of miR-31 on E2F2 and STK40 were shown by real time RT-PCR. Transfection of miR-31 did not reduce E2F2 
and STK40 mRNA levels. The data were the average of three independent experiments and presented as means ± SEM with * indicating 
P < 0.05. con, control.
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protein p21. p21 was highly expressed in TE-1 cells, but 
undetectable in TE-7 cells (Fig. 3), suggesting that p21 
could be responsible for inhibition of miR-31-mediated 
tumor suppression. To test this hypothesis, we transfected 
p21-specific shRNA into TE-1 cells. As shown in Fig. 
4A, p21 shRNA reduced endogenous expression of p21 
by 85%. Thus, if p21 inhibited tumor suppressor function 
of miR-31, one would expect that p21 shRNA treatment 
would sensitize TE-1 to miR-31. Indeed, miR-31 inhibited 
viability, colony formation, and invasion of TE-1 cells 
following shRNA-mediated knockdown of p21 (Fig. 4B-
D). Moreover, the suppressive effect of miR-31 on cell 
survival depended on silencing of p21 in TE-1 cells (Fig. 
4B). Real-time RT-PCR also showed that miR-31 was able 
to downregulate the expression of E2F2 and STK40 after 
p21 shRNA treatment (Fig. 4E), further demonstrating that 
the tumor-suppressive effects of miR-31 were dependent 
on reduced p21 expression.

Expression of p21, miR-31, and miR-31-target 
genes in ESCC patients

In order to validate our in vitro findings in patients 
with ESCC, we collected biopsies from 27 ESCC patients 
and assessed the correlation of p21, miR-31, and miR-31-
target gene expression by real-time RT-PCR. Although 
expression of miR-31 and p21 fluctuated among the 
27 ESCC tissues, there was no statistically significant 
correlation between expression of miR-31 and p21 in 
human ESCC biopsies (data not shown). However, miR-
31 expression was negatively correlated with E2F2 and 
STK40 in biopsies with low p21 expression (Fig. 5A). 
When p21 expression was high, miR-31 expression did 
not correlate with E2F2 and STK40 expression (Fig. 5B). 
These results suggested miR-31 regulates the expression 
of its target genes in p21-deficent ESCC human tissues. 
Taken together, the observations in human tumor biopsies 
confirmed our hypothesis that the tumor-suppressive effect 
of miR-31 is p21-dependent.

DISCUSSION

In this study, we found that miR-31 inhibits 
viability, colony formation and invasion in ESCC 
cells. This inhibitory effect appeared to be a result of 
downregulation of at least two downstream miR-31 target 
oncogenes, E2F2 and STK40. Of interest, miR-31 exerted 
its antitumor effects only in a cell line expressing low p21 
levels, whereas the inhibitory effects of miR-31 in cells 
with high levels of p21 were largely silenced and could 
be rescued by p21 shRNA treatment. This finding was 
confirmed in 27 tumor tissues derived from ESCC patients 
by real time RT-PCR. Pearson correlation analysis for the 
expression profiles of miR-31, two target oncogenes, and 
p21 suggested that tumor cells with low p21 levels were 
candidates for future therapeutic delivery of miR-31.

miR-31 is a pleiotropic molecule that can act as 
either an oncogene or a tumor suppressor in different 
cancer types, although it is usually classified as a 
tumor suppressor [11, 25]. As in other cancer types, the 
function of miR-31 in esophageal cancer is controversial. 
While some reports identify its oncogenic potential 
in esophageal cancers [17, 18], Zhao et al. [20] found 
that high levels of miR-31 are associated with a better 
prognosis. Furthermore, Lynam-Lennon et al. [19] found 
that miR-31 was significantly reduced in esophageal 
tumors and downregulated in radio-resistant esophageal 
adenocarcinoma cells. Ectopic re-expression of miR-31 
re-sensitizes radio-resistant cells to radiation, suggesting 
that miR-31 exhibits a tumor-suppressing function 
in esophageal cancer [19]. One explanation for the 
pleiotropism of miR-31 in different cancers was presented 
in an elegant study by Creighton et al. [11], wherein the 
authors demonstrated that the tumor-suppressive function 
of miR-31 in ovarian cancer was dependent on loss of p53, 
i.e., miR-31 only inhibited ovarian tumor cells expressing 
non-functional p53 [11]. In the present study, we found 
that in addition to regulation by p53, the inhibitory effect 
of miR-31 in ESCC was dependent on p21 deficiency. Our 
results suggest that the requirement for p53-deficiency 
in order for miR-31 to function as a tumor suppressor is 
likely due to a dependence on p21 deficiency.

