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Abstract: Mechanical metamaterials are man-made rationally-designed structures that present un-
precedented mechanical properties not found in nature. One of the most well-known mechanical
metamaterials is auxetics, which demonstrates negative Poisson’s ratio (NPR) behavior that is very
beneficial in several industrial applications. In this study, a specific type of auxetic metamaterial
structure namely idealized 3D re-entrant structure is studied analytically, numerically, and experi-
mentally. The noted structure is constructed of three types of struts—one loaded purely axially and
two loaded simultaneously flexurally and axially, which are inclined and are spatially defined by
angles θ and ϕ. Analytical relationships for elastic modulus, yield stress, and Poisson’s ratio of the
3D re-entrant unit cell are derived based on two well-known beam theories namely Euler–Bernoulli
and Timoshenko. Moreover, two finite element approaches one based on beam elements and one
based on volumetric elements are implemented. Furthermore, several specimens are additively
manufactured (3D printed) and tested under compression. The analytical results had good agreement
with the experimental results on the one hand and the volumetric finite element model results on the
other hand. Moreover, the effect of various geometrical parameters on the mechanical properties of
the structure was studied, and the results demonstrated that angle θ (related to tension-dominated
struts) has the highest influence on the sign of Poisson’s ratio and its extent, while angle ϕ (related to
compression-dominated struts) has the lowest influence on the Poisson’s ratio. Nevertheless, the
compression-dominated struts (defined by angle ϕ) provide strength and stiffness for the structure.
The results also demonstrated that the structure could have zero Poisson’s ratio for a specific range of
θ and ϕ angles. Finally, a lightened 3D re-entrant structure is introduced, and its results are compared
to those of the idealized 3D re-entrant structure.

Keywords: 3D printing; mechanical metamaterial; auxetics; negative Poisson’s ratio; 3D re-entrant

1. Introduction

The Poisson’s ratio is defined as the ratio of the negative value of transverse strain
to the longitudinal strain of a body subjected to uniaxial stress [1]. The Poisson’s ratio
is usually assumed to be positive (v > 0) for natural materials, which means that the
material contracts transversely when stretched longitudinally or expands transversely
when compressed longitudinally [2]. In contrast, there are some materials that reveal the
opposite behavior of common materials and present negative Poisson’s ratio, which means
that their transverse dimensions increase (or decrease) when they are subjected to axial
tensile (or compressive) loads [3]. These materials have been given different names in the
literature, including anti-rubber, dilational [4], and auxetic materials [5]. The term “auxetic”
is currently the most widely accepted name used for materials with a negative Poisson’s
ratio. Auxetic behavior has been observed in a few natural materials such as cristobalite
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(polymorphic silicones) [6], metals [7], zeolites [8], silicates [9,10], and some biological
tissues such as cancellous bone [11], tendons [12], and some animal skins [13,14].

Mechanical metamaterials are man-made materials with unusual mechanical prop-
erties and special functionalities not found in nature [15–19]. Negative Poisson’s ratio
could be considered as one of such special mechanical properties [20–31]. Due to recent ad-
vances in additive manufacturing techniques (3D printing), which provides the possibility
of fabrication of rationally-designed materials with the desired accuracy in nano/micro-
scale [32–35], the studies concentrated on design and analyzing auxetic metamaterials have
been increasing exponentially during the last few years [36–40]. Different geometries with
different deformation mechanisms have been introduced for auxetic structures. One of the
first auxetic structures was proposed by Roberts [21], the first auxetic foam was presented
by Lakes [41], and the first 2D molecular auxetic models (spontaneously forming auxetic
phases) were studied by Wojciechowski [22,23]. The term auxetic in the scientific literature
was introduced by Evans [24]. The re-entrant hexagonal honeycomb structure is one of the
most well-known open-cell auxetic structures [42]. In several studies [43–46], the effect of
relative density and re-entrant angle variations on mechanical properties such as Poisson’s
ratio and elastic modulus of typical 2D re-entrant structure in the elastic and plastic range
have been analyzed for predicting the behavior of the structure. To improve the mechanical
properties such as strength and auxeticity of the re-entrant structures and for answering
the new requirements in the industry, some researchers have introduced and built novel
3D re-entrant structures inspired by typical 2D re-entrant unit cells and have established
analytical and numerical solutions for them [47–50].

The unit cell presented by Yang et al. in 2015 [50] (Figure 1a) is one of the successful
3D auxetic structures, which has been solved analytically in two directions and evaluated
by experimental and numerical results. In another study, Wang et al. (2016) [51] proposed
an interlocking assembly manufacturing technique for fabricating the re-entrant lattice
structure proposed by Yang et al. (2015) [50] but with a shifted unit cell (Figure 1b),
which showed great advantages over additive manufacturing technique. Chen et al.
(2017) and Xue et al. (2020) [52,53] applied some modifications to the noted 3D re-entrant
auxetic structure by adding some struts to enhance the mechanical properties of the lattice
structure, and in particular, to increase the stiffness of this auxetic structure (Figure 1c,d).
Although the 3D reentrant structures studied in the noted works are successful auxetic
structures for many applications, they still lack some geometrical characteristics, which
could raise problems in many applications. First of all, even though the noted 3D re-entrant
unit cells are symmetrical in the lateral directions, but their geometry is different in the
vertical (i.e., loading) direction. Therefore, they exhibit dissimilar mechanical properties
in the three main orthogonal directions, which means that they are not truly 3D auxetic
structures. Second, the struts at the edge of the noted unit cells are shared by adjacent unit
cells in the lattice structure. Since the auxetic structures are useful in many applications
(such as biomedical implants [54,55], sandwich panels [56], etc.) that require graded micro-
structures, the noted shared struts cause huge complexities and difficulties in constructing
truly graded lattice structures. Hence, there remains a gap to propose an ideal unit cell that
could overcome these deficiencies of typical 3D re-entrant structure.

In this study, a specific type of mechanical metamaterial, namely, an idealized 3D re-
entrant structure [41,57] constructed of three strut types, one type loaded purely axially and
two types loaded both flexurally and axially, which are inclined and are spatially defined by
angles θ and ϕ (see Figure 2), is studied to obtain analytical relationships for its mechanical
properties. Analytical solutions based on two well-known beam theories namely Euler–
Bernoulli and Timoshenko theories are derived. Moreover, two numerical methods one
based on volumetric elements and one based on beam elements are implemented for
validating the results. A definition for strut effective length has been presented in order
to simulate what the struts experience in real-life conditions, and analytical results have
been presented based on the effective length. Moreover, a lightened auxetic unit cell
extracted from the general re-entrant unit cell (presented in Figure 2) is introduced and
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its mechanical properties are compared to those of the ideal re-entrant structure. Several
specimens have also been additively manufactured and tested under compressive loading
conditions. Finally, the results of the derived analytical and constructed numerical models
and the manufactured specimens are compared to one another.
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Figure 2. (a) An idealized 3D re-entrant unit cell and its strut types, (b) degrees of freedom (DOFs) of
the unit cell. The double arrows represent the rotational degrees of freedom. More illustrations of the
unit cell, its dimensions, and boundary conditions can be found in Figures S1–S5.

2. Materials and Methods
2.1. Analytical Solution
2.1.1. Relative Density

Each re-entrant unit cell (Figure 2a and Figure S1) consists of three types of struts with
lengths l1, l2, l3 and cross-sectional areas A1, A2, A3. The unit cell is fully defined with two
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unique angles θ and ϕ, the Type-I strut length, and the main cube size (the main cube is the
hypothetical cube formed by connecting vertices Di where i = 1 to 8). Angle θ is defined
as the angle between Type-II strut and the face diagonals of the main cube, and angle ϕ is
defined as the angle between a Type-III strut and the corresponding side of the main cube
(Figure 2b). Each re-entrant unit cell with mentioned strut lengths (l1, l2, l3) and character-
istic angles (θ, ϕ) occupies a cubic volume with side length of 2(l1 + l3 cos ϕ− l2 sin θ) and
hence the volume of Vtotal = 8(l1 + l3 cos ϕ− l2 sin θ)3. Because the unit cell is made up of
six struts of Type I, 24 struts of Type II, and 24 struts of Type III, the volume occupied by
all struts inside the unit cell is Vstrut = 6πr2

1l1 + 24πr2
2l2 + 24πr2

3l3. Therefore, according to
the basic definition of relative density µ = Vstrut

Vtotal
, the relative density of a re-entrant unit

cell is given by

µ =
6A1l1 + 24A2l2 + 24A3l3

Lunitcell
3 =

3π
(
r2

1l1 + 4r2
2l2 + 4r2

3l3
)

4(l1 + l3 cos ϕ− l2 sin θ)3 (1)

2.1.2. Stiffness Matrix

In this subsection, analytical relationships for mechanical properties of the 3D re-
entrant unit cell such as elastic modulus, Poisson’s ratio, and yield stress are derived as
functions of elastic properties of the bulk material (Es, Gs, σys, and vs) and the geometrical
dimensions of the unit cell. The re-entrant unit cell has symmetry with respect to its major
planes (see Figure S2). Therefore, studying 1/8 of the unit cell is sufficient for obtaining
the mechanical properties of the unit cell and, hence, the corresponding lattice structure.
Due to the intrinsic symmetries in the geometry of the re-entrant unit cell and the applied
boundary conditions on the unit cell, seven unique group of vertices can be recognized,
which are denoted by letters A, B, C, D, E, F, and G, as shown in Figure 2a. For the sake of
brevity and as the vertices named by similar letters demonstrate identical behaviors, in
many cases, instead of referring to a vertex as Xi, we refer to it as X (X representing A, B,
C, D, E, F, and G). For instance, in many cases, we use the name E instead of E1.

