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Simple Summary: Enhancing the concentration of individual fatty acids (FA) in milk has been,
for a long time, a major aim for researchers because certain FAs are linked with several health benefits
in humans as well as improving the processing quality of milk products. It is well documented that
diet, management regime, and extent of biohydrogenation in the rumen are critical in determining
the composition of FA in the milk of dairy cows. This study investigated the effects of including
chicory into the traditional feeding regime of ryegrass/white clover, and time of its allocation on
milk production, rumen fermentation, and FA composition of milk and rumen digesta of dairy
cows. Our findings show that allocation of mature chicory herbage to dairy cows at 50% of their
ration modified rumen fermentation and improved both milk yield and the FA profile of the milk.
Allocating chicory herbage during the afternoon is a useful strategy that can translate to improved
milk production and quality. These findings reflect not just the feasibility of including chicory as part
of a feeding regime, but also the role of chicory in rumen fermentation and biohydrogenation.

Abstract: The goals of the current study were to investigate the effects of including chicory (Cichorium
intybus L.) into the traditional feeding regime of ryegrass/white clover (Lolium perenne L./Trifolium
repens L.), and time of its allocation on milk production, rumen fermentation, and FA composition
of milk and rumen digesta of dairy cows. Nine groups of four cows were allocated one of three
replicated feeding regimes: (1) ryegrass/white clover only (RGWC), (2) ryegrass/white clover +

morning allocation of chicory (CHAM), and (3) ryegrass/white clover + afternoon allocation of
chicory (CHPM). One cow per group had a rumen cannulae fitted. Treatment did not affect total
grazing time or estimated dry matter intake, but cows ruminated more when fed RGWC than chicory.
Allocating chicory in the afternoon elevated milk production compared with RGWC and CHAM.
Milk from cows grazing chicory contained greater concentrations of polyunsaturated FA (PUFA) such
as C18:3 c9, 12, 15 and C18:2 c9, 12 than those on RGWC. As with milk, rumen digesta concentration
of PUFA increased when cows grazed on chicory rather than RGWC, which corresponded with
lower concentrations of intermediate vaccenic and biohydrogenation end-product stearic acid for
cows grazing on chicory. Mean ruminal pH was lower for cows offered chicory than those on
RGWC, reflecting greater rumen concentrations of volatile fatty acids (VFA) for cows fed chicory.
Allocating chicory during the afternoon is a useful strategy that can translate to improved milk
production. The lower rumen pH, lower concentration of vaccenic and stearic acids, and elevated
concentration of PUFA in the rumen of cows fed chicory suggest reduced biohydrogenation and may
explain the elevated concentration of PUFA in the milk of cows fed chicory compared with those
fed RGWC.
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1. Introduction

Enhancing the concentration of individual fatty acids (FA) in milk has been, for a long time,
an important aim for researchers because certain FAs are linked with health benefits in humans [1]
as well as improving the processing quality of milk products. Fifty percent of the FA found in
milk are sourced from the blood and the remaining 50% are synthesized in the mammary gland [2].
Those FA synthesized in the mammary gland tend to be short-chain acids (C4:0 to C14:0) and are
largely influenced by animal genetics [3]. The FA sourced from blood are predominantly of diet or
microbial origin, with lipolysis and the mobilization of body fat accounting for 5% in a well-fed animal
to over 20% of milk FA in early lactation when cows are in a negative energy balance [4,5]. The content
and composition of FA of microbial origin varies markedly, and typically represent the odd-chain and
branched FAs (OBCFA). Researchers have attempted to use these milk FAs to predict volatile fatty acid
(VFA) production in the rumen as a measure of diet effect on rumen function [6].