p21 is a cyclin-dependent kinase (Cdk) regulator 
that controls cell division and cell fate [26]. This gene 
actively participates in the regulation of genes involved 
in growth arrest, senescence, and aging [27, 28]. p21 is 
known to function as a double-edged sword in cancers 
[29]. It is usually regarded as a repressor in cancers, since 
it is a downstream target of p53 and inhibits cell cycle 
progression, thereby inducing senescence. However, some 
studies actually imply that p21 is an oncogene [30, 31]. 
Several reports indicate that increased p21 expression is 
associated with tumor progression and a poor prognosis in 
prostate [32, 33], ovarian [34], cervical [35], breast [36] 
and esophageal squamous cell carcinomas [37], as well 
as in brain tumors [38]. In the present study, we showed 

Figure 3: p21 was highly expressed in TE-1 cells 
and cannot be detected in TE-7 cells. Western blot of 
endogenous p21 and p53 expression in TE-1 and TE-7 cells was 
shown. β-actin was used as internal control.
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Figure 5: Correlation between miR-31 and its targets, E2F2 and STK40, in patients with ESCC was p21-dependent. 
mRNA of biopsies from patients with ESCC were extracted and subjected to real time RT-PCR to assay the expression of miR-31, p21, 
E2F2 and STK40. Patients were grouped by the expression of p21. (A). When p21 expression was low, miR-31 was negatively correlated 
with its target genes, E2F2 and STK40, as shown by Pearson correlation analysis. (B). When p21 expression was high, miR-31 was not 
correlated with its target genes.

Figure 4: Inhibitory effects of miR-31 can be rescued in TE-1 cells by p21 shRNA treatment. (A) p21 expression was 
silenced by shRNA in TE-1 cells, as demonstrated by western blot. 3# shRNA was selected to do the following experiment. (B) MTT 
assay showed silencing of p21 in TE-1 cells permitted miR-31 overexpression to inhibit proliferation (left). Moreover, suppressive effect 
of miR-31 depended on silenced effect of p21 in TE-1 (right). (C) Colony formation assay indicated overexpression of miR-31 inhibited 
colony formation of TE-1 after p21 silencing. (D) Cell invasion assays showed overexpression of miR-31 inhibited invasion of TE-1 after 
p21 silencing. (E) miR-31 downregulated miR-31 target genes, E2F2 and STK-40, after p21 silencing. * indicating P < 0.05. Statistical 
comparisons were made between TE-1-shRNA-p21-con vs. TE-1-shRNA-p21-miR-31, Δindicating P < 0.05. Statistical comparisons 
were made between TE-1-shRNA1-p21-miR-31 and TE-1-shRNA2-p21-miR-31 or TE-1-shRNA2-p21-miR-31 and TE-1-shRNA3-p21-
miR-31. Data were average of three independent experiments and was presented as means ± SEM with * indicating P < 0.05. con, control. 
*, TE-1-con-shRNA-con v.s. TE-1-miR-31-shRNA-p21.
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that p21 regulates the tumor-suppressive function of miR-
31 in ESCC. When p21 is highly expressed, miR-31 does 
not inhibit expression of miR-31 downstream target genes, 
nor does miR-31 inhibit proliferation, colony formation, 
or invasion. One explanation of this phenomenon is the 
possibility that p53 mutation led to low p21 expression 
and changed susceptibility to cancer treatment [39, 40]. 
Our Pearson correlation analysis of the expression levels 
of miR-31, its target oncogenes, and p21 in 27 ESCC 
tissues suggested that miR-31 can regulate its target genes 
only in p21-low patients.

