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5.1. Introduction

The emergence of shape and structure in animate and inanimate systems is among
the most fascinating phenomena in our planet. Rivers carry water and sediment
supplied by the hydrological cycle and erosional mechanisms, which play a
major role in the shaping of the Earth’s surface. River basins result, for instance,
from these naturally organized flow architectures (Bejan 1999; Reis 2006a).
Flow architectures also underline the phenomenon by which wet soil exposed to
the sun and wind loses moisture, shrinks superficially, and develops a network
of cracks (Bejan 2000). Similarly, in complex cellular systems such as the
vertebrates, the requirement of large amount of oxygen for the metabolic needs of
the cells constitutes the basis of the development of specialized and hierarchically
organized flow systems, such as the respiratory tract and the circulatory system
(Bejan et al. 2004; Reis et al. 2004; Bejan 2005; Reis and Miguel 2006).

The formation of dissimilar patterns inside similar systems under different
environmental conditions is especially intriguing. Examples of these phenomena
can be found in almost every field, ranging from physics to the behavior of
social groups. For instance, in a horizontal fluid layer that is confined between
two plates, and which is heated from below to produce a fixed temperature
difference, there is a critical Rayleigh number for which the fluid breaks off from
its macroscopically motionless form and starts to present a roll configuration—
the Rayleigh–Bénard convection (Gettling 1998; Bejan 2000). It is equally well
known that stony corals collected from exposed growth sites, where higher
water currents are found, present more spherical and compact shape than corals
of the same species growing in sheltered sites, which display a thin-branched
morphology (Kaandorp and Sloot 2001; Merks et al. 2003). Furthermore,
bacterial colonies that have to cope with hostile environmental conditions have
more branched growth forms than colonies of the same species from nutrient-
rich environments (Ben-Jacob et al. 1995; Thar and Kühl 2005). In a similar
manner, plant roots seem to be able to respond to localized regions of high
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nutrient supply by proliferating or elongating root branches into the nutrient-rich
patches (Robinson 1994; Hodge et al. 1999). Root systems in soil are more open
and more thinly branched than roots which are growing in hydroponics regime.

Pedestrian crowd motion also exhibits a variety of conjunction patterns, from
more-or-less ‘chaotic’ appearance (Schweitzer 1997) to spontaneous organi-
zation in lanes of uniform walking direction looking like river-like streams
(Navin and Wheeler 1969; Helbing et al. 2001). What determines the condition
for the existence of so dissimilar patterns? Understanding crowd motion is
essential on a wide range of applications including crowd safety (Donald and
Canter 1990; Langston et al. 2006). From what principle can pedestrian facilities
be deduced?

There has been a renewed impetus for the study of geotemporal spread of
epidemics, following concerns over the increasing potential outbreak of infec-
tious diseases (Koopmans et al. 2004; Hsu et al. 2006; Suwandono et al. 2006).
Throughout history several pandemics have occurred in many areas of our planet,
infecting and wiping out a large number of people. One of the most catastrophic
pandemics was the bubonic plague (Black Death) in the fourteenth century.
It is estimated that a third of the European population at the time died as a
consequence of this outbreak. Moreover, historic records of the progress of this
outbreak suggest a wave-like propagation of the disease (Langer 1964). What
are the conditions for the existence of such a traveling wave? Would pandemics
nowadays follow a similar propagation pattern as those that occurred in the
fourteenth century?

In this chapter, we will examine the formation of dissimilar patterns inside
similar systems from the viewpoint of the constructal theory of organization
in nature (Bejan 1997, 2000; Bejan et al. 2004, 2006; Rosa et al. 2004; Bejan
and Lorente 2005; Reis 2006b). Based on this view, common features between
systems in very different fields are evidenced, and the importance of an optimum
balance of competing trends (flow regimes, resistances, etc.) on the generation
of patterns (architecture) is stressed. In particular, we aim to provide an answer
to a very fundamental question: Have their patterns (architecture) in nature been
developed by chance, or do they represent the optimum structure serving an
ultimate purpose?

5.2. Constructal Law and the Generation of Configuration

Constructal theory is about the physics principle from which geometric form
in flow systems can be deduced (Bejan 2000). Consider, e.g., the drainage of
fluid through a nonhomogeneous surface (e.g., a surface with a central strip
having a low resistance to fluid flow and lateral strips with high resistances to
fluid flow) depicted in Fig. 5.1. According to the constructal law put forward by
Bejan (1997, 2000), in order “for a flow system to persist (to survive) it must
morph over time (evolve) in such a way that it provides easier access to the
imposed currents that flow through it.” Thus, the shape and flow architecture of
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Figure 5.1. A surface with a central strip having a low resistance to fluid flow surrounded
by strips with high resistance to fluid flow

the system in Fig. 5.1 do not develop by chance. In fact, the constructal theory
proposes that every flow system exists with a purpose and that flows are free
to morph their configuration in search of the best architectural solution within a
framework of existing constraints (area or volume allocated, material properties,
etc.). Therefore, the shape and flow architecture of the system are the result of
the optimum balance between two competing trends—slow and fast (a surface
with different flow resistances in this example, although it could be different
flow regimes or other)—that ensures the maximization of fluid drainage.

In summary, the optimum balance between competing trends—slow (high resis-
tivity) and fast (low resistivity)—is at the origin of shape and flow architecture.

5.3. Constructal Pattern Formation in Nature

5.3.1. Formation of Dissimilar Patterns Inside
Flow Systems

The spreading of a tracer or a solute, and the transport of heat or fluid can be
analyzed within the framework of diffusive–convective phenomena (Fig. 5.2).
For example, the one-dimensional tracer transport within a fluid is governed by
the macroscopic equation:
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where u is the average fluid velocity, D is the tracer diffusion coefficient, n is
the tracer concentration, and t is the time. The time scales can be obtained by
applying scale analysis (Bejan 2000) to the above equation:
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Therefore, the characteristic times corresponding to the diffusive and convective
driven transport are

tdif ∼ L2
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Figure 5.2. The spreading of ink within water (slow or high resistivity) and boiling water
(fast or low resistivity)

while the velocities are

vdif = dLdif

dt
∼ 1
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(5.5)

vcv = dLcov

dt
∼ u (5.6)

where tdif and tcv are the characteristic times corresponding to diffusive and
convective driven transport, and vdif and vcv are the velocities corresponding to
diffusive and convective driven transport, respectively.