Milk FA derived from the diet is also variable and represents long chain polyunsaturated
fatty acids (PUFA), which have been linked to several positive human-health related effects [7].
Diet FA, particularly PUFA, are extensively biohydrogenated in the rumen, which reduces their
concentration in milk [8]. Plant factors can influence this process, providing opportunities to
manipulate FA proportions in the rumen and thereby in the milk [9]. For example, diets high
in readily fermentable carbohydrates are known to increase total VFA and reduce pH during ruminal
fermentation, limiting lipolysis, and thus, biohydrogenation [10,11]. Chilliard et al. [1] reported a
35% to 50% decrease in ruminal biohydrogenation of PUFA, such as linoleic (LA; C18:2 c9, 12) and
α-linolenic acid (ALA; C18:3 c9, 12, 15) when concentrates formed more than 70% of the diet, a result
of reduced biohydrogenation at lower rumen pH.

Alternative forages, such as chicory (CH; Cichorium intybus L.) and plantain (Plantago lanceolata L.)
present an opportunity to improve the FA composition of milk whilst meeting environmental and
economic requirements in pastoral livestock systems. Chicory has long been considered a useful
component of the pastoral system in temperate regions [12], providing benefits of improved mineral
nutrition [13,14] and producing a large amount of high-quality summer feed compared to RGWC
when sown as monoculture or in diverse swards [15–17]. Chicory contains more readily fermentable
carbohydrates (non-fibre carbohydrates; NFC) than ryegrass/white clover (Lolium perenne L./Trifolium
repens L.; RGWC) herbage [18], which may increase the concentration of total VFA and lower rumen pH
during ruminal fermentation. In our earlier proof-of-concept research, elevated PUFA were recorded
from late lactation cows fed pasture diets of CH compared with the control RGWC in a grazing
study [19]. Feeding CH, as all or as part of a ration, has also shown milk yield improvements [20,21]
and nitrogen loss reductions [18,22,23] compared to traditional ryegrass pastures.

However, Chapman et al. [20] pointed out the need to consider strategies to integrate alternative
feeds into farm systems. Although our previous research showed that at 100% of the diet, CH could
improve milk FA profile and milk production, it is not feasible to include CH at 100% of pastoral diets
for extended periods. Muir et al. [24], feeding partial mixed ration demonstrated the feasibility of
feeding CH at 50% and increasing milk PUFA. To capture the value of alternative forages as a means
for improving product quality in terms of milk FA, more information is required to understand
the mechanisms leading to increased PUFA from CH diets and associated feeding management.
In a review, Gregorini [25] showed that a small change from the routine allocation of fresh herbage of
one forage species could have positive benefits on animal performance and environmental impact.
Indeed, Abrahamse et al. [26] demonstrated that allocating pasture to dairy cows in the afternoon
compared with the morning altered milk composition and fat yield.

To better understand the rumen fermentation factors influencing milk FA profile of CH herbage
and identify suitable feeding regimes to capture forage derived benefits on milk quality, a grazing
study was conducted comparing rumen fermentation and fatty acid composition of rumen and milk of
mid-lactating dairy cows on CH or conventional RGWC pastures.



Animals 2020, 10, 169 3 of 16

2. Materials and Methods

2.1. Experimental Site and Design

The experiment took place between 10 December 2018 and 27 January 2019 at the Lincoln
University Research Dairy Farm, about 20 km south of Christchurch in Canterbury, New Zealand
(43◦38′ S, 172◦28′ E; 17 m above sea level) with the approval of the Lincoln University Animal Ethics
Committee (AEC #2018-48). The experiment was organized in a completely randomized design with
three replicated feeding regimes: (1) perennial ryegrass/white clover only (RGWC), (2) ryegrass/white
clover + morning allocation of chicory (CHAM) and (3) ryegrass/white clover + afternoon allocation of
chicory (CHPM).