Although p21 is usually regarded as a downstream 
effector gene of p53 and is believed to be rarely mutated 
[41], high-throughput gene chip assays have recently 
suggested that p21 expression varies among cancer cell 
lines and cancer tissues, including esophageal squamous 
cell cancers [42-44]. Moreover, p21 is regulated not only 
by p53, but also by other regulators such as MTA1 [45], 
E2F1 [46] or several nuclear receptors [47] including 
retinoid receptors, vitamin D receptors and androgen 
receptors. Thus, future studies are required for exploring 
the molecular mechanisms by which p21 regulates the 
tumor suppressive function for miR-31 and potential 
interventions to disrupt the p21-mediated suppression of 
miR-31 for treatment of ESCC patients.

In summary, we demonstrate that miR-31 exhibits 
inhibitory effects in ESCC, in a p21-dependent manner 
(summarized in Fig. 6), providing a novel mechanism 
for the tumor suppressor function of miR-31. From a 
translational perspective, our data suggest that in the 
future, miR-31 delivery therapy may benefit ESCC 
patients with low p21 expression, constituting a potential 
target for personalized medicine.

MATERIALS AND METHODS

Clinical specimens

Twenty-seven pairs of primary ESCC tumors were 
obtained from 27 patients (median age at diagnosis, 
60.6 years; range from 38 to 79 years). Matched normal 
adjacent tissues were defined as tissues located at least 1.0 
cm apart from the visible tumor lesions. Specimens were 
deposited in RNALater (Qiagen, Germany) or snap-frozen 
in liquid nitrogen and subsequently stored at -80°C. All 
patients underwent esophagectomy without preoperative 
chemotherapy or radiotherapy in the Affiliated Cancer 
Hospital of Shantou University Medical College between 
November of 2010 and May of 2011. This study was 
approved by the Ethics Committee of Shantou University 
Medical College, and written informed consent was 
obtained from all patients.

Cell lines

Human esophageal squamous cell carcinoma TE-1 
and TE-7 cell lines were kindly provided by Dr. X. C. Xu 
(UT M.D. Anderson Cancer Center, USA) and cultured 
in high glucose DMEM supplemented with 10% fetal 
bovine serum (Gibco), 100 U/ml penicillin and 100 μg/
ml streptomycin at 37°C in a humidified atmosphere 
containing 5% CO2, and passaged when cells reached 
nearly 80% confluence.

Overexpression of miR-31

TE-7 or TE-1 cells were transfected in six-well 
plates (2.5×105 per well) using 7.5 μL Lipofectamine 
2000 transfection reagent (Invitrogen) and 3 μg hsa-
miR-31 mimic (90 nmol/L; Dharmacon) according to 
manufacturer’s instructions. Control groups of cells 
were treated with transfection reagent alone (mock 
transfection). Cells were harvested 48 h after transfection, 
and E2F2 and STK40 were tested by real time RT-PCR. 
For functional assays including proliferation, colony 
formation and invasion measurements, CMV-TurboRFP-
miR-31-IRES-puro (Open Biosystems) was packaged and 
used to infect the TE-7 or TE-1 cell lines, according to the 
manufacturer’s instructions. The DNA plasmid carrying 
a non-targeting sequence (Open Biosystems) was used as 
a negative control. Forty-eight hours post-transfection, 
virus-containing media was filtered (0.45 μm) and added 
onto TE-7 or TE-1 cells with appropriate dilution in the 
presence of polybrene (8 μg/mL). The virus-containing 
media was changed with fresh cell medium 6 h post-
infection. The infection efficiency was measured by 
examining the cells under fluorescence microscope and 

Figure 6: Schematic diagram of p21 dependence of 
tumor suppression by miR-31 in ESCC.
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was determined to be >95%.