If the origin of the coordinate system is considered to be located in the midst of the
unit cell, each re-entrant unit cell has four vertical (XY, YZ, and two bisectors of XY and YZ)
and one horizontal (XZ) symmetry planes (as shown in Figure S2). All the vertices located
in the symmetry planes are only allowed to translate and rotate in their corresponding
planes. Vertices Ai and Bi (for i = 1, 2) lie in all of the four vertical symmetry planes, so
they are only allowed to translate in the Y direction, and they are constrained rotationally.
Therefore, they create two degrees of freedom (DOFs) q8 and q7 at vertices Ai and Bi,
respectively. Vertices Ci (for i = 1 to 8) are located in one of the vertical symmetry planes
(XY or YZ), and hence they are only allowed to translate horizontally and vertically and
rotate in their corresponding planes, which results in three other DOFs (q3, q4, q11). Each
vertex Di (for i = 1 to 8) is located in a single vertical symmetry plane (one of two bisectors
of YZ and YX), and therefore, it is only allowed to translate horizontally and vertically and
rotate in the planes it is located in, which leads to three other DOFs (q5, q6, q10). Vertices
Ei and Fi (for i = 1 to 4) are located in one of two vertical symmetry planes (XY or YZ)
and the horizontal symmetry plane XZ, so they are only allowed to translate in the X or Z
directions without any rotations. This creates two other DOFs q2 and q1 at vertices E and F,
respectively. Vertices Gi are located in the horizontal symmetry plane XZ and in one of the
vertical bisector symmetry planes (bisectors of XY and YZ). Therefore, these points cannot
rotate in any directions and are only allowed to translate horizontally in the bisector of the
noted planes, which leads to the final DOF q9. Overall, the system has a total number of
11 DOFs (Figure 2b).

In this study, two well-known elastic beam theories, namely, Euler–Bernoulli and
Timoshenko beam theories, have been implemented for analytical analysis of the re-entrant
unit cell. As the beam theories and material models used for the analytical analysis
are linear, the overall deformation of each DOF in the system can be considered as the
superposition of separate deformations caused by applying individual loads at each DOF.
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Therefore, the superposition principle could be implemented for obtaining the system
of equations of the unit cell. In this approach, each DOF displaces autonomously from
other DOFs, and when a DOF is displaced, the other DOFs are kept fixed. By solving the
equilibrium equations for the vertices of the unit cell, the resultant forces are obtained. By
considering this method, the system of equilibrium equations for the structure could be
written as {Q} = [K]{q}. In this equation, {Q} is the force vector comprising the external
forces acting on the DOFs, [K] is the stiffness matrix of the system, and the {q} is the
displacement vector.

Because the derivation of the stiffness matrix elements is based on beam theories, the
general deformation of a cantilever beam (Figure 3) can be considered as the resultant of
four distinct deformations at the free end of the beam, which are as follows:

(a) a lateral displacement without any rotation, v;
(b) a flexural rotation without any lateral displacement, θ;
(c) a longitudinal elongation or contraction, u;
(d) an axial twist, ϕ.
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Figure 3. General deformation of a cantilever beam with axial and lateral displacements in addition
to flexural and torsional rotations in its free end.

The corresponding forces and moments required to create each of the pure above-
mentioned deformations are demonstrated in Figure 4 for the Euler–Bernoulli and Timo-
shenko beam theories. Due to frequent repetition of some terms demonstrated in Figure 4
throughout the whole manuscript, the terms Si, Wi, Ti, Vi, and Ui are used, which are
different for Euler–Bernoulli and Timoshenko beam theories and are listed in Table 1.

Table 1. Parameters defined for summarizing the relationships for Euler–Bernoulli and Timoshenko
beam theories.

Term Euler-Bernoulli Theory Timoshenko Theory

Si
Ai Es

li

Ai Es
li

Wi
Gs Ji

li

Gs Ji
li

Ti
12Es Ii

l3
i

1
l3i

12Es Ii
+

li
κAi Gs

Vi
6Es Ii

l2
i

1
l2i

6Es Ii
+ 2

κAi Gs

Ui
4Es Ii

l

2Es Ii
κAi Gs l +

2li
3

l2i
6Es Ii

+ 2
κAi Gs
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To explain the general procedure for deriving the stiffness matrix elements, we could
consider a strut PQ with an arbitrary orientation with respect to the global X, Y, and Z
coordinate system (aligned with a unit vector uPQ), which is deformed by a specific DOF
qi at its free end. The schematic representation of such a strut and its deformation due to
the DOF is illustrated in Figure 5. As shown in the figure, DOF qi causes a longitudinal
and a transverse deformation in the strut PQ. The vector of longitudinal deformation
of strut PQ can be obtained by projecting the vector qi on the strut PQ unit vector, i.e.,(
qi·uPQ

)
uPQ. Moreover, the vector of transverse deformation of strut PQ can be obtained

as
(
qi −

(
qi·uPQ

)
uPQ

)
. By multiplying the longitudinal deformation vector of strut PQ by

the resultant force value of PQ (i.e., Si), the resultant longitudinal force vector for strut
PQ can be obtained as

((
qi·uPQ

)
uPQ

)
Si, and by multiplying the transverse deformation

vector of strut PQ by the resultant transverse force value of PQ (i.e., Ti), the resultant
transverse force vector for this strut can be obtained as

(
qi −

(
qi·uPQ

)
uPQ

)
Ti. The reaction
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moment vector, created by the transverse deformation of strut PQ can be found by the cross-
product of the unit vector of PQ (i.e., uPQ) and the resultant moment vector of the beam
(i.e.,

(
qi −

(
qi·uPQ

)
uPQ

)
Vi), which yields −

(
uPQ ×

(
qi −

(
qi·uPQ

)
uPQ

))
Vi. The values of

Si, Ti, and Vi for Timoshenko and Euler–Bernoulli beam theories are listed in Table 1. It is
worth noting that the procedure of obtaining the forces and moments for a lateral rotational
DOF is very similar to the above-mentioned procedure, and it could be easily performed
by replacing the terms Si, Ti, and Vi with the terms Wi, Vi, and Ui, respectively.
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In the following, the detailed procedure of derivation of the stiffness matrix elements
for three distinct DOFs (q1, q2, and q10) are presented. The derivation procedure of other
DOFs is similar to the ones presented in the paper, but they are provided in Section S.1.2
and Figure S6.

(a) First DOF: q1 = 1

Here, the elements of the first column of the stiffness matrix are derived by applying
the unit displacement q1 = 1 and by keeping all the other DOFs fixed (i.e., = 0). This
deformation type displaces point F1 horizontally in the Z direction. This deformation only
causes elongation in strut EF and it does not affect the other struts. The vector of elongation
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of strut EF can be obtained by projecting the vector q1 on strut EF, i.e.,

→q1·
→

E1F1∣∣∣∣ →E1F1

∣∣∣∣
 →

E1F1∣∣∣∣ →E1F1

∣∣∣∣ or

in a simpler notation
(
q1·uE1F1

)
uE1F1 , where q1 is the unit vector parallel to the first DOF,

and uE1F1 is the unit vector parallel to strut E1F1. The same system of notation will be
used in the rest of the document. By multiplying the elongation vector of strut EF by the
resultant force parameter of strut EF (i.e., S1), the resultant force vector can be obtained as((

q1·uE1F1

)
uE1F1

)
S1.

The equilibrium of forces at point F1 in the q1 direction, i.e., the Z direction, provides
the K11 element of the stiffness matrix (Figure 6), which is calculated as

∑ Fz,F1 = 0 → Q1

4
− q1·

((
q1·uE1F1

)
uE1F1

)
S1 = 0 → K11 = Q1 = 4S1 (2)
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It must be noted that the forces demonstrated in Figure 6 are the only forces that must
act on the beam in order for it to deform in the way it is shown. The force the beam applies
at each vertex is in the opposite direction of what is shown in Figure 6. The same holds true
for all the next derivations. The equilibrium of forces at point E1 in the q2 direction (i.e., in
the Z direction) provides the K12 element of the stiffness matrix, which is calculated as

∑ Fz,E1 = 0 → Q2

4
+ q2·

((
q1·uE1F1

)
uE1F1

)
S1 = 0 → K12 = Q2 = −4S1 (3)

Because the displacement of DOF q1 does not have any effect on other DOFs
(q3, q4, q5, q6, q7, q8, q9, q10, q11), the remaining elements of the first column of the
stiffness matrix are zero.

(b) Second DOF: q2 = 1

In this subsection, the elements of the second column of the stiffness matrix are
derived. Therefore, we set q2 = 1, and the other DOFs are set to zero. This deformation
type displaces point E horizontally in the Z direction, which causes strut EF to have a pure
contraction and strut ED to have contraction accompanied by transverse displacement.
The vector of contraction of strut EF can be obtained by projecting vector q2 on strut EF, i.e.,(

q2·uE1F1

)
uE1F1 . The vector of contraction of strut ED can be obtained by projecting vector

q2 on strut ED, i.e.,
(
q2·uE1D1

)
uE1D1 , and the vector of transverse displacement of vertex E

of strut ED can be calculated as
(
q2 −

(
q2·uE1D1

)
uE1D1

)
.