The pastures used in this experiment were second-year CH and sixth-year RGWC. Details of
establishment were given in Mangwe et al. [21]. Briefly, the ryegrass (cv. Arrow AR1; 20 kg/ha) and
white clover (cv. Weka; 3 kg/ha) swards were established in October 2013 while CH (cv. Choice, 5.3 kg
seed/ha) swards were established in November 2017 following cultivation. The soil was classified as
free-draining Templeton fine sandy loam soil (Hewitt 2010) with a soil pH of 6.2 (1: 2.1 v/v soil–water
slurry), Olsen phosphorus of 29.7 mg/L, potassium of 0.9, calcium of 8.2, magnesium of 1.1, and sodium
of 0.2 me/100 g as determined on 29 September 2017 to 75 mm depth. We did not apply any fertilizer
during establishment. For the current research, the experimental area of 10.5 ha consisting of 7 × 1.5 ha
paddocks was prepared three to four weeks prior to the study. To ensure that all plants had accumulated
similar growing degree days during the experiment and to build a feed wedge, a third of each paddock
was rotationally grazed using a group of cows, and mowing after grazing to a uniform height of 4 cm.
Nitrogen fertilizer was applied at 30 kg N/ha as urea immediately after grazing each paddock.

2.2. Animals and Management

The experiment included a 4-week baseline measurement period, where all cows grazed RGWC
plus 15–20% of the diet as CH herbage daily, a 6-day adaptation period in which the relative proportion
of the diet was increased to 50% of the diet, and a 12-day measurement period. Based on results
obtained during the baseline measurement period, 36 mid-lactating Friesian × Jersey dairy cows
on their second to fourth parities were stratified into nine groups of four cows and assigned to one
of the three replicated (n = 3) feeding regimes (RGWC, CHAM, and CHPM). One cow per group
had a rumen cannulae fitted (Bar-Diamond; Parma, Idaho, USA). Cows were stratified according to
(mean ± standard error of the mean; SEM)); milk fat content (5.08 ± 0.25 g/100 g of milk), milk protein
content (3.78 ± 0.06 g/100 g of milk), milk solid yield (MS; 1.82 ± 0.08 kg/cow per d), milk yield
(21.3 ± 0.97 kg/cow per d), days in milk (155 ± 3.3 days), and live body weight (483 ± 13.8 kg).

Both CH and RGWC herbages were grazed in situ using similar herbage allowance.
Target allowance was 34 kg of dry matter (DM) per cow per day above ground level to maintain
baseline milk production. Allocations were based on herbage mass determined every three days by
harvesting to ground level herbage within three 0.25-m2 quadrat cuts per break, and weighing the
washed, dried material. Details of the management regimes during the experiment are summarized
in Figure 1. Briefly, control cows offered RGWC received a fresh allocation (34 kg DM/cow per day
above ground) after 24 h, following the morning milking. Cows offered either of the CH treatments
were allowed to graze CH for five and a half hours before returning to RGWC. The cows on CHAM
received a new allocation of CH herbage (17 kg DM/cow per day) between morning and afternoon
milking (0800 and 1330 h) and a new allocation of RGWC herbage (17 kg DM/cow per day) following
afternoon milking. Cows offered CHPM received a new allocation of RGWC herbage (17 kg DM/cow
per day) between morning and afternoon milking, a new allocation of CH herbage (17 kg DM/cow
day) following afternoon milking (1600–2130 h), after which they went back to their previous RGWC
allocation. Temporary fencing was used to control cows. All cows had free access to fresh water at
all times.
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Figure 1. Management regimes during the experiment. Control cows offered ryegrass only (RGWC), 
received a fresh allocation after 24 h following the morning milking (around 0800 h). Cows on Chicory 
AM received a new allocation of chicory herbage between morning and afternoon milking (0800 h 
and 1330 h) and a new allocation of ryegrass herbage following afternoon milking. Cows offered 
Chicory PM received a new allocation of ryegrass herbage between morning and afternoon milking, 
a new allocation of chicory herbage following afternoon milking (1530 h–2100 h), after which they 
went back to their previous ryegrass allocation. 