The transition time from diffusive to convective driven transport, t∗, is obtained
from the intersection of Eqs. (5.3) and (5.4):

t∗ = D
u2

(5.7)

If t < t∗ diffusion overcomes convection. Conversely, when t > t∗ tracer transport
is mainly driven by convection.

Diffusion coefficients are usually much smaller than 1 m2s−1 (e.g., the
diffusion coefficient for oxygen in air is approximately 2 × 10−5 m2s−1). When
u << D (e.g., u is close to zero), the time of transition t∗ becomes very large
(t∗ → �). In this situation, transition from diffusive to convective driven transport
is not very likely to occur and the tracer transport is linked only to a diffusive
phenomenon. However, if fluid velocity is much larger than the tracer diffusivity,
the transition time (Eq. 5.7) is very small. What are the consequences of this?
The initial diffusive velocity (Eq. 5.5) is larger than any convective velocity
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(Eq. 5.6), but decreases as t−1/2. Diffusion is the main driving mechanism at
very beginning of the transport process but for times slightly greater than t∗,
convective transport takes its place as the main mechanism. Similar results were
obtained by Bégué and Lorente (2006) for the ionic transport through saturated
porous media.

In summary, the architecture of the flow is the result of the trade-off between
two competing trends—diffusion (slow or high resistivity) and convection or
channeling (fast or low resistivity)—which ensure the maximization of the
transport process.

Other flow systems exhibit a similar tendency. Bejan (2000) showed that the
onset of a roll configuration in fluid layers heated from below (Rayleigh-Bénard
convection) can be predicted based on the constructal theory. Conduction or
thermal diffusion (high resistivity) prevails as the main mechanism, as long as it
provides the shortest time in transporting heat across a surface layer. Conversely,
rolls/channeling or convection cells (low resistivity) start to occur when the
Rayleigh number reaches a critical value (>1700), so as to maximize the heat
transport process (Fig. 5.3). Therefore, flow architecture is the result of the
trade-off between two competing trends, and rolls are the optimized access for
internal currents (e.g., the optimal architecture). Bejan (2000) also showed that a
turbulent flow is a combination of the same two mechanisms—viscous diffusion
(high resistivity) and eddies (low resistivity)—and can therefore be covered by
the constructal law.

5.3.2. The Shapes of Stony Coral Colonies and Plant Roots

In stony corals and other organisms, which have a relatively weakly developed
transport system, the amount of nutrients arriving at a certain site in the tissue,
as well as the local deposition velocity of the skeleton material, are limited
both by the locally available suspended material and the local amount of
contact with the environment (Sebens et al. 1997; Anthony 1999). In plants, the
water and dissolved minerals necessary for their survival are provided by the

Figure 5.3. Rayleigh–Bénard convection: the fluid layer remains macroscopically
motionless (a) but after the critical Rayleigh number the fluid presents a roll configu-
ration (b)
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root systems. Consequently, plants produce new roots to maximize nutrient
absorption and continue to grow.

Both coral colonies and plant roots show an intraspecific variability of the
shape. They may develop a branched or a more round shape apparently in a
differentiated response to the variability of environmental conditions (Thaler
and Pages 1998; Merks et al. 2003). For example, it is known that stony
corals collected from exposed growth sites, where higher water currents are
found, present more spherical and compact shape, than corals of same species
from sheltered sites, which display more thin-branched morphologies (Merks
et al. 2003).

Branched and circular (round) shapes are quite different regarding their ability
to fill space (Fig. 5.4). Consider that l is the characteristic length/radius of the
biological system and w is the width of the branch/needle (e.g., a very small
quantity). The surface area of the biological system is ∼ lw for branches/needles
and ∼ l2 for a circular shape. Undoubtedly, l2 >> lw which means that the
circular shape is the most effective arrangement for filling the space in the
shortest time and thus, according to the constructal law, it constitutes the optimal
architecture. But sometimes stony corals and roots develop a branched shape.
How can one reconcile such an obvious contradiction with the maximization of
flow access?

The answer was provided by Miguel (2004, 2006), based on the constructal
description made by Bejan (2000) of the structure of a dendritic crystal formed
during rapid solidification. Consider, e.g., stony corals growing in exposed (open)
sites. In this case, nutrient transport is driven mainly by convection. The velocity
of the nutrient-rich water which surrounds the coral colony is much larger than
the growth velocity of corals (which for a specie named Porites spp. is, for
instance, about 12 mm per year). This implies that the coral grows always inside
a region where nutrients are readily available. Consequently, it is able to spread
(diffuse) in all directions and develop the most effective arrangement for filling
the space in the shortest time—a round shape.

Figure 5.4. Branched and circular shape geometries and their ability to fill the space
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Assume that the coral is growing in a sheltered site. When the velocity of
the water containing nutrients becomes close to zero, the transport of nutrients
is mainly due to diffusion and nutrients close to the coral colony are quickly
depleted. Thus, the decrease of nutrient concentration around the coral triggers a
wave of nutrients with a velocity of propagation vdif = dLdif

dt ∼ 1
2

(
D
t

)1/2
, Eq. (5.5),

and a characteristic length Ldif ∼ 1
2 �Dt�1/2. The initial velocity of propagation

vdif → � is much larger than the growth velocity of corals (∼ 12 mm per year),
but decreases as t−1/2. Thus, there is a moment when the growth speed of the
biological system exceeds the speed of nutrient propagation.

The temporal evolution of the characteristic length of the coral and nutrient
propagation are presented in Fig. 5.5. This plot shows that at the critical time,
tct, the characteristic length of the coral system overtakes the characteristic
length corresponding to the diffusive transport. From this moment on the circular
shape is no longer the most effective arrangement to fill the space. At times
slightly larger than tct, the biological system starts to grow outside of the nutrient
diffusion region. Guaranteed survival, branches are then generated to promote
the easiest possible access to nutrients. This “biological channeling” enables
the system to experience again growth inside the nutrient diffusion region from
tct until 2tct. At times slightly greater than 2tct, the coral once again sticks
out the nutrient diffusion region. New branches are consequently sent forward
in order to promote the growth inside the nutrient diffusion region until a
new critical time is reached. This means that each branch generates a new
group of branches, and the result of this process is a dendritic-shaped system.
Thus, in these circumstances “biological channeling” clearly becomes the most
competitive shape configuration.

To conclude, the coral system, in its struggle for survival, must morph toward
the configuration that provides an easier access to nutrients. The generation
of branches is the response of the system when growth takes it out of the
nutrient-rich region. These branches provide thus the paths that maximize the
access to nutrients (e.g., the branches constitute the optimal shape under these
circumstances).