By multiplying the contraction vector of strut EF by the resultant force parameter of
strut EF (i.e., S1), the resultant force vector of strut EF can be obtained as

((
q2·uE1F1

)
uE1F1

)
S1.

Moreover, by multiplying the elongation vector of strut ED by the resultant force parameter
of strut ED (i.e., S2), the resultant force vector can be obtained as

((
q2·uE1D1

)
uE1D1

)
S2.

Finally, by multiplying the transverse deformation vector of strut ED by the resultant
transverse force parameter of strut ED (i.e., T2), the resultant transverse force vector of
this strut can be obtained as

(
q2 −

(
q2·uE1D1

)
uE1D1

)
T2. It is worth noting that the resultant

forces obtained for deformation of struts ED at point E must be multiplied by four because
there are four similar struts ED connected to point E. The equilibrium of forces at point E
in the q2 direction (i.e., the Z direction), Figure 7b, provides the element K22 of the stiffness
matrix as follows:
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∑ Fz,E1 = 0 → Q2
4 − q2·((q2·uE1 F1 )uE1 F1 )S1 + 4(q2·((q2·uE1D1 )uE1D1 )S2)− 4(q2·(q2 − (q2·uE1D1 )uE1D1 )T2) = 0

→ K22 = Q2 = 4
(
S1 + 4 sin2 θS2 + 4 cos2 θT2

) (4)
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The presence of reaction forces and moments at point D due to q2 leads to non-
zero values of K25, K26, and K210. By projecting the resultant contraction force vector((

q2·uE1D1

)
uE1D1

)
S2 and the transverse deformation force vector

(
q2 −

(
q2·uE1D1

)
uE1D1

)
T2

of strut ED in the q5 and q6 directions, and solving the equilibrium of forces at point D in
these two directions, the elements K25 and K26 of the stiffness matrix could be obtained. It
is important to note that the force vectors at point D have been multiplied by two (as two
ED struts are connected to point D):

∑ Fy,D1 = 0 → Q5
8 + 2q5·

((
q2·uE1D1

)
uE1D1

)
S2 + 2q5·

(
q2 −

(
q2·uE1D1

)
uE1D1

)
T2 = 0

→ K25 = Q5 = 4
√

2 sin 2θ(T2 − S2)
(5)
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∑ Fq6,D1 = 0 → Q6
8 + 2q6·

((
q2·uE1D1

)
uE1D1

)
S2 + 2q6·

(
q2 −

(
q2·uE1D1

)
uE1D1

)
T2 = 0

→ K26 = Q6 = 4 sin 2θ(T2 − S2)− 8
√

2 sin2 θS2 − 8
√

2 cos2 θT2
(6)

To obtain the element K210 of the stiffness matrix, the equilibrium of moments in
the q10 direction at point D must be considered. The reaction moment vector, created by
transverse deformation of point E of strut ED can be obtained by the cross-product of
unit vector of strut ED, uE1D1 , and the resultant moment vector of the beam at point D,
i.e.,

(
q2 −

(
q2·uE1D1

)
uE1D1

)
V2. This vector must be multiplied by two in the equilibrium

equation as two struts ED are connected to point D. Finally, by solving the equilibrium of
moments in the q10 direction, the element K210 of the stiffness matrix could be derived:

∑ Mq10,D1 = 0 → Q10

8
+ 2q10·

(
uE1D1 ×

(
q2 −

(
q2·uE1D1

)
uE1D1

))
V2 = 0 → K210 = Q10 = −8 cos θV2 (7)

(c) The 10th DOF: q10 = 1

This DOF is a complex deformation in the structure because it applies rotation at
vertex D, which is connected to six struts (2 × DC, 2 × DE, DG, and DB). By pro-
jecting vector q10 on the noted struts, the torsion applied to each of the struts can be
found (q10·uC1D1 , q10·uE1D1 , q10·uB1D1 , q10·uG1D1). Afterward, by multiplying the tor-
sional parameter of each strut (W2 and W3) by the projected twist, the torque vectors
could be obtained as

((
q10·uC1D1

)
uC1D1

)
W3,

((
q10·uE1D1

)
uE1D1

)
W2,

((
q10·uB1D1

)
uB1D1

)
W2,

and
((

q10·uG1D1

)
uG1D1

)
W3. The extent of flexural rotation of struts DC, DE, DG, and

DB can be obtained by subtracting the projected twist vector from vector q10, which
yields q10 −

(
q10·uC1D1

)
uC1D1 , q10 −

(
q10·uE1D1

)
uE1D1 , q10 −

(
q10·uB1D1

)
uB1D1 , and q10 −(

q10·uG1D1

)
uG1D1 , respectively. Afterward, by multiplying the resultant bending parameter

of each strut (i.e., U2 and U3) to the noted terms, the lateral force vectors could be calcu-
lated. It is worth noting that the terms related to struts CD and ED must be multiplied
by two because two of such struts are connected to point D. Finally, by projecting all the
resultant axial and lateral moments in the q10 direction and writing the equation of moment
equilibrium in this direction, the element K1010 can be found:

∑ Mq10,D1 = 0 → Q10
8 − 2q10·

((
q10·uC1D1

)
uC1D1

)
W3 − 2q10·

(
q10 −

(
q10·uC1D1

)
uC1D1

)
U3 − 2q10

·
((

q10·uE1D1

)
uE1D1

)
W2 − 2q10·

(
q10 −

(
q10·uE1D1

)
uE1D1

)
U2 − q10·

((
q10·uB1D1

)
uB1D1

)
W2 − q10

·
(
q10 −

(
q10·uB1D1

)
uB1D1

)
U2 − q10·

((
q10·uG1D1

)
uG1D1

)
W3 − q10·

(
q10 −

(
q10·uG1D1

)
uG1D1

)
U3 = 0

→ K1010 = Q10 = 2
((

3 + cos 2ϕ− 2
√

2 sin 2ϕ
)

W3 + 2W2

(
2 sin2 θ + cos2 θ − 2

√
2 sin 2θ

)
+2
√

2 sin 2θU2 − 2 cos2 θU2 +
(

2(5 + cos 2θ)U2 +
(

9− cos 2ϕ + 2
√

2 sin 2ϕ
)

U3

)) (8)

The element K1011 could be obtained by solving the equilibrium of moments at vertex
C. By projecting the reaction torsion and bending moment vectors created by the rotation of
vertex D of strut CD in the q10 direction and solving the equations of moment equilibrium
in the same direction, the element K1011 could be calculated as follows:

∑ Mq11,C1 = 0 → Q11
8 − 2q11·

((
q10·uC1D1

)
uC1D1

)
W3 − 2q11·

(
q10 −

(
q10·uC1D1

)
uC1D1

)U3
2 = 0

→ K1011 = Q11 = −4
(

2
√

2 cos2 ϕ− sin 2ϕ
)

W3 + 2
(

sin 2ϕ + 2
√

2 sin2 ϕ
)

U3
(9)
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2.1.3. Stiffness Matrix Derivation

Finally, using the stiffness matrix elements obtained in Section 2.1.2 and also by
considering the loading condition (Q8 = 2F), the stiffness matrix and system of equations
can be constructed as 

0
0
0
0
0
0
0

2F
0
0
0



=
[

A11 A12 A13
]



q1
q2
q3
q4
q5
q6
q7
q8
q9
q10
q11



(10)

where F is the external load applied on the unit cell. [A11],[A12], and [A13] are the partial
matrices included in the overall stiffness matrix [K]. [A11],[A12], and [A13] have been used
for easier representation of the overall stiffness matrix and are as follows:

A11 =



4S1 −4S1 0 0

−4S1 4
(
S1 + 4 sin2 θS2 + 4 cos2 θT2

)
0 0

0 0 8 sin2 θS3 + 4(3 + cos 2ϕ)T3 8 sin2 ϕ(S3 − T3)

0 0 8 sin2 ϕ(S3 − T3) 8 sin2 ϕS3 + 4(3 + cos 2ϕ])T3

0 16 cos ϕ sin θL3(−S2+T2)
L2

8 sin2 ϕS3 + 4(3 + cos 2ϕ)T3 8 sin2 ϕ(S3 − T3)

0 − 8
√

2(cos ϕ sin θL3(S2−T2)+L2(sin2 θS2+cos2 θT2))
L2

4
√

2 sin ϕ
(√

2 cos ϕ + sin ϕ
)
(S3 − T3) 4

√
2
(

sin ϕ
(√

2 cos ϕ + sin ϕ
)

S3 −
(
−2 +

√
2 cos ϕ sin ϕ + sin2 ϕ

)
T3

)
0 0 0 0

0 0 0 0

0 0 0 0

0 − 8
√

2 cos ϕL3V2
L2

−8
(√

2 cos ϕ + sin ϕ
)

V3 8 sin ϕV3

0 0 −8
√

2 sin ϕV3 8
√

2 sin ϕV3
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A12 =



0 0 0 0

16 cos ϕ sin θL3 (−S2+T2 )
L2

− 8
√

2(cos ϕ sin θL3 (S2−T2 )+L2(sin2 θS2+cos2 θT2))
L2

0 0

8 sin2 ϕS3 + 4(3 + cos 2ϕ)T3 4 sin ϕ
(

2 cos ϕ +
√

2 sin ϕ
)
(S3 − T3) 0 0

8 sin2 ϕ(S3 − T3) 4 sin ϕ
(

2 cos ϕ +
√

2 sin ϕ
)