shRNA knockdown of p21 in TE-1 cells

Stable transfection was performed at about 80% 
confluence in 24-well plates using Lipofectamine 
LTX and Plus Reagents (Invitrogen) according to the 
manufacturer’s instructions. Briefly, a total of 2×105 
TE-1 cells were inoculated into each well in high glucose 
DMEM containing 10% FBS without antibiotics. p21 
shRNA (shp21) or control shRNA (0.1 mg) (mock) 
(Santa Cruz Biotechnology) vectors were transfected with 
0.5 ml of Plus Reagents and 1.25 ml of Lipofectamine 
LTX. Interference sequences for p21 shRNA were 
listed at supplementary table 1. After transfection, cells 
were isolated in culture medium containing 2 mg/ml 
puromycin (Invitrogen). After 3 to 4 weeks, resistant cell 
colonies were isolated and transferred to 6-well plates, and 
gradually expanded to 10-cm dishes. At 90% confluence, 
western blot analyses were performed to assess the 
efficiency of p21 knockdown.

MTT assay

Cell proliferation was measured with a colorimetric 
assay reagent, thiazolyl blue tetrazolium Bromide (MTT, 
Sigma-Aldrich, China). Absorbance was read at 590 nm 
with a reference filter of 620 nm.

Transwell invasion assay

Cell invasion assays were performed using 
transwells. Briefly, 1×104 cells were inoculated in a 24-
well transwell unit on polycarbonate filter with 8 μm pores 
(Costar, Cambridge, MA) coated with Matrigel (Becton 
Dickinson, Franklin Lakes, NJ). After 24-h incubation at 
37oC, cells that had passed through the filter were stained 
with Giemsa and scored for the number.

Colony formation assay

For colony formation, cells (2×103) were trypsinized 
and cultured in 60-mm culture dishes. The dishes were 
incubated for two weeks, then colonies were stained with 
0.1% crystal violet, then photographed and counted.

Western blot assay

As previously described [48], cells were lysed in 
RIPA buffer. The proteins were separated by SDS-PAGE 
and then transferred to PVDF membranes (Millipore, 

Bedford, MA). Blots were probed with antibodies against 
p53 (1:500, Santa Cruz, Dallas, TX), p21 (1:1000, Cell 
Signaling, Danvers, MA), β-actin (1:5000, Sigma, St. 
Louis, MO). After washing, blots were incubated with 
horseradish peroxidase-conjugated secondary antibodies 
and visualized using an enhanced chemiluminescence kit 
(Pierce, Rockford, IL).

Real time RT-PCR assay

Cells or tissues were harvested with Trizol Reagent 
(Invitrogen, Carlsbad, CA, USA) and total RNA was 
isolated according to the manufacturer’s instructions. 
cDNA synthesis was performed using the Superscript 
III RT-PCR kit (Invitrogen). Real-time PCR was 
performed using a Cepheid SmartCycler II (Sunnyvale, 
CA, USA) with gene-specific real-time PCR primers. 
Specifically, stem-loop real-time RT-PCR was used to 
analyze the expression of miR-31. Relative quantification 
(RQ) of selected genes and miR-31 expression was 
normalized with respect to GAPDH and U6 respectively. 
Corresponding adjacent esophageal tissues were used as 
calibrator samples. The expression of the target gene was 
calculated using the equation 2-ΔCt, where ΔCt = (Ct 
target gene − Ct reference gene). The relative expression 
of target genes in carcinoma tissue was calculated by 
2-ΔΔCt, where ΔΔCt = (ΔCt target gene in the tumor 
tissue − ΔCt target gene in the adjacent normal tissue). 
Data were presented as log10 of the relative quantification 
equal to the fold-change of gene expression in ESCC 
tissue compared to its corresponding adjacent esophageal 
tissue. High or low p21 expression was defined as its 
expression was higher or lower compared to corresponding 
adjacent esophageal tissue. The primers for PCR are list in 
supplementary table 2.

Statistical analysis

Comparisons of real time data were analyzed by the 
unpaired t test, whereas qualitative data were analyzed 
by the chi-square test. Correlation was determined by 
Pearson correlation analysis. All statistical analyses 
were performed and visualized by GraphPad Prism 5.0. 
A P < 0.05 was considered statistically significant. All 
experiments were performed in triplicate and repeated 
twice.
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