Figure 5.5. Simultaneous growth of characteristic lengths Lcoral and Ldif and the occur-
rence of critical times tct
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It is interesting to note that the optimal architecture of the system composed
by nutrients and coral colony once more results from two competing trends:
a convective (or channeling) transport of nutrients (e.g., low resistivity)
implies a round (diffusive) coral morphology (e.g., high resistivity), while a
diffusive (round) transport of nutrients (e.g., high resistivity) implies a branched
(channeling) coral morphology (e.g., low resistivity). Similar results are also
achieved for plant roots (Miguel 2006).

5.4. Constructal Patterns Formation in Pedestrian Motion

5.4.1. Pedestrian Dynamics: Observation and Models

The interest in the movement of crowds is not a recent one: it has existed ever
since large events involving high number of people were organized. Roman
amphitheatres, e.g., were built in such a way as to ease the entrance or exit of
the venue for spectators. The Coliseum in Rome, for instance, has 80 strategic
walkways designed to facilitate access and exit.

Pedestrian dynamics has an important impact on a wide range of applications
including transportation (Timmermans et al. 1992; Hankin and Wright 1958),
architecture and urban planning (Thompson and Marchant 1995), event
organization (Smith and Dickie 1993), emergency exit planning (Donald and
Canter 1990, Langston et al. 2006), and crowd control (Hunter et al. 2005).

One is usually convinced that human behavior is unpredictable and the
way that people move is chaotic or, at least, very irregular. However, during
the last decades, the systematic observation of pedestrians conducted by
different researchers (e.g., see Hankin and Wright 1958; Older 1968, Navin
and Wheeler 1969; Fruin 1971; Henderson 1971; Helbing et al. 2001) revealed
that, in standard situations, individuals employ an optimized behavioral strategy.
These observations can be summarized as follows:

(i) As long as it is not essential to move faster in order to get to their desti-
nation in time (like, for instance, running to catch a departing bus), pedes-
trians prefer to progress at the least-energy consuming most comfortable
walking velocity. This desired velocity is of about 1�34 ms−1 and a standard
deviation of 0�26 ms−1.

(ii) Pedestrians can move freely only at low pedestrian densities. As the
pedestrian density increases (e.g., interpersonal distances lessen), walking
velocity decreases.

(iii) A group of pedestrians (families, friends, colleagues) behave similarly to
single pedestrians (group sizes are Poisson distributed).

(iv) Pedestrians try to keep a certain distance between themselves or to borders
(walls, objects, columns, etc.). This behavior helps to avoid contact in case of
sudden velocity change and maintain a private area around (territorial effect).

(v) Pedestrians feel uncomfortable when they have to move in a direction
opposite to the destination.
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Figure 5.6. Pedestrians have a preferred side to walk that disappears at high pedestrian
densities

(vi) Pedestrians have a preferred side to walk that disappears at high pedestrian
densities (Fig. 5.6).

(vii) In general, pedestrians act more or less automatically, they do not reconsider
their behavioral strategy when facing new situations.

It is interesting to note that the movement of pedestrians displays many of the
attributes of fluid and granular∗ flows (Helbing et al. 2001, Hughes 2003):

(i) Footsteps in the sand and snow look similar to fluid streamlines (Fig. 5.7).
(ii) Pedestrians organize themselves in the shape of river-like streams

(channeling) when a stationary crowd needs to be crossed (Fig. 5.8).
(iii) When moving in crowded places, individuals organize themselves sponta-

neously in lanes of uniform walking direction (channeling) (Fig. 5.9).
(iv) In dense crowds which push forward, one can observe a kind of shock-wave

propagation.

Figure 5.7. Footsteps in the sand (a) and snow (b) look similar to fluid streamlines (c)

∗ Two-phase flow consisting of particulates and an interstitial fluid that when sheared the
particulates may either flow in a manner similar to a fluid or resist the shearing like a
solid.
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Figure 5.8. Pedestrians organize themselves in the shape of river-like streams
(channeling) when a stationary crowd needs to be crossed

Figure 5.9. In crowded spaces, individuals self-organize in lanes of uniform walking
direction (channeling)

(v) At bottlenecks (e.g., doors, corridors) the pedestrian’s passing direction
oscillates with a frequency that increases with width and declines with the
length of the bottleneck. This is similar to granular “ticking hour glasses,”
in which grains alternate between flowing and not flowing at a constant rate.

A number of empirical models based on observational data are available
in published studies (e.g., see Predtechenskii and Milinski 1969; Sandahl and
Percivall 1972; TRB 1985; Nelson and MacLennan 1995; Graat et al. 1999).
Some models considering the analogies between physical systems and pedestrian
motion have also been proposed, a number of which represent crowds as an
aggregate of individuals having a set of motivations and basic rules (Table 5.1).
The so-called social force model (Helbing 1992; Helbing and Molnár 1995) has
its origins in gas-kinetic models and was developed to describe the dynamics
of pedestrian crowds. It consists of self-driven people (particles) that interact
through social rules—the “social forces.” These forces produce changes in
the velocities and reflect in turn, a change in motivation rather than in the
physical forces acting on the person. The models presented by Hoogendoorn and
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Table 5.1. Models for pedestrian motion

Authors Characteristics Validity

Blue and Adler (1999) Cellular automata discrete model Density less than five
people per square meter

Fukui and Ishibashi (1999) Cellular automata discrete model –
Helbing (1992) Social force High and low densities
Helbing and Molnár (1995)
Helbing et al. (1997) Active walker low density
Hoogendoorn and
Bovy (2000)

Extremal principle
(generalization of the social force)

Density less than five
people per square meter

Hoogendoorn et al. (2002)
Hughes (2002) Thinking fluid High and low densities
Langston et al. (2006) Discrete element discrete model High and low densities
Muramatsu et al. (1999) Random walk –

Bovy (2000) and Hoogendoorn et al. (2002) provide a generalization of the social
force model. Early on, Reynolds (1987) presented a model to approach animal
motion, like that of bird flocks and fish schools, that bears relevance to crowd
dynamics. This flocking model consisted of three simple steering behaviors
which described how each individual flocking element (called boid) maneuvered
based on the positions and velocities of its nearby flock mates.

The “thinking fluid” model (Hughes 2002, 2003) results from the combination
of fluid dynamics with three hypotheses which are supposed to govern the motion
of pedestrians. These hypotheses, together with those governing the motion of
the boids, and the “social forces” are listed in Table 5.2.