S3 − 4
(
−2
√

2 +
√

2 sin2 ϕ + sin 2ϕ
)

T3 0 0

4
(

2 sin2 θS2 + 2S3 +
4 cos2 ϕL2

3 (S2−T2 )

L2
2

+ 5T2 + cos 2θT2 + 4T3

)
16
√

2 cos ϕ sin θL3 (S2−T2 )
L2

+
8
√

2 cos2 ϕL2
3 (S2−T2 )

L2
2

+ 4 sin ϕ
(

4 cos ϕ +
√

2 sin ϕ
)
(S3 − T3) 8

(
sin2 θS2 + cos2 θT2

)
0

16
√

2 cos ϕ sin θL3 (S2−T2 )
L2

+
8
√

2 cos2 ϕL2
3 (S2−T2 )

L2
2

+ 4 sin ϕ
(

4 cos ϕ +
√

2 sin ϕ
)
(S3 − T3) 2

(
4 sin2 θS2 +

(
5− cos 2ϕ + 2

√
2 sin 2ϕ

)
S3 +

8 cos ϕ sin θL3 (S2−T2 )
L2

+
12 cos2 ϕL2

3 (S2−T2 )

L2
2

+ 10T2 + 2 cos 2θT2 + 7T3 + cos 2ϕT3 − 2
√

2 sin 2ϕT3

)
8
√

2 cos ϕ sin θL3 (S2−T2 )
L2

0

8
(
sin2 θS2 + cos2 θT2

) 8
√

2 cos ϕ sin θL3 (S2−T2 )
L2

2
(
S1 + 4 sin2 θS2 + 4 cos2 θT2

)
−2S1

0 0 −2S1 2S1

8 cos ϕ sin ϕ(−S3 + T3) −8
(
sin2 ϕS3 + cos2 ϕT3

)
0 0

− 8
√

2(sin θL2+2 cos ϕL3 )V2
L2

− 8
(√

2 cos ϕ + 2 sin ϕ
)

V3 8
((

sin θ + 2 cos ϕL3
L2

)
V2 +

(
cos ϕ +

√
2 sin ϕ

)
V3

)
− 8
√

2 cos ϕL3 V2
L2

0

−8
√

2 sin ϕV3 8 sin ϕV3 0 0



and

A13 =



0 0 0

0 − 8
√

2 cos ϕL3V2
L2

0

0 −8
(√

2 cos ϕ + sin ϕ
)

V3 −8
√

2 sin ϕV3

0 8 sin ϕV3 8
√

2 sin ϕV3

8 cos ϕ sin ϕ(−S3 + T3) − 8
√

2(sin θL2+2 cos ϕL3)V2
L2

− 8
(√

2 cos ϕ + 2 sin ϕ
)

V3 −8
√

2 sin ϕV3

−8
(
sin2 ϕS3 + cos2 ϕT3

)
8
((

sin θ + 2 cos ϕL3
L2

)
V2 +

(
cos ϕ +

√
2 sin ϕ

)
V3

)
8 sin ϕV3

0 − 8
√

2 cos ϕL3V2
L2

0

0 0 0

8
(
sin2 ϕS3 + cos2 ϕT3

)
−8 cos ϕV3 0

−8 cos ϕV3
2((3+cos 2ϕ−2

√
2 sin 2ϕ)W3 L2

2+4W2(sin θL2−cos ϕL3)
2+8 cos ϕ sin θL2 L3U2−4 cos2 ϕL2

3U2+L2
2(2(5+cos 2θ)U2+(9−cos 2ϕ+2

√
2 sin 2ϕ)U3))

L2
2

−8 cos ϕ
(√

2 cos ϕ− sin ϕ
)

W3 + 4 sin ϕ
(

cos ϕ +
√

2 sin ϕ
)

U3

0 −8 cos ϕ
(√

2 cos ϕ− sin ϕ
)

W3 + 4 sin ϕ
(

cos ϕ +
√

2 sin ϕ
)

U3 16
(
cos2 ϕW3 + sin2 ϕU3

)



(11)
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2.1.4. Elastic Properties Relationships

All the unknown displacements and rotations q1 to q11 can be obtained as functions of
external force FUC by inverting the final stiffness matrix [K] =

[
[A11] [A12] [A13]

]
and multiplying it by the force vector. By having the DOF displacements as functions of
the applied external force, unit cell elastic mechanical properties such as elastic modulus,
Poisson’s ratio, and yield stress can be obtained. The elastic modulus of the unit cell can be
calculated according to the basic definition of elastic modulus as follows:

EUC =
FUCLUC
AUCδUC

(12)

where, FUC, LUC, AUC, δUC, and EUC are the applied external load, unit cell length, unit
cell cross-sectional area, unit cell displacement, and elastic modulus of the re-entrant unit
cell, respectively. By considering FUC = F, δUC = 2q8, LUC = 2(l1 + l3 cos ϕ− l2 sin θ), and
AUC = LUC

2, the elastic modulus of the re-entrant unit cell can be obtained as

EUC =
F

4(l1 + l3 cos ϕ− l2 sin θ)q8
(13)

Calculation of q8 from solving Equation (10) and inserting it in Equation (13) provides
the elastic modulus relationship of the re-entrant unit cell. Because the final relationships
for mechanical properties of the unit cell are very lengthy, the elastic modulus relationship
for a specific case (θ = ϕ = 0◦, r1 = r2 = r3 = 0.14b, and l1 = b) is presented below:

EUC =
3π
(

9r6
(

2
(

1 +
√

2
)

Gs +
(

13 + 9
√

2
)

Es

)
+ 2b2r4

(
2
(

5 + 3
√

2
)

Gs +
(

79 + 53
√

2
)

Es

))
2b2
(

9r4
((

26 + 24
√

2
)

Gs + 7
(

23 + 16
√

2
)

Es

)
+ 6b2r2

((
58 + 34

√
2
)

Gs +
(

407 + 279
√

2
)

Es

)
+ b4

(
8
(

6 + 5
√

2
)

Gs +
(

568 + 436
√

2
)

Es

)) (14)

Poisson’s ratio of the unit cell νUC can be found by − q1
q8

. Hence, by calculating q1 and
q8 from Equation (10) and substituting them in this relationship, the Poisson’s ratio formula
for the unit cell can be derived. The Poisson’s ratio relationship of the above-mentioned
specific case (θ = ϕ = 0◦, r1 = r2 = r3 = 0.14b, and l1 = b) can be obtained as follows:

ϑUC =
12
(

6 + 5
√

2
)

b4Es + 6b2r2
(

2Gs +
(

5 +
√

2
)

Es

)
− 9r4

(
2Gs +

(
5 + 4

√
2
)

Es

)
9r4
((

26 + 24
√

2
)

Gs + 7
(

23 + 16
√

2
)

Es

)
+ 6b2r2

((
58 + 34

√
2
)

Gs +
(

407 + 279
√

2
)

Es

)
+ b4

(
8
(

6 + 5
√

2
)

Gs +
(

568 + 436
√

2
)

Es

) (15)

Evaluating the von Mises stress contours of the FE models with several relative
densities showed that vertices B of struts BD are the most critical points (the points with
the maximum stress) in the structure. The yielding of the unit cell as a whole occurs when
a point in the unit structure reaches the yield stress of the bulk material σys. Therefore, the
yield stress of the re-entrant unit cell can be obtained by assuming that the structure yielding
occurs when the stress at point B of struts BD reaches the yield stress of the bulk material.
Because strut BD is influenced by both bending moment and axial force (MDB, FDB), the
maximum stress (σmax) in point B of this strut could be calculated as follows:

σmax =
MDB.r2

I2
+

FDB
A2

(16)

where r2, I2, and A2 are the maximum distance of the points on the strut cross section from
the neutral axis, area moment of inertia, and cross-sectional area of strut DB, respectively.
To obtain the bending moment and axial force in strut DB, all of the lateral deformation
and axial elongation of this strut applied by DOFs should be considered. DOFs q5, q6, and
q7 apply axial elongation and lateral displacement to ends B and D of this strut. Moreover,
DOF q10 applies twist to point D. Eventually, the axial forces at point B of strut BD can be
obtained as follows:

FDB = (q5 sin θ + q6 cos θ + q7 sin θ)S2 (17)
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Similarly, the bending moments at point B of strut DB can be obtained as

MDB = (−q5 cos θ + q7 cos θ + q6 sin θ)V2 + (q10)U2 (18)

By substituting FDB and MDB from Equations (17) and (18) into Equation (16) and
inserting q5, q6, q7, and q10 from solution of the inverse of Equation (10), the maximum
local yield stress in strut DB can be obtained. For the specific case introduced above
(θ = ϕ = 0◦, r1 = r2 = r3 = 0.14b, and l1 = b), the relationship can be simplified
as follows:

σmax =
F
(

2b3r
(

2Gs −
(

1 + 2
√

2
)

Es

)
+ 6b2r2

(
2
(

12 + 7
√

2
)

Gs + 31
(

4 + 3
√

2
)

Es

)
− 3br3

(
2Gs +

(
5 + 4

√
2
)

Es

)
+ 18r4

(
2Gs +

(
5 + 4

√
2
)

Es

)
+ b4

(
8
(

6 + 5
√

2
)

Gs +
(

664 + 516
√

2
)