2.3. Herbage Measurements  

Representative herbage samples for chemical and botanical composition were harvested to 
ground level from each of the mornings and the afternoons' allocations preceding the cows moving 
into their allocations (0700 h and 1300 h, respectively) on day 6, 8, 11, 16, and 18 of the experiment. 
Samples were transported to the research facilities, homogenized, and sub-sampled for botanical and 
chemical analysis. Each sub-sample was separated into sown species, reproductive, vegetative, weed, 
and dead material. The separated components were dried at 60 °C for at least 48 h. The DM content 
of the homogenized sub-sample was determined by immediately recording fresh weight and dry 
weight after oven drying at 60 °C for 48 h. The remaining homogenized fresh herbage sample was 
freeze-dried and ground to pass a 1-mm sieve (ZM200 Retsch). Organic matter (OM), water-soluble 
carbohydrates (WSC), neutral and acid detergent fibre (NDF, ADF), crude protein (CP), dry matter 
digestibility (DMD), organic matter digestibility (OMD), and digestible organic matter in the dry 
matter (DOMD) from the dried ground samples were estimated using near-infrared 
spectrophotometry (NIRS, Model: FOSS NIRSystems 5000, Maryland, USA). The NIRS calibration for 
WSC [27], crude protein (Variomax CN Analyser, Elementar), NDF [28] and ADF (method 973.18; 
AOAC, 2012), DOMD, and DMD [29] were previously derived from RGWC and CH forages. All R-
squares for predicting the nutrients measured were similar and were above 0.9. All samples were 
well within the calibration range.  

Total dry matter intake (DMI) was estimated on day 6, 9, 11, 16, and 18 of the experiment as the 
sum of CH and RGWC herbage apparent intakes. Apparent intake was estimated using the formula; 
intake (kg DM/cow/day) = (((pre kg DM ha−1 − post kg DM ha−1) ÷ No. cows) × area). Pre-graze and 
post-graze were based on herbage harvested to ground level within three 0.25-m2 quadrats before 
and after grazing respectively. 

2.4. Milk Yield and Composition Measurements  

Milk yield was recorded daily at 0700 and 1400 h with an automated system (DeLaval Alpro 
Herd Management System, DeLaval, Tumba, Sweden). Individual cows’ milk was sampled on days 
6, 8, 11, 16, and 18 of the experiment for further analysis. Milk fat, protein, and lactose contents were 
determined from fresh milk using Milkoscan™ (Foss Electric, Hilleroed, Denmark). Milk samples for 
FA composition were taken from individual cows on day 16 and 18 of the experiment.  

2.5. Grazing Behaviour 

Figure 1. Management regimes during the experiment. Control cows offered ryegrass only (RGWC),
received a fresh allocation after 24 h following the morning milking (around 0800 h). Cows on Chicory
AM received a new allocation of chicory herbage between morning and afternoon milking (0800 h and
1330 h) and a new allocation of ryegrass herbage following afternoon milking. Cows offered Chicory
PM received a new allocation of ryegrass herbage between morning and afternoon milking, a new
allocation of chicory herbage following afternoon milking (1530 h–2100 h), after which they went back
to their previous ryegrass allocation.

2.3. Herbage Measurements

Representative herbage samples for chemical and botanical composition were harvested to ground
level from each of the mornings and the afternoons’ allocations preceding the cows moving into their
allocations (0700 h and 1300 h, respectively) on day 6, 8, 11, 16, and 18 of the experiment. Samples were
transported to the research facilities, homogenized, and sub-sampled for botanical and chemical
analysis. Each sub-sample was separated into sown species, reproductive, vegetative, weed, and dead
material. The separated components were dried at 60 ◦C for at least 48 h. The DM content of the
homogenized sub-sample was determined by immediately recording fresh weight and dry weight after
oven drying at 60 ◦C for 48 h. The remaining homogenized fresh herbage sample was freeze-dried
and ground to pass a 1-mm sieve (ZM200 Retsch). Organic matter (OM), water-soluble carbohydrates
(WSC), neutral and acid detergent fibre (NDF, ADF), crude protein (CP), dry matter digestibility (DMD),
organic matter digestibility (OMD), and digestible organic matter in the dry matter (DOMD) from the
dried ground samples were estimated using near-infrared spectrophotometry (NIRS, Model: FOSS
NIRSystems 5000, Maryland, USA). The NIRS calibration for WSC [27], crude protein (Variomax CN
Analyser, Elementar), NDF [28] and ADF (method 973.18; AOAC, 2012), DOMD, and DMD [29] were
previously derived from RGWC and CH forages. All R-squares for predicting the nutrients measured
were similar and were above 0.9. All samples were well within the calibration range.