5.4.2. Diffusion and Channeling in Pedestrian Motion

The constructal law states that if a system is free to morph in time (evolve),
the best flow architecture is the one that maximizes the global flow access
(e.g., minimizes the global flow resistances). Thus, the shape and flow archi-
tecture of the system do not develop by chance, but result from the permanent
struggle between slow and fast for better performance and must thus evolve in
time (Bejan 2000).

How and by which mechanism do then pedestrians evolve in space and time?
To answer this question, let us consider pedestrian groups that proceed from one
point to every point of a finite-size area (territory). According to the constructal
law, the best architecture will be the one that promotes the easiest flow of pedes-
trians. As described earlier, there are two mechanisms for achieving this purpose:
diffusion (slow or high resistivity) and channeling (fast or low resistivity). The
access time for a diffusive process through a territory of length L is ∼ L2/D,
Eq. (5.3), and the access time for a channeling flow is ∼ L/u, Eq. (5.4). To
compare both times we need to know the pedestrian’s diffusion coefficient, D,
and the pedestrian’s walking velocity, u.
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Table 5.2. Hypotheses that support models describing the movement of individuals

Flocking model Social forces model “Thinking fluid” model
(Reynolds 1987) (Helbing and Molnár 1995) (Hughes 2003)

• Boids try to fly toward the
center of mass of neigh-
boring boids

• Boids try to keep a small
distance away from other
objects (including other
boids)

• Boids try to match velocity
with near boids

• Pedestrians move as
efficiently as possible to a
destination

• Pedestrians try to maintain
a comfortable distance
from other pedestrians and
from obstacles like walls

• Pedestrians may be
attracted to other pedes-
trians (e.g., family,
friends) or objects (e.g.,
posters, shop windows)

• Walking velocity is deter-
mined only by the density
of surrounding pedestrians,
the behavioral character-
istics of the pedestrians,
and the ground character-
istics

• Pedestrians at different
locations but with same
sense of the task (called
potential) would see no
advantage to exchanging
places

• Pedestrians minimize their
estimated travel time but
also try to avoid extreme
densities

In accordance with field surveys, it has been established that pedestrians prefer
to move with a walking velocity around 1�34 ms−1, which corresponds to the least
energy-consuming velocity (Fruin 1971; Henderson 1971; Helbing et al. 2001).
This walking velocity is only reachable if there are no other pedestrians and
obstacles in the surroundings. Furthermore, it was noticed that pedestrians in
a shopping mall or busy city street (random and nondirectional crowd) exhibit
a velocity reduction that is related with the free area available around each
individual (Fig. 5.10). Consequently, and as in physics, the pedestrian’s diffusion
coefficient may be defined as the product of walking (random) velocity, ucrd,
and the mean available interpersonal distance, �.

A pedestrian’s diffusion coefficient—mean interpersonal distance relationship
can be established with the help of the coefficient’s definition and the data
plotted in Fig. 5.10. This relationship is illustrated in Fig. 5.11. The form of the
curve-fitted equation, justified by the correlation coefficient, is

D = a1	− a2 (5.8)

Here a1 and a2 are the correlation coefficients, which have been listed in
Table 5.3. Consider, e.g., the curve-fitted equation obtained based on Fruin data
(Fruin 1971), that when combined with Eqs. (5.3) and (5.4) leads to

tdif ∼ L2

1�61	−0�67
�0�48 ≤ 	≤ 3�16� (5.9)

tcv ∼ 0�75L (5.10)
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Figure 5.10. Effect of the free area available around the pedestrian on the random walking
velocity

Based on this, it is straightforward to conclude that channeling enables a better
performance if L/� is larger than 1�2 − 0�5�−1 (or in terms of the pedestrians’
density, 
, larger than 1�2−0�5
−1/2�. Otherwise, diffusion becomes clearly the
most competitive transport mechanism.

To summarize, there are two optimal modes of locomotion for pedestrians:
channeling which is suitable to distribute pedestrian through a territory (area)
and diffusion which becomes more appropriate when accessing space locally
(e.g., access to train platforms and bus stops, buildings entrance, etc.). This
finding has an impact on not only in the design of new pedestrian facilities but

Figure 5.11. Pedestrian’s diffusion coefficient versus the mean interpersonal distance
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Table 5.3. Correlation coefficients for pedestrian’s diffusion coefficient—mean interper-
sonal distance relationship

a1 a2 r2 Validity

Random crowd in a city street 1.61 0.67 0.992 0�48 ≤ �≤ 3�16
Fruin (1971)

Random crowd in area of a building 1.56 0.56 0.997 0�40 ≤ �≤ 3�16
Thompson and Marchant (1995)

also in the improvement of existing facilities. If the target is to promote the
easiest access to pedestrians over a large territory where, for some reason, the
velocity is lower than the desired walking velocity (∼1�34 ms−1), the placement
of gates/lanes/columns/trees along walkways/corridors helps to stabilize the
pedestrian flow and make it more fluid (Fig. 5.12). This channeling also
allows pedestrians to keep a certain distance from other pedestrians which is
highly appreciated (very small interpersonal distances induces contact “colli-
sions” among pedestrians which is seen as “uncomfortable” (TRB, 1985)). The
placement of gates/lanes/columns/trees (channeling) is especially important in
case of pedestrians walking in opposite directions (Fig. 5.13).

Pedestrians have a preferred side to walk because they profit from it (e.g.,
moving against the stream is more difficult because it increases interaction and
consequently the resistance). Therefore, a baffler along walkways/corridors helps
to optimize the flow of pedestrians, as well as to save space that can be used for
other purposes.

5.4.3. Crowd Density and Pedestrian Flow

Empirical observations have also highlighted that pedestrians can move freely
only at very small pedestrian densities. Fig. 5.14 illustrates velocities of pedes-
trians in the crowds. Pedestrians in low-density crowds (
 < 1 person m−2)
are able to walk with an individual desired velocity that corresponds to the
comfortable walking velocity (∼1�34 ms−1). In higher crowd densities, interper-
sonal distances are lessened and the walking velocity is reduced, in order to

Figure 5.12. Gates and lanes along walkways help to stabilize the pedestrian flow and
make it more fluid



Constructal Pattern Formation and Epidemics Propagation 99

Figure 5.13. Pedestrians walking in opposite directions in crowded spaces

keep a certain distance from other pedestrians and to avoid contact. Therefore,
pedestrian motion can be summarized as follows:

u = u0 for 0 ≤ �≤ �ct (5.11)

u = u��� for �ct < �≤ �max (5.12)

Figure 5.14. Walking velocities versus pedestrians’ density
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where u0 is the desired velocity (e.g., ∼1�34 ms−1�, 
ct is the critical density of
pedestrians (e.g., ∼1 person m−2� and 
max is the maximum density of pedes-
trians.