Es

))
36bπr5

(
2
(

1 +
√

2
)

Gs +
(

13 + 9
√

2
)

Es

)
+ 8b3πr3

(
2
(

5 + 3
√

2
)

Gs +
(

79 + 53
√

2
)

Es

) (19)

Because the applied stress equal to the structure yield stress of the re-entrant unit cell
σy,UC causes the maximum local yield stress σmax at point B, reaching the bulk material
yield stress σy,s, the normalized yield stress of the unit cell could be obtained by a cross-
multiply of structure mean stress σUC = FUC

AUC
and σmax on the one hand and the relevant

yield stresses on the other hand, which is

σy,UC

σy,s
=

FUC
AUC.σmax

=
F

4(l1 + l3 cos ϕ− l2 sin θ)2.σMax
(20)

Because the idealized 3D re-entrant structure includes vertical struts (strut AB), the
unit cell can be vulnerable to buckling under compressive loading. Strut AB in the unit cell
structure can be considered as a column under a pure compressive load, and the critical
elastic buckling force of the column can be obtained using the classic Euler’s buckling
theory as follows:

Pcritical =
π2Es I1

(Kl1)
2 (21)

By considering strut AB as a clamped column based on the periodic boundary condi-
tions, the theoretical K value of the column will be equal to 1 and the critical load of an
idealized 3D re-entrant unit cell under compressive load F can be obtained as

Pcritical =
π2Es I1

l12 (22)

Because the total load applied to a single unit cell and to strut AB is identical (load F),
by considering the 4(l1 + l3 cos ϕ− l2 sin θ)2 as the cross-sectional area of the unit cell, the
critical buckling stress could be obtained as follows:

σcritical =
π2Es I1

4(l1 + l3 cos ϕ− l2 sin θ)2l12
(23)

2.1.5. Effective Lengths

One of the important considerations in deriving the analytical relationships of me-
chanical properties of structures is that the struts are connected rigidly to each other at
the vertices of structures. Ideally, the struts are connected to each other from their very
endpoints (vertices demonstrated in Figure 2a), and they do not interact with each other
from any other point. However, in practice, when several struts approach a vertex, as the
cross-section area of the struts is non-zero, some volumes overlap with each other at the ver-
tices, which in turn decreases the effective lengths of struts participating in the deformation
of the structure. This phenomenon becomes of much more significance in auxetic lattices
because they have very acute angles at the vertices (see, for example, Figures 2 and 8).
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Figure 8. An additively manufactured specimen with µ = 0.25 under loading test.

In this study, the minimum distances between the joints were considered as the
effective length of the struts. This definition for effective length was in accordance with
what was observed in the stress and strain distribution of the structure obtained from the
finite element (FE) results. In the following, the analytical derivation of effective lengths
has been presented.

The effective length l1,e f f can be calculated by subtracting the intersection length
between Type-I and Type-II struts from l1 as follows:

l1,e f f = l1 −
r2

cos θ
− r1 tan θ (24)

The effective length of Type-II strut is calculated by measuring the distance between
the intersection of two Type-II struts at point D (struts DB and DE) and the intersection
of Type-I and Type-II struts at point B (struts AB and BD), and it can be calculated by
subtracting the intersecting lengths from l2 as

l2,e f f = l2 −
r2

tan α2
2
− r2 tan θ − r1

cos θ
(25)

where α2 is the angle between two Type-II struts.
Similarly, the overlapping of Type-III strut occurs in the intersection of Type-II and

Type-III struts at point D (struts DC and DG) and the intersection of two Type-II struts at
point C. The effective length can then be calculated by subtracting the intersection lengths
from l3 as

l3,e f f = l3 −
r2

sin α1
− r3

tan α1
− r3 tan ϕ (26)

where α1 is the angle between Type-II and Type-III struts.
By substituting these effective lengths into the stiffness matrix and solving the system

of Equation (10), analytical relationships for mechanical properties of the 3D re-entrant
unit cell can be obtained.

It is worth noting that the analytical relationships for angles α1 and α2 can be obtained
as follows:

α1 = arccos

(
2l3 cos2 ϕ +

√
2l3 cos ϕ sin ϕ +

√
2l2 sin ϕ sin θ

2l2

)
(27)
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α2 = arccos
(

l3 cos ϕ(l3 cos ϕ + 2l2 sin θ)

l22

)
(28)

2.2. Experimental Tests

A Quantum Generous 3D printer (Persia Company, Iran) with poly-lactic acid (PLA)
filaments was used for manufacturing the test specimens. Because the mechanical proper-
ties of PLA could be different after the printing process as compared to its properties in the
original filament form, in order to obtain the mechanical properties of the bulk material,
three types of cylindrical specimens were manufactured and tested under compressive
loading. The cylinders were printed in the horizontal (0◦), vertical (90◦), and inclined (45◦)
orientations with respect to the build plate direction. Four specimens were manufactured
for each cylinder type (12 specimens in total). All the cylindrical specimens had a nominal
length of 20 mm and a diameter of 15 mm.

Three sets of re-entrant unit cell specimens with five different relative densities µ = 0.1,
0.15, 0.2, 0.25, and 0.3 were manufactured (15 specimens in total), see Figures S4 and S5.
The dimensions of all the re-entrant unit cell specimens were 7.71 × 7.71 × 7.71 cm3.
All the specimens (unit cells and cylinders) were manufactured with a layer thickness
of 100 µm and infill density of 100%. Because the forces required for collapsing the
manufactured specimens were in the range of 750 N to 3700 N, to avoid the inaccuracies
caused by the deformation of the test machine itself, all the tests were performed with a
large compression test machine (150 kN) for which the deformation in the machine was
negligible. More information on the effect of deformation of the mechanical test bench can
be found in [59]. The static compression tests were performed using an STM-20 (STANTAM,
Iran) mechanical testing bench with a 20 kN load cell (Figure 8). The displacement rate
was set to 0.1 mm/min. The normalized elastic modulus and normalized yield stress of
specimens were obtained from load-displacement graphs, and the Poisson’s ratio of the
unit cells were extracted from the side-view images.

2.3. Numerical Modeling

Two FE models were developed in ANSYS software (Pennsylvania, United States) to
calculate the mechanical properties of the re-entrant lattice structures. Because analytical
formulas of mechanical properties of unit cells have been derived based on Euler–Bernoulli
and Timoshenko beam theories, in the first FE model type, Timoshenko beam elements
(3D Quadratic finite strain beam, i.e., beam element Type 189 in ANSYS) were used for
discretizing the struts of the unit cell. Timoshenko beam theory takes into account the
transverse shear deformation. Each strut was divided into five beam elements. The struts
were considered to be rigidly connected to each other at the vertices. The linear elastic
material properties of the PLA obtained from the experimental tests were adopted. The
elastic modulus, Poisson’s ratio, and yield stress of the beam elements were set to 1.93 GPa,
0.33, and 69 MPa, respectively. Periodic boundary conditions were applied to the FE
models. The lowermost nodes of the unit cell at point A2 Figure 2a) were fully constrained
in all the transitional and rotational directions. The top node of the unit cell at point A1
(Figure 2a) was displaced downward, but they were not also allowed to have any horizontal
displacement or rotation in any direction (Figure S3).

The second FE model type was developed using volumetric elements. This FE model
is expected to better take into account the overlapping effect at the joints on the overall
mechanical properties of the structure. Five 3D models of the re-entrant unit cell with
geometries almost identical to the geometry of the manufactured specimens (relative
densities of 0.1, 0.15, 0.2, 0.25, and 0.3) were constructed. An adaptive fine volumetric
mesh was implemented for discretizing the models using tetrahedral 10-node elements
(SOLID187 elements in ANSYS) to have a fine mesh at the vertices and efficient larger
mesh at the middle of the struts. The finest and most accurate options in ANSYS adaptive
meshing, i.e., fine resolution (resolution = 6), slow transition, and fine span angle were
chosen. The minimum and maximum element sizes for the lowest-density structure
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(µ = 0.1) were 0.3912 mm and 1.78 mm, respectively. The minimum and maximum element
sizes for the highest-density structure (µ = 0.3) were 0.5786 mm and 2.45 mm, respectively.
The number of elements in the lowest-density and the highest-density structures was
470,701 and 437,269, respectively. Similar to the beam elements, the elastic modulus and
Poisson’s ratio of 1.93 GPa and 0.33, respectively, were considered for the bulk material
properties. To apply the loading and boundary condition, the lowermost face of the model
(lower cross-sectional face of vertex of the strut in Figure 2) was fixed in all the directions
and the top face of the model at the point was displaced downward. The material properties
assigned to the volumetric elements were the same as those used in the first FE model.

In order to calculate the elastic modulus of the FE models, the sum of reaction force(s)
at the lowermost node(s), FUC, due to the vertical displacement of the top node(s), δUC,
was measured and substituted in EUC = FUC LUC

AUCδUC
, where AUC is the cross-sectional area of

the FE model in the plane normal to the loading direction, and LUC is the length of the FE
structure in the direction parallel to the loading direction.

For obtaining the Poisson’s ratio, the elongation of the structure in the lateral direc-
tion (X or Z direction) was divided by the contraction of the structure in the Y direction
(loading direction).

Eventually, for obtaining the numerical normalized yield stress, the maximum stresses
(von Mises stress) in strut DB of the unit cell (σmax) was extracted and inserted into the
equation FUC

AUC .σmax
.