Let us suppose that, above the critical pedestrian density, the temporal change
of the pedestrian velocity is the result of “repulsive” forces due to a decrease
of interpersonal distances (especially the relative distance to the front person).
“Repulsive” forces decrease with the interpersonal distance, and as the area
available for the next step is accounted, they are also dependent of the walking
velocity (Helbing et al. 2001). According to the Newton’s second law of motion

d2r

dt2 = Fr (5.13)

Here r is the position of the pedestrian and Fr is the “repulsive” force per mass
affecting the behavior of the pedestrian which is given by (Fang et al. 2003)

Fr = �

�r − ro�

(
dr
dt

− dro

dt

)
(5.14)

where 
 is a constant, and r− ro�= �) and dr/dt−dro/dt are the mean interper-
sonal distance and the mean relative velocity to the pedestrians situated around,
respectively. Replacing of Fr by Eq. (5.14) in Eq. (5.13) and integrating the
resulting equation, we find that

u = dr
dt

= � ln�	�+ c (5.15)

where c is an integration constant. By definition, the interpersonal distance is
minimum (e.g., crowd density maximum) when the walking velocity is zero.
Thus, the constant c can be determined and Eq. (5.15) assumes the form

u = � ln
(
	

	min

)
(5.16)

and in terms of pedestrian density

u = 1
2
� ln

(
�max

�

)
(5.17)

In summary, Eqs. (5.16) and (5.17) should hold when the pedestrian’s density is
between the critical and the maximum densities. Note that experimental walking
velocities in this density range show a good agreement with these equations
(Fig. 5.15).

The flow of pedestrians may be defined as the product of walking velocity
and pedestrian density,

�= �u (5.18)
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Figure 5.15. Experimental walking velocities and the fit with Eq. (5.17)

where � is the pedestrian flow. Therefore, Eqs. (5.11), (5.12), (5.17), and (5.18)
combine to form

�= �u0 for 0 ≤ �≤ �ct (5.19)

�= 1
2
� ln

[(
�max

�

)�]
for �ct < �≤ �max (5.20)

Based on these equations a flow–density diagram can be drawn (Fig. 5.16).
When 
 ≤ 
ct, the individual desired velocity is a constant and the maximum
flow of pedestrians corresponds to 
ctu0. For densities above the critical
density, there is also an optimal crowd density such that the flow of pedes-
trians is maximized. If we take Eq. (5.20), the flow has a maximum value of
0�5

max/ exp�1� at 
= 
max/exp�1�. It is useful to obtain also the relationship
between flow and velocity. For 
ct < 
 ≤ 
max it follows from Eqs. (5.17) and
(5.18) that

�= 
max

u
exp �2u/��

(5.21)

The flow–velocity diagram is depicted in Fig. 5.17. This diagram shows that there
is also an optimal velocity such that the crowd flow is maximized. According
to Eq. (5.21), the flow has a maximum value of 0�5

max/ exp�1� at u = 
/2.
As expected, this maximum flow has the same value as that obtained with
Eq. (5.20).

Comparing the flow–density and flow–velocity diagrams (Figs. 5.16 and 5.17,
respectively), we note that each velocity/density corresponds to a single flow
but, with the exception of maximum flow, the same flow may correspond to two
different velocities/densities. We can see how this behaviour can arise. As the
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Figure 5.16. Flow–density diagram drawn with Eqs. (5.19) and (5.20) (
max = 5 pedes-
trians per square meter)

flow progresses to the maximum, the increase of pedestrian velocity (or decrease
of density) is offset by a decrease of pedestrian density (or increase of velocity).
After reaching the maximum flow, there is a decrease of the pedestrian flow
because the growth in velocity (or decrease of density) does not compensate the
reduction of pedestrian density (or increase of velocity). Consequently, the same
flow may correspond to two different velocities/densities.

Figure 5.17. Flow–velocity diagram drawn with Eq. (5.21) (
max = 5 pedestrians per
square meter)
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5.5. Optimizing Pedestrian Facilities by Minimizing
Residence Time

5.5.1. The Optimal Gates Geometry

At high pedestrian densities, the walking velocity is drastically reduced and
impatient pedestrians trying to use any gap to move on may lead in turn to a
complete obstruction of walking paths. Thus, at a high density there is risk of
overcrowding and personal injury that should be avoided.

Gates are used at sport facilities, theaters, and so on, to reduce the interpersonal
interactions and stabilize the pedestrian flow, by facilitating the access over the
territory (Fig. 5.12). Thus, pedestrians must be channeled optimally through gates
since channeled flow is characterized by a much lower travel time (Section 5.4.2).
The question put forward by the constructal principle is, then, how can the gates
be designed in order to ensure that pedestrians flow over the entire space in the
shortest time possible?

Consider a crowd approaching gates of the same size and uniformly distributed
in space. According to mass conservation equation,

�uWg = n�iuiwg (5.22)

where n is the number of gates, Wg is the total width allocated to the gates, wg

is the width of each individual gate, u is the velocity of the crowd approaching
the gates, ui is the pedestrians velocity within the gates, 
 is the density of the
crowd approaching the gates, and 
i is the density of the pedestrians within the
gates. The goal is the optimal spacing of the gates, wg, in a fixed territory, Wg,
to minimize the travel time of pedestrians defined as

ttr = 1
lg�

(5.23)

Let us consider that the length of the gates, lg, is fixed. The time of travel
is minimal when the flow of pedestrians is maximal. It is not that difficult to
show that the maximum flow of pedestrians corresponds to 0�5

max/ exp�1�
(Section 5.4.3) and that the minimum travel time is given by

ttr = 2 exp�1�
lg��max

(5.24)

Therefore, according to Eq. (5.22), nwg/Wg is

nwg

Wg

= 2�u exp�1�
��max

(5.25)

Recalling that flow 
u is given by Eq. (5.20), we can rewrite Eq. (5.25) in terms
of the crowd density obtaining

nwg

Wg

= �

�max

ln
(
�max

�

)
exp�1� (5.26)
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Given that 
max is a constant, the variation of nwg/Wg is only dependent on
the density of the crowd approaching the gates. Fig. 5.18 shows how nwg/Wg

responds to changes of crowd density. It reveals that there is a maximum for
nwg/Wg that occurs when 
/
max ∼ 0�37. Thus, the optimal number of gates n
is Wg/wg taking wg ∼ 0�75 m which corresponds to the square root of the free
area available around each individual when the flow of pedestrians is maximum
(Fig. 5.16).

5.5.2. Optimal Architecture for Different
Locomotion Velocities

Constructal theory also predicts the architecture of flow paths that connect a
finite territory to a single point when different locomotion velocities are available
(Bejan and Ledezma 1998; Bejan 2000). How should architects and urban
planners design high performance path systems in these circumstances?

Let us assume that the territory is covered in sequential steps of increasingly
larger elements (A1 < A2 � � �). According to the constructal theory, the global
system (territory) will perform best when all its elements (constructs, portions
of territory) perform in an optimal way. Optimal geometry means elements
(constructs) that minimize the travel time. Thus, both the shape of the area and
the angle between each path and its branches are optimized at each stage. The
flow path is constructed starting with the smallest element (construct, portions
of territory) and continuing with the larger areas (assemblies, constructs).

Consider pedestrians walking in a rectangular domain with a fixed area
H1L1�=A1� at two different velocities: at velocity u1 in all directions (diffusion)
and at velocity u2 along a centred longitudinal path (u1 < u2). The goal is

Figure 5.18. The variation of nwg/Wg with respect to the density of the crowd
approaching the gates
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Figure 5.19. Rectangular domain with a fixed area H1L1 (adapted from Bejan 2000)

to minimize the travel time from anywhere within A1 to an exit point at its
periphery (Fig. 5.19). There are two degrees of freedom in this design: the shape
H1/L1 and the deviation from the normal for the angle between the slower and
the faster paths �A1. Optimizing in view of the stated purpose delivers an optimal
geometry and a characteristic travel time t1 from the most distant point in A1

until its exit point (Bejan and Ledezma 1998):
(

H1

L1

)
optimal

= 2
�1

(
u1

u2

)
(5.27)

��A1�optimal = cos−1 �1 (5.28)

t1 =
(

2�1A1

u1u2

)1/2

(5.29)

with

�1 =
[

1−
(

u1

u2

)2
]1/2

(5.30)

This configuration also optimizes the access from the whole area to the same
exit point (Bejan 2000). Consider now a larger fixed area A2�= H2L2) and a
faster regime at velocity u3 (e.g., the desired walking velocity) along a centred
longitudinal path (u3 > u2). Once again one seeks to optimize the access from
an arbitrary point of A2 to a common exit point on its periphery. This problem
can be addressed by filling A2 with optimized A1 areas, in a manner similar
to the foregoing reasoning. The number of elements A1 assembled into A2 is
given by

nA2A1 = 2�1�2

(
u3

u1

) (
1− u2

2

4u2
3

)
(5.31)

and the optimal geometry is represented by
(

H2

L2

)
optimal

= 1
�2

(
u2

u3

)
(5.32)

��A2�optimal = cos−1 �2 (5.33)
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with

�2 =
[

1−
(

u2

2u3

)2
]1/2

(5.34)

These results are very similar to those obtained by the optimization of A1 apart of
a constant factor. This optimization can be repeated over larger areas, assemblies
being the optimized configuration ratio given by relations similar to the ones
obtained for A2. The final paths’ geometry forms a tree network.

Figures 5.20 and 5.21 show how the shape H/L and the optimal angle �A

respond to changes of velocity ratios. When the two modes of locomotion have
similar velocities, the optimal angles �A1 and �A2 are close to 90 � and 30 �,
respectively, and the optimal lengths H/L are maximal. On the other hand,
if the faster walking velocity is much larger than the slower walking velocity
then paths are perpendicular and the centred longitudinal path L is the much
larger than H. We also note that H = L when u2/u1 ∼ 0�45 (�A1 ∼ 26�7 �) and
u3/u2 ∼ 0�9��A2 ∼ 26�7 �).

5.5.3. The Optimal Queuing Flow

Another interesting collective effect of pedestrian dynamics is the formation of
queues. Queuing is a common practice is our lives. One queues at the supermarket
cashiers, at bus tops, at ticket offices, at stadium entrances, and so on. Once a
queue is formed, it acquires dynamic of its own, attracting incomers in a forward
motion.

Let qa be the rate at which pedestrians with a velocity ua arrive at a certain
spot and qs the rate at which they get served at that spot. When qs ≥ qa, all

Figure 5.20. Optimal values of H1/L1 and �A1 versus u1/u2
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Figure 5.21. Optimal values of H2/L2 and �A2 versus u2/u3

individuals get served before queuing. Otherwise, there are individuals who need
to wait in order to become served, which leads to the formation of a queue.

Empirical observations reveal that the higher the flow of individuals, the
higher the queuing time. The velocity within the queue, v, is (Heidemann 1996;
Vandaele et al. 2000)

v = 2ua

�max −�
2�max +� ��2 −1�

(5.35)

Here � is a coefficient that accounts for deviations from the expected service
time (e.g., �2 = 1 means that pedestrians are served within the expected time).
The relation between velocity and flow in queues can be obtained by combining
Eqs. (5.18) and (5.35) into

�= 2�maxv
ua −v

2ua +v ��2 −1�
(5.36)

Based on this equation a flow–velocity diagram can be drawn (Fig. 5.22). This
diagram reveals one flow can correspond to two different velocities (with the
exception of the maximum flow) in spite of each pedestrian velocity matching
a single pedestrian flow. This reasoning is analogous to the one put forward in
Section 5.4.3.

Figure 5.22 also reveals that there is an optimal velocity such that the flow
in the queue is maximized (or time of travel is minimized). When, for instance,
�2 = 1 the maximum flow is ua
max/4 and occurs when v = ua/2. We can also
observe that an increase of �2 reduces the maximum value (the peak) of the flow
and that this peak occurs at lower velocities. When �2 < 1, the maximum flow
occurs at higher velocities. After that the pedestrian flow drops very fast until it
ceases totally. The reverse occurs if �2 > 1. A straightforward explanation can
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Figure 5.22. Flow-velocity diagram drawn with Eq. (5.36)

be provided for this finding. If �2 is lower than 1, this means that pedestrians get
served before the expected time. Consequently, more pedestrians are allowed to
enter in the queue, which can be by increasing the arrival velocity of pedestrians
to the queue.