3. Results

In this section, all the obtained analytical, numerical, and experimental results are
presented and compared to each other. To have a better understanding of the main factors
influencing the overall performance of the auxetic lattice structure, the effect of each main
geometrical parameter of the structure such as relative density, angle θ, and angle ϕ are
studied individually. Moreover, a lightened unit cell, obtained by eliminating the struts l3
from the general 3D re-entrant unit cell, is introduced and its mechanical properties are
presented. More details on the results can be found in Section S.2 of the supplementary
materials (Figures S7–S27).

3.1. Effect of Relative Density

According to analytical relationships of mechanical properties of the re-entrant unit
cell obtained in Section 2.1, elastic modulus, Poisson’s ratio, and yield stress of the structure
depend on seven geometrical main parameters, namely, r1, r2, r3, l1, l2 or l3, θ, and ϕ. To
validate the analytical relationships, the mechanical properties of a specific case has been
considered in which all the struts have the same radii (r1 = r2 = r3), angles θ and ϕ are
considered to be equal to 22.5◦, and l1 = b where b is shown in Figure 2b. It is worth noting
that all the additively manufactured specimens have also been constructed according to
the above-mentioned geometrical parameters. Effects of variations in the relative density
of 3D re-entrant unit cell with respect to angles θ and ϕ is shown in Figure S7.

The analytical (based on Euler–Bernoulli and Timoshenko beam theories), numeri-
cal (based on beam and volumetric elements), and experimental results of this case are
presented and compared in Figure 9. The main take-out of this figure is that both the
Euler–Bernoulli and Timoshenko analytical models after consideration of the effective
length, the numerical models based on volumetric elements, and the experimental data
points have good agreement with respect to each other. On the other hand, the results of
both the Euler–Bernoulli and Timoshenko analytical models without consideration of the
effective length and the numerical model based on beam elements (rather than volumetric
elements) are close to each other but quite far from the experimental data points. As it
can be seen in Figure 9, the analytical models considering the overlapping effect and the
numerical models made from volumetric elements have higher levels of stiffness and yield
stress, and lower levels of Poisson’s ratio in comparison with the analytical models without
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considering the overlapping effect and their equivalent numerical models, which are based
on beam elements.
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As for the case of analytical relationships that neglect the overlapping effect at the
vertices, it is evident that as compared to the analytical results based on the Euler–Bernoulli
beam theory, the analytical results based on Timoshenko beam theory have much better
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agreement with the beam-based FE model results for all relative densities (Figure 9). By
increasing the relative density, the difference between the numerical and analytical results
for both beam theories increase, and the maximum difference between the numerical and
analytical results (at a relative density of µ = 0.4) for normalized elastic modulus are
7.91% and 0.62% for Euler–Bernoulli and Timoshenko beam theories, respectively. As for
the Poisson’s ratio, the maximum difference between the beam-based FE model and the
analytical models based on Euler–Bernoulli and Timoshenko beam theories are 14.84%
and 0.91%, respectively. It is worth noting that the maximum negative Poisson’s ratio for
this case is very high and equal to −0.7791. These numerical/analytical differences for
normalized yield stress are 13.76% and 5.32% for Euler–Bernoulli and Timoshenko beam
theories, respectively.

The maximum differences between the elastic modulus results of numerical models
made from volumetric elements and the analytical models, which consider the overlapping
effect, are 54.97% and 45.75% for Euler–Bernoulli and Timoshenko theories, respectively
(Figure 9b). These differences for Poisson’s ratio are 85.7% and 88.24% for Euler–Bernoulli
and Timoshenko beam theories, respectively (Figure 9a). Finally, the noted differences for
normalized yield stress are 32.31% and 6.85% for Euler–Bernoulli and Timoshenko beam
theories, respectively (Figure 9c).

The mean values of the mechanical properties of the PLA filament obtained from
compression tests on cylindrical specimens are presented in Table 2. All the auxetic
specimens failed from the struts that were expected to have the maximum local stress in
the unit cell (strut DB; Figure 10 shows the specimens from the top view). The maximum
differences between the experimental results and volumetric element numerical results for
normalized elastic modulus, Poisson’s ratio, and normalized yield stress are 22.79%, 16.58%,
and 15.59%, respectively. The maximum differences between the experimental results and
Timoshenko analytical (by considering the overlapping effect) results for normalized
elastic modulus, Poisson’s ratio, and normalized yield stress are 28.52%, 25.95%, and
18.14%, respectively.

Table 2. Elastic mechanical properties of cylindrical specimens made from poly-lactic acid
(PLA) filaments.

Property 0◦ 45◦ 90◦

Elastic modulus (GPa) 2.016 1.964 1.824

Yield stress (MPa) 74.67 73.6 63.67

Figure 11a shows the von Mises stress distribution in the unit cell’s struts for relative
density of µ = 0.2. From this figure, it can be inferred that the maximum von Mises
stress occurs in the same struts expected in analytical and numerical results with beam
elements (struts BD). The stress distribution can be better visualized in the sliced unit cell
in Figure 11b. The important point to note regarding the numerical results of this FE model
is that the maximum stress locations are at the central point of vertex B (and experimental
test results). This, again, signifies the importance of considering the effective lengths rather
than vertex-to-vertex lengths in the analytical models. The stress and strain distribution for
all other unit cells with various relative densities are presented in Sections S.2.4 and S.2.5
of Supplementary Material (Figures S15–S27).
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3.2. Effect of Angles θ and ϕ

Angles θ and ϕ are the most critical parameters in the 3D re-entrant structure because
these parameters play the main role in creating the negative Poisson’s ratio effect (Figure S9).
Therefore, analyzing the effect of these parameters could be very beneficial for predicting
the most extreme values of the mechanical properties, in particular, the negative Poisson’s
ratio. Using 3D surface plot demonstration, Figure 12 presents variations in the mechanical
properties of 3D re-entrant unit cell with respect to angles θ and ϕ each varying in the range
of −25◦ to +25◦. Moreover, the special cases of θ = 0◦, ϕ = 0◦, and θ = ϕ are marked in the
3D plots with solid, dashed, and dashed-dot lines, respectively. All the plots are presented
for r1 = r2 = r3 = 0.14b and with considering a constant volume for the circumscribed
cube of the unit cell. Although one might assume that the mechanical properties of the unit
should have symmetry with respect to angle θ, the results shown in Figure 12 demonstrate
that the mechanical properties are not symmetrical with respect to θ = 0◦. Due to the
constant volume assumed for circumscribed cube of unit cell, the length l1 changes based on
angle θ, and l1 is shorter for θ < 0 than for θ > 0. Therefore, the results are not symmetrical
with respect to θ = 0◦, and we have higher levels of normalized elastic modulus and yield
stress for θ < 0 as compared to θ > 0. According to Figure 12a,c, the maximum normalized
elastic modulus of 0.002234 occurs at θ = −25◦ and ϕ = 2◦, and the maximum normalized
yield stress of 0.008441 occurs at θ = −25◦ and ϕ = 4.5◦. The behavior of Poisson’s ratio
with respect to variations of angles θ and ϕ is relatively different in comparison with elastic
modulus and yield stress. As shown in Figure 12b, the maximum positive and negative
values of Poisson’s ratio occur at θ = ϕ = −25◦ and θ = −ϕ = 25◦, respectively. The
graph also demonstrates that by proper combination of θ and ϕ, the structure can be either
auxetic or non-auxetic and with the desired extent. Moreover, the graph shows that to have
a near-zero Poisson’s ratio, the angle θ needs to remain in the range of 4◦ < θ < 8.5◦, while
angle ϕ can take any value from −25◦ to +25◦. To understand better the effect of angles θ
and ϕ on the Poisson’s ratio of re-entrant structure in other relative densities, the variations
of Poisson’s ratio for four relative densities (r/b = 0.1, r/b = 0.2, r/b = 0.3, and r/b = 0.4)
are presented in Figure 13. According to this figure, the range of Poisson’s ratio changes
between−0.6 and +0.2 for r/b = 0.1. The range of change in Poisson’s ratio becomes much
narrower for higher values of relative density. For instance, the minimum and maximum
values of Poisson’s ratio are −0.12 and +0.17 for r/b = 0.4. The influences of effective
lengths on mechanical properties for various values of angles θ and ϕ are presented in
Section S.2.2 of Supplementary Material.
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Figure 12. Variations of mechanical properties of general 3D re-entrant unit cell with respect to
angles θ and ϕ for r1 = r2 = r3 = 0.14b: (a) elastic modulus, (b) Poisson’s ratio, and (c) yield
stress. Specific cases of θ = 0◦, ϕ = 0◦, and θ = ϕ are marked with solid, dashed, and dashed-dot
lines, respectively.
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Figure 13. Variations of Poisson’s ratio with respect to θ and ϕ: (a) r/b = 0.1, (b) r/b = 0.2, (c) r/b = 0.3, and (d) r/b = 0.4.

3.3. Effect of Relative Density on the Mechanical Properties of the Special Case of θ = ϕ = 0◦

A critical case can be considered for the structure in which angles θ and ϕ are consid-
ered to be zero. The effect of variation in relative density of such structure is plotted in
Figure 14. The figure shows that in case of neglecting the overlapping effect, as compared
to the analytical results based on Euler–Bernoulli beam theory, the analytical results based
on Timoshenko beam theory have better agreement with numerical results of the FE models
based on beam elements for all values of relative density. According to Figure 14a, the
re-entrant structure does not have a negative Poisson’s ratio, and the value of Poisson’s
ratio for all relative densities is positive and varies from 0.127 to 0.074. Considering the
overlapping effect decreases the values of Poisson’s ratio, and the minimum value of
Poisson’s ratio for this case reaches 0.009158.
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3.4. Elimination of Strut l3
According to the contours of mechanical properties of 3D re-entrant unit cell shown in

Figure 13, the angle ϕ had negligible effect on the sign of Poisson’s ratio in all values of r
b .