5.6. Constructal View of Self-organized
Pedestrian Movement

One of the more striking occurrences in pedestrian dynamics is the evidence of
spontaneous, self-organized motion. Pedestrians in very crowded open spaces
tend to organize in lanes of uniform walking velocity (Fig. 5.9). Similarly, when
facing a stationary crowd, pedestrians spontaneously self-organize in river-like
streams (rivers of people) in order to cross it (Fig. 5.8). Why do pedestrians
spontaneously organize themselves in this type of movement? How and by which
mechanism do they evolve in space and time?

The constructal theory’s answer to these questions is simple and direct. In
line with the access-optimization principle, the optimal flow architecture will
be the one that promotes the easiest flow of pedestrian. As described before,
there are two locomotion modes for achieving motion: diffusion (slow or high
resistivity) and channeling (fast or low resistivity). Diffusion is the preferred
locomotion mode as long as it provides the faster pedestrian transport across the
territory (e.g., for L/� < 1�2 −0�5�−1, i.e., for large inter-personal distances or
low pedestrian densities). Otherwise, channeling becomes the most competitive
transport mechanism. Channeling is faster and allows pedestrians to walk with
very weak interpersonal interactions. This explains why moving pedestrians form
lanes of uniform velocity when the density is high enough. The question is why do
lanes of different velocity form? The answer to this is that a group of pedestrians
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is often composed of many pedestrians with different walking velocities (e.g.,
young people walk faster than older people). Besides these, pedestrians follow
others who are already moving. These factors are then responsible for differences
of velocity between lanes.

The movement of pedestrians across stationary crowds (rivers of people)
can be deduced from the constructal principle in a way similar to river basin
structures (Bejan 2000, 2002). The crowd can be seen as the river basin and the
space vacated by the crossing pedestrians as the eroded river bed (path of low
resistance). Imagine one of the crossing pedestrians moving toward the stationary
crowd. Its successor will see the “open space” vacated near by and will proceed
to occupy it in order to be carried away. This means that pedestrians follow
others who are already moving, giving rise to channeling networks of pedestrian
to appear through the crowd. The lines formed by coalescence of many such
paths are the river branches.

In crowds that panic, the streams of people of uniform walking velocity are
destroyed because individuals do not know which the right way to escape is.
They strive to go forward, thereby reducing interpersonal distances, inducing
interpersonal contact (collision) or even loss of balance of other individuals.

5.7. Population Motion and Spread of Epidemics

Large-scale epidemic outbreaks have occurred through the centuries causing
major surges in mortality (Anderson and May 1991; Cohn 2002; Suwandono
et al. 2006), the worst being the bubonic plague (or Black Death) in the fourteenth
century. Historians estimated that the Black Death wiped out a third of the
European population in less than four years, no such large-scale outbreak has
been reported since (Langer 1964). The last large-scale outbreak was the so-
called Spanish Influenza epidemic of 1918–1919 (Oxford et al. 2005). It is
estimated that about half of the people living worldwide became infected and
20 million died. An estimated 60,000 died in Portugal, 200,000 in the UK, more
than 400,000 in France, and about 600,000 in the USA (Fig. 5.23).

Epidemic diseases still occur in many areas of our planet at a local scale
(Barreto et al. 1994; Koopmans et al. 2004; Hsu et al. 2006). There can be
little doubt that the improvement of healthcare, a greater vaccine manufac-
turing capacity, a development of hygiene habits, and an expanded surveillance
reduced greatly the impact of an epidemic disease since the second-half of
the twentieth century. Nevertheless, the widespread avian influenza outbreaks
occurring nowadays throughout Asia show us that a global epidemic is still a
possibility (Hsu et al. 2006).

In order to prevent epidemics and minimize disease transmission, it is
essential that we are able to evaluate the epidemic spread mechanisms and
capability. Models for spread of epidemics have existed since the early twentieth
century. Perhaps the most well known are the SIR model (Kermack and
McKendrick 1927) and the Noble’s plague model (Noble 1974). In microparasite
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Figure 5.23. US military casualties in the wars of the twentieth century and America’s
deaths from Spanish influenza

infections (mainly viruses and bacteria), individuals are classified as susceptible
(S), infected (I), or recovered (R). Susceptible individuals can catch the infection
from contact with infected individuals, and the fraction of these individuals
recovered is assumed to be immune to the disease. This leads to a set of balance
equation that constitutes the SIR model. Extended versions of SIR model have
been presented by Anderson and May (1992), Diekmann and Heesterbeek (2000),
and Brauer and Castillo-Chavez (2001). On the other hand, the Noble’s model
considers that the spatial dispersal of individuals can be well approximated by
a diffusion process, with the spread of epidemics being modeled as a diffusive–
reactive phenomenon. This model was applied to the dynamics of bubonic plague
as described throughout Europe in the fourteenth century. Since then reaction–
diffusion models have been used to describe, among others, the spatial dynamics
of rabies in fox (Kallen et al. 1985) and the Lyme disease transmission (Caraco
et al. 2002). In this section we explore two main issues: the mechanics of
epidemics propagation and the effect of population motion on the spread of
epidemics.

5.7.1. Modeling the Spreading of an Epidemic

Consider two interacting populations of individuals—susceptible and infective.
Transmission is the driving force due to which susceptible population becomes
infective. The mass conservation of individuals S and I in a territory are
governed by:

�S
�t

= −
(
�

�x
+ �

�y

)
qS ±�S (5.37)

�I
�t

= −
(
�

�x
+ �

�y

)
qI ±�I (5.38)

Here S and I are the density of susceptible and infective populations, qS and
qI are the flux of susceptible and infected, and �S and �I are the sources/sinks
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of susceptible and infected, respectively. To solve Eqs. (5.37) and (5.38) a
representation of the fluxes qS and qI and sources/sinks �S and �I are required.

In ancient times, transporting commodities over any significant distances were
an expensive and risky enterprise. Thus, travel and commerce was restricted
mainly to local markets situated not far from home. Today, different modes of
transportation (cars, trains, airplanes) deliver people in business and holidays to
the most distant parts of the world in only a few hours. In the preceding section
we have shown that diffusion and convection (channeling) are the regimes to
distribute individuals through a territory (area). Therefore, we can consider that
the flux of individuals is a convective–diffusive process, described generically by

qS = −
(
�

�x
+ �

�y

)
DSS+uSS (5.39)

qI = −
(
�

�x
+ �

�y

)
DII +uII (5.40)

where DS and DI are the diffusion coefficients of the susceptible and infective
populations, respectively, and uS and uI are the velocities of the susceptible and
infective populations, respectively. Combining relations (5.37) to (5.40) yields

�S
�t

+
(
�

�x
+ �

�y

)
uSS =

(
�2

�x2
+ �2

�y2

)
DSS±�S (5.41)

�I
�t

+
(
�

�x
+ �

�y

)
uII =

(
�2

�x2
+ �2

�y2

)
DII ±�I (5.42)

The sources/sinks of susceptible and infective populations can be modeled based
on the following assumptions: (i) natural births and deaths are proportional
to the size of the susceptible population (Mena-Lorca and Hethcote 1992);
(ii) the infective population has a disease-induced death that is proportional to
its size (Nobel 1974); and (iii) the transmission from susceptible to infective is
proportional to the size of the susceptible and infective populations (Nobel 1974).
This then leads to:

�S
�t

+
(
�

�x
+ �

�y

)
uSS =

(
�2

�x2
+ �2

�y2

)
DSS+�bdSS−�SI (5.43)

�I
�t

+
(
�

�x
+ �

�y

)
uII =

(
�2

�x2
+ �2

�y2

)
DII −�dII +�SI (5.44)

where �bdS is the net growth rate (e.g., rate of births minus the rate of natural
deaths), �dI is the mortality rate induced by the disease, and � is the disease
transmission coefficient. Several time-scales can be obtained by applying scale
analysis (Bejan 2000)

tdfi =
L2

S

DS

� tdfi =
L2

I

DI

(5.45)
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tcv = LS

uS

� tcv = LI

uI

(5.46)

t�S = 1
�dbS

� t�I = 1
�dI

(5.47)

t�S = S
I

t�I� t�I = 1
�S

(5.48)

where tdif and tcv are the time scales associated with the diffusive and the
convective populations motion (Section 5.3.1), t�S is the time scale associated
with the births and life expectancy of the susceptible population, t�I is the life
expectancy of an inflective, and t�I is the contagious time of the disease.

Note that the diffusion and convective mechanisms only influence the spread
of epidemic after it occurs but they do not play any role on whether the epidemic
will occur. The time scale corresponding to the diffusive mode of travel is
only smaller than the time scale corresponding to the convective mode if the
territory length to access is smaller than D/u. Therefore, diffusion is the optimal
travel regime to provide access to all locations while convection is optimal for
providing access at large distances.

The growth rate of the susceptible population is strongly associated to t�S and
t�I. There is a positive contribution to the growth of susceptibles since t�S is
positive and the absolute value is smaller than t�I (e.g., the ratio between �bdS

and the density of infectives has to exceed the disease transmission coefficient).
Furthermore, the development of the epidemic is strongly associated to t�I and
t�I. When the life expectancy of an infective is much smaller than the contagious
time, the disease tends to disappear. This topic will be detailed further in the
next section.

5.7.2. Geotemporal Dynamics of Epidemics

The pattern of propagation of the Black Death and other plagues suggest a wave-
like mechanism of propagation (Noble 1974). What are the conditions for the
existence of waves? What kind of role do diffusive and convective regimes play
on that? How do �dI and � affect the propagation of the wave?

For the sake of simplicity, consider a one-dimensional wave traveling in a
positive direction � with a velocity c. Setting S�x� t�= S��� and I�x� t�= I���
with �= �−ct, and substituting them into Eqs. (5.43) and (5.44) the following
coupled differential equations are obtained:

�2S
��2

+ c−uS

DS

�S
��

+ �bdS −�I
DS

S = 0 (5.49)

�2I
��2

+ c−uI

DI

�I
��

+ �S−�dI

DI

I = 0 (5.50)

Since S and I cannot be negative, these equations may represent damped unforced
harmonic oscillators under the following conditions: (i) �c−uS� /DS ≥ 0,
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�c−uI� /DI ≥ 0 (damping factor) and (ii) ��bdS −�I� /DS ≥ 0, ��S−�dI� /
DI ≥ 0 (oscillatory factor). We are interested in the propagation of the infective
population. According to Eq. (5.50), the natural frequency, �I, and the damped
frequency, �Id, are

 I =
(
�S−�dI

DI

)1/2

(5.51)

 Id =
[
 2

I − �c−uI�
2

4D2
I

]1/2

(5.52)

From these equations we note that the convective velocity is exclusively
related to the damping factor while the diffusive process is related both with
the damping and oscillatory factors. When the damping factor equals zero,
�c−uI� /DI = 0, the system composed by the infective populations reduces to
the case of a simple harmonic oscillator: continuous oscillation at the natural
frequency �I. On the other hand, when �c−uI� /DI > 0, the system may or
may not oscillate, depending on the relation between the damping factor and the
natural frequency: If �I > �c−uI� /2DI, the system is under damped conditions
and exhibits transient behavior, oscillating at �Id with an amplitude that decays
exponentially. When �c−uI� /2DI ≥ �I, there is no oscillatory behavior and the
system returns smoothly to its equilibrium position. Thus, a wave-like solution
can only exist when

c≥ uI +2 !DI ��S−�dI�"
1/2 ≥ 0 and �S≥ �dI (5.53)

This result has important implications that deserve to be analyzed. In the case
of a wave-like solution, an increase of the diffusion coefficient DI and velocity
uI implies waves with higher velocities. Besides these, the life expectancy of an
inflective (1/�dI) must be larger than the contagious time of the disease (1/�S).
The last result has two consequences: (i) a wave-like solution implies a minimum
critical value of the susceptible population density of ∼�dI/� , and (ii) there is a
critical transmission coefficient from the infective to the susceptible population
above which an epidemic wave occurs (∼�dI/S). Thus, low-populated territories
and rapidly fatal diseases prevent the spread of infection. This explains why very
deathly diseases, such as the Ebola virus, do not spread around the world: up to
now these diseases show up in poorly populated and remote areas (e.g., �S is
very small), and the life expectancy of the inflected population is very short.

The above results have important practical implications. If we reduce travel
and commerce (e.g., diffusion and convection mechanisms), we also prevent the
spread of the epidemic (an increase of diffusive and convective fluxes of infective
population induce traveling waves with higher velocities). In territories having
a susceptible population below the minimum critical density, a sudden influx
of susceptible individuals may initiate an epidemic. On the other hand, when
S > �di/� , a sudden outflow of susceptible (health) population or immunization
of a part of individuals by medical intervention (vaccination, culling) reduces the
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density of susceptible population and may prevent the spread of disease. Finally,
by isolation of the infective population we are able to reduce the transmission
coefficient � and, if the critical transmission coefficient is not exceeded, there
is no epidemic outbreak.
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