This gives an inspiration to create a new lightened re-entrant unit cell by eliminating strut
l3 from the general 3D re-entrant unit cell. The lightened unit cell with negative, zero, and
positive values of θ are shown in Figure 15. The analytical relationships for this unit cell
could be easily obtained by setting r3 = 0 in the general relationships (i.e., Equations (14),
(15) and (20)). The resulting mechanical properties of the lightened re-entrant unit cell are
presented in Figure 16. The results show that the maximum normalized elastic modulus
and yield stress for the lightened unit cell occur at θ = +25◦ for all values of relative
densities. The maximum negative and positive Poisson’s ratio for the lightened unit cell is
obtained as −0.6322 and +0.352, respectively. The variations of mechanical properties of
the lightened unit cell with respect to relative density in the special condition of θ = 0 have
been presented with solid lines in Figure 16. Similar to the general unit cell, the lightened
structure has positive Poisson’s ratio for all values of relative densities in θ = 0, and the
value of Poisson’s ratio for this case varies from 0.1688 to 0.09837 (Figure 16b).

Comparison of the general idealized 3D re-entrant unit cell and lightened 3D re-entrant
unit cell can provide good insights for designers to decide which design to choose from.
Figure 17 shows the mechanical properties contours for general and lightened unit cells in
various values of θ and r/b. For quantitative comparison, the comparisons are performed
for the mean values of both relative density and r/b, i.e., µ = 0.25 and r/b = 0.25. As for
the case of µ = 0.25, the value of normalized elastic modulus in θ = 25◦ were calculated
as 0.006095 and 0.009178 for the general re-entrant and lightened structures, respectively.
As for the case of r/b = 0.25, the values of normalized elastic modulus were obtained
as 0.005367 and 0.004184 for the general re-entrant and lightened structures, respectively
(Figure 17 and Figure S10a). Moreover, the normalized yield strength at µ = 0.25 were
0.007666 and 0.01157 for the general re-entrant and lightened structures, respectively
(Figure S11c), while at r/b = 0.25, they were 0.006837 and 0.005808, respectively (Figure 17
and Figure S10c). Therefore, based on results, we can conclude that the lightened re-entrant
structure has better strength and stiffness at the same relative densities in comparison with
the general re-entrant structure. In contrast, the lightened re-entrant unit cell is weaker
than the general re-entrant structure at the same ratio of r/b (Figure 17). This comparison
could be drawn for Poisson’s ratio as well. At the same relative density of µ = 0.25 and
θ = 25◦, Poisson’s ratio of the general and lightened re-entrant structures were obtained
as −0.2191 and −0.2673, respectively. These values at the conditions of r/b = 0.25 and
θ = 25◦ were −0.2318 and −0.3419 for the general and lightened re-entrant structures,
respectively (Figure 17 and Figure S10b). Therefore, eliminating strut l3 always increases
the extent of either the positive or negative values of Poisson’s ratio for both the cases of
identical relative densities and r/b ratio.
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Figure 15. Generic geometry of the unit cell with positive (top), zero (middle), and negative (bottom)
values of θ and ϕ for general unit cell (left column) and lightened unit cell (right column): (a) general
re-entrant; (b) lightened re-entrant; (c) general zero Poisson’s ratio; (d) lightened zero Poisson’s ratio;
(e) general convex; and (f) lightened convex unit cells.
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parameters: (a,b) normalized elastic modulus, (c,d) Poisson’s ratio, and (e,f) normalized yield stress.

Figure S13 presents the effect of effective lengths on mechanical properties of both the
general and lightened 3D reentrant structure for a specific value of θ = ϕ = 25◦. According
to this figure, it is clear that the influence of effective length in both structures is similar, and
considering the effective lengths due to overlapping of the struts at the vertices increases
the stiffness and strength of the structure. In addition, the values of Poisson’s ratio of both
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general and lightened structures are decreased due to the higher resistance to deformation
by considering the effective lengths. In general, based on Figure S13, it can be concluded
that the effective length’s influence on the mechanical properties of the lightened structure
as compared to its influence on the general re-entrant unit cell are similar. Additional data
and figures for comparison between the general and lightened re-entrant structures can be
found in Section S.2.3 of the Supplementary Materials (Figures S11–S14).

4. Discussion
4.1. Why Do Timoshenko Relationships Have Better Accuracy?

In this paper, the relationships based on Timoshenko beam theory have been derived
for elastic modulus, Poisson’s ratio, and yield strength of the re-entrant lattice structure.
Based on the presented results in all cases of studies and also in the all relative densities
of structure, the Timoshenko beam theory presents better and more precise results for
mechanical properties of the lattice structure in comparison with the Euler–Bernoulli beam
theory. The main reason for the accuracy of the Timoshenko beam theory is that this theory
takes into account shear deformation and rotational bending effects, making it suitable
for describing the behavior of thick beams. For this reason, the results of the analytical
model based on Euler–Bernoulli theory deviates from numerical results in higher values of
relative densities, while the Timoshenko beam theory results overlap with the numerical
results in all values of relative density. It worth noting that taking into account the shear
deformation effect lowers the flexural stiffness of the struts and hence the stiffness of the
structure, which yields to larger deflections of the struts under a static load. This leads to
higher Poisson’s ratio and lower elastic modulus values for Timoshenko beam theory in
comparison with Euler–Bernoulli beam theory.

4.2. The Most Influencing Parameters on the Structure’s Poisson’s Ratio

In general, angles θ and ϕ are the main design parameters in creating a negative Pois-
son’s ratio effect in the re-entrant structure. According to the results (Figures 12 and 13),
the magnitude of θ determines the sign of Poisson’s ratio (positive or negative). Increasing
θ leads to more negative values of Poisson’s ratio in the unit cell. It is important to note
that even though the value of ϕ has some effects on the amount of Poisson’s ratio, but it
does not have any effects on the sign of Poisson’s ratio. It is worth mentioning that there
exists a specific case (for specific values of θ and ϕ) in the re-entrant structure where the
Poisson’s ratio of structure becomes zero.

Considering the effective length in the analytical calculations decreases the effects of
θ and ϕ, which is a representation of what would be experienced in real-life conditions
(as also confirmed by numerical models based on volumetric elements and experimental
results). More importantly, the effect of variation in ϕ on Poisson’s ratio is almost eliminated
when the effective length is taken into consideration (see Section S.2.2 of Supplementary).

According to stress distribution in the re-entrant structure, struts BD are the most
influential elements in determining the sign and value of the transverse deformation of
the unit cell. Applied load at point A of the unit cell is directly transferred to point B of
strut BD via strut AB and this causes strut BD to have normal tensile stress, as shown in
Figure 18. However, strut CD is under compressive normal stress due to the load applied to
the structure. This makes strut CD demonstrate inverse behavior and counteract regarding
the extent of negative Poisson’s ratio. Therefore, the effect of angle θ on Poisson’s ratio is
much greater than that of ϕ, either effective lengths are considered or not.
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The other parameter effective on the structure’s Poisson’s ratio is relative density—
the higher the relative density, the lower the negative Poisson’s ratio will be. An ideal
model (analytical beam model without consideration of vertex overlapping) has a negative
Poisson’s ratio in all values of relative densities. However, in more realistic models,
and particularly in higher relative densities, (very small) positive Poisson’s ratios can
be observed (Figure 9). This is due to the positive Poisson’s ratio of the bulk material
(PLA), which takes more dominance in the structural deformation of the system in higher
relative densities.

4.3. Differences between General and Lightened 3D Re-Entrant Structures

Based on the normal and bending stress distribution in the struts of the structure
shown in Figure 18, it was predictable that eliminating struts CD from the system could
contribute to an increase in the value of unit cell Poisson’s ratio, even though it would
lead to a decrease in the strength and stiffness of the structure. According to comparison
results presented in Figure 17, the stiffness and strength of the lightened structures resulted
from eliminating struts CD are lower than the general re-entrant structure in the same
values of r/b. However, it must be mentioned that the mechanical properties of the lattice
structures and metamaterials are usually compared with each other at similar relative
densities. Thus, Figures S11−S13 could be a better reference for comparison of the stiffness
and strength of the general and lightened re-entrant unit cells. According to these figures,
we can conclude that at the same relative densities, the lightened structure could be a better
option in comparison with the general structure due to its higher elastic modulus and
yield stress. In addition, the results show that the lightened structure could provide higher
values of negative or positive Poisson’s ratio either in the same relative density or r/b ratio.

All of the above-mentioned comparisons are based on the assumed condition of θ = ϕ
in the general 3D re-entrant structure. Therefore, it should be emphasized that the general
re-entrant structure can present a much wider range of mechanical properties for θ 6= ϕ
as compared to lightened unit cell due to its additional parameters ϕ and l3. Moreover,
with a proper choice of θ and ϕ values, the general structure can present ideal modulated
mechanical properties with the desired combination of mechanical properties (Poisson’s
ratio, elastic modulus, and yield strength). For instance, as it can be seen in Figure 12b,
angle ϕ has a relatively low effect on Poisson’s ratio (θ is the governing parameter here),
while it has a huge effect on elastic modulus and yield strength. Therefore, as compared
to lightened structure, the general re-entrant unit cell has the advantage of giving the
opportunity of designing a structure with a desirable combination of elastic modulus and
Poisson’s ratio.
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4.4. Some Points Regarding Effective Length (Definition, Effect, Discreparancies, etc.)

All the struts in the analytical solution of the structures were considered as beams,
and they were considered to be rigidly connected to each other at the vertices. However, in
practice, when the struts reach each other at the joints, they overlap with each other and, in
fact, the lengths that contribute to the deformation of struts and the structure as a whole
are decreased. Generally, there is no accurate definition for the effective length, and in this
study, the minimum distance between the two sides of struts that are not in the overlapping
regions has been considered as struts’ effective length. This definition has been chosen
based on the stress and strain distribution observations in the struts of the volumetric
numerical models. In other words, the effective lengths have been defined by the regions
of the struts where stress and strain values start to increase abruptly. By considering the
effective length, the analytical results give much better agreement with experimental test
results which can be very helpful in analyzing the structure in real-life conditions.

4.5. Failure of Idealized 3D Re-Entrant Structure

The idealized 3D re-entrant structure could be considered as a bending dominant
lattice structure due to its architecture with several sloped struts. Figure 18 shows the
difference between the levels of normal and bending stress components in the struts during
a compressive loading condition. According to this figure, it is obvious that the bending
stress in both contracted and stretched regions of the struts plays the main role and it has
higher magnitudes than normal stress. Therefore, the failure of the structure occurs in
the struts with the highest bending stress levels (i.e., strut BD), which is also validated
by experimental test results as shown in Figure 10. One would argue that other failure
scenarios such as buckling of the struts could come into play, especially in lower values of
structure’s relative density. The analytical relationship of critical stress for buckling of the
idealized 3D re-entrant structure was derived and presented in Section 2.1.4 (Equation (23)).
By calculating the values of buckling stress (Figure S8), it is found that the level of buckling
stress for the unit cell is several orders of magnitude higher than yield stress (shown in
Figure 9c). Hence, the buckling failure is very unlikely to happen in the idealized 3D
re-entrant structure, especially in the range of relative densities applicable for fabricating
structures by additive manufacturing.

4.6. Limitations and Suggestions

Although the exact analytical solutions based on Euler–Bernoulli and Timoshenko
beam theories presented in this study were capable of providing acceptable results for
mechanical properties of idealized 3D re-entrant unit cells and their corresponding lattice
structure, these relationships are only valid for linear elastic region and small deformations
of unit cells. Some of the applications of lattice and cellular metamaterials need large
deformations and nonlinear behavior of unit cells to present some extraordinary function-
alities [60,61]. For this aim, the material model and the theory for the analytical solution
need to be considered as nonlinear elastic or hyper elastic to obtain accurate and realistic
results. Hence, the nonlinear solution and analytical relationships, which are valid for
nonlinear regions, will be a very valuable step that could be taken for further studies.

For some unit cell types, due to complexity of unit cell shape, asymmetry in the unit
cell, asymmetry in the loading condition, size of the structure (being constructed by a large
number of cells), and nonlinearity in the deformation (post-yielding behavior), it is not
possible to derive analytical solution and/or to perform computational calculations using
FE models with micro-structural topology cost-effectively. In such instances, the Cauchy
continuum technique [62] could be very beneficial because it considers the behavior of
each cell similar to the behavior of continuous materials (without pores). Considering the
lattice structures as a continuous material, of course, will bring in some errors in the results
because it might not consider some microstructural features. Fortunately, we were able to
perform both the analytical and numerical analyses on the more accurate micro-structural
models due to symmetry in the unit cell, its deformation being in the linear elastic range,
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and the possibility of considering the deformation of a unit cell as being representative of
the deformation of a lattice structure.

5. Conclusions

In this paper, a new complex 3D re-entrant structure with negative Poisson’s ratio was
studied and analytical relationships for its elastic mechanical properties (elastic modulus,
yield strength, and Poisson’s ratio) were derived. Two different FE models, one based
on beam elements and the other based on volumetric elements, were implemented for
validating the analytical results. Furthermore, five sets of specimens with different relative
density values were additively manufactured and tested under compressive loading condi-
tions, and the obtained experimental data were used for the analysis of the behavior of the
structure in actual conditions. The results of the analytical models, which were based on
effective length, had good agreement with the volumetric numerical model and experimen-
tal results. The effect of various parameters on the mechanical properties of the structure
was also studied, and the results demonstrated that the angle θ has the highest effect on
the sign of the Poisson’s ratio, while the angle ϕ has the lowest effect on the Poisson’s
ratio. However, the struts corresponding to angle ϕ provide strength and stiffness for the
structure. The results also showed that the structure could have zero Poisson’s ratio for a
specific range of θ and ϕ angles.

In the end, a lightened re-entrant structure was introduced, and its results were
compared to those of the general re-entrant structure with θ = ϕ. The results showed that
at the same relative densities, the lightened structure could be a better option in comparison
with the general structure due to its higher mechanical stiffness and strength. In addition,
the results showed that the lightened structure could provide higher values of negative
or positive Poisson’s ratio. It should be emphasized that the general re-entrant structure
can present a much wider range of mechanical properties for θ 6= ϕ as compared to the
lightened unit cell due to its additional geometrical parameters. With a proper choice of
θ and ϕ values, the general re-entrant structure can present ideal modulated mechanical
properties with the desired combination of mechanical properties (Poisson’s ratio, elastic
modulus, and yield strength). In summary, the general re-entrant unit cell presented in
this research has the advantage of giving the opportunity of designing a structure with a
desirable combination of elastic modulus and Poisson’s ratio.

The wide range of mechanical properties such as Poisson’s ratio and elastic modulus
provided by the idealized 3D re-entrant and lightened structures create valuable possibil-
ities to utilize these structures in lattice meta-implants with more compatible stress and
strain distributions. In addition, unlike many 3D re-entrant unit cells, the idealized 3D
re-entrant unit cell studied here can effectively be used in lattice structures with graded
Poisson’s ratio distribution due to the fact that no strut is shared with adjacent cells. Hence,
the results of this study can be efficiently used in designing and manufacturing meta-
implants with the graded distribution of Poisson’s ratio to enhance the micromotion at the
bone-implant interfaces.

Supplementary Materials: The following are available online at https://www.mdpi.com/1996
-1944/14/4/993/s1, Figure S1: The side view of re-entrant unit cell and its surrounded square,
Figure S2: The symmetry planes of 3D re-entrant unit cell, Figure S3: Applied repetitive boundary
condition to a single reentrant unit cell, Figure S4: SolidWorks CAD models of additive manufac-
tured specimens, Figure S5: 3D-printed specimens in compression test, Figure S6: Deformations
of (a) strut EF, (b) strut CD, (c) strut DG, and (d) strut BD due to q5 = 1, Figure S7: Variation of
relative density with respect to θ and ϕ, Figure S8: Buckling critical stress of general idealized 3D
re-entrant unit cell with and without considering effective length, Figure S9: Mechanical proper-
ties variations of structure with ϕ = 22.5◦ and r/b = 0.14 with respect to θ: (a) elastic modulus,
(b) Poisson’s ratio, and (c) yield stress, Figure S10: Mechanical properties variations of structure with
θ = 22.5◦ and r/b = 0.14 with respect to ϕ: (a) elastic modulus, (b) Poisson’s ratio, and (c) yield
stress., Figure S11: Variation of mechanical properties for general and lightened unit cell with respect
to r/b and θ parameters: (a) normalized elastic modulus, (b) Poisson’s ratio, and (c) normalized yield
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stress, Figure S12: Variation of mechanical properties for general and lightened unit cell with respect
to µ and θ parameters: (a) normalized elastic modulus, (b) Poisson’s ratio, and c) normalized yield
stress, Figure S13: Mechanical properties curves of general and lightened 3D re-entrant structures
with ϕ = 22.5, θ = 22.5: (a) Poisson’s ratio, (b) elastic modulus, and (c) yield stress, Figure S14:
Contour plots of mechanical properties for general (left) and lightened (right) unit cell with respect to
µ and θ parameters: (a,b) normalized elastic modulus, (c,d) Poisson’s ratio, and (e,f) normalized yield
stress, Figure S15: Von Mises equivalent stress (Beam 189 elements), Figure S16: Von Mises equivalent
strain (Beam 189 elements), Figure S17: 1st principal stress (Beam 189 elements), Figure S18: 2nd
principal stress (Beam 189 elements), Figure S19: 3rd principal stress (Beam 189 elements), Figure S20:
1st principal strain (Beam 189 elements), Figure S21: 2nd principal strain (Beam 189 elements), Figure
S22: 3rd principal strain (Beam 189 elements), Figure S23: Normal stress distribution in the beam
elements of models made of BEAM 189 element types, Figure S24: Bending stress distribution in the
beam elements of models made of BEAM 189 element types, Figure S25: Von Mises equivalent stress
for FE models based on solid elements, Figure S26: Von Mises equivalent strain for FE models based
on solid elements. Figure S27: Von Mises equivalent stress for FE models based on solid elements.
The unit cells are cut from the central plane for better visualization.
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