Total dry matter intake (DMI) was estimated on day 6, 9, 11, 16, and 18 of the experiment as the
sum of CH and RGWC herbage apparent intakes. Apparent intake was estimated using the formula;
intake (kg DM/cow/day) = (((pre kg DM ha−1

− post kg DM ha−1) ÷ No. cows) × area). Pre-graze and
post-graze were based on herbage harvested to ground level within three 0.25-m2 quadrats before and
after grazing respectively.

2.4. Milk Yield and Composition Measurements

Milk yield was recorded daily at 0700 and 1400 h with an automated system (DeLaval Alpro
Herd Management System, DeLaval, Tumba, Sweden). Individual cows’ milk was sampled on days 6,
8, 11, 16, and 18 of the experiment for further analysis. Milk fat, protein, and lactose contents were
determined from fresh milk using Milkoscan™ (Foss Electric, Hilleroed, Denmark). Milk samples for
FA composition were taken from individual cows on day 16 and 18 of the experiment.
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2.5. Grazing Behaviour

Three cows in each group were fitted with SensOor ear-tags (Agis Ltd, the Netherlands) to
continuously record time spent grazing, ruminating and idling per day.

2.6. Rumen Sampling

Rumen fluid and digesta samples were collected from the nine ruminal cannulated cows at
four-hourly intervals starting from 0400 to 2400 h on day 13 and 15 of the experiment. Rumen digesta
samples were collected by hand, via the rumen cannulae, from the mid and dorsal rumen where
fermentation is most active. Rumen fluid samples for determination of VFA were attained by squeezing
a subsample of the composited rumen digesta through two layers of cheesecloth and stored at −20 ◦C
pending analysis. Volatile fatty acids concentration from rumen fluid samples were determined using
a Gas Chromatograph (GC: Shimadzu GC-2010, Kyoto, Japan) fitted with an SGE BP21 30 m × 530 µm
× 1.0 µm wide-bore capillary column. The remaining rumen digesta sample was mixed, subsampled,
placed in resealable plastic bags and immediately stored at −20 ◦C pending FA analysis. Each of the
nine cows had intra-ruminal smaXtec pH sensors (Smart Farm Data Limited, New Zealand) inserted
before the experiment to continuously measure pH, but software failure resulted in an incomplete
data set. Ruminal pH was therefore measured from thawed rumen fluid samples taken at four-hourly
intervals, using pH probe (HD 2105.2 pH/mv meter; Delta Ohm Inc., Padua, Italy). Samples were kept
chilled during pH measurements.

Rumen digesta, herbage and individual cow milk samples for FA acid were prepared
by transmethylation and analyzed by gas chromatography (with AOC-20i auto-sampler,
Shimadzu GC-2010, Japan), according to AOAC (2012) Method 2012.13 using a Varian CP742 silica
capillary column (0.25 × 100 m × 0.2 µm).

2.7. Statistics and Calculations

For all analyses, we used a mixed-effects model in R. The animal group (paddock) was used
as an experimental unit. For data taken from all cows (milk yield, composition, and FA profile),
treatment (CHAM, CHPM, and RGWC) was included as a fixed effect, while animal nested in sampling
day used as random effect. For data taken at paddock level (herbage composition and intake),
treatment and forage type (CH and RGWC) and their interaction were included as fixed terms while
day used as random effect. To explore diurnal patterns in rumen fermentation parameters and rumen
FA composition, treatment was included as fixed effect, sampling time (0400, 0800, 1200, 1600, 2000,
2400 h) as a repeated measure, while animal nested on sampling day used as random effect. For all data,
means separation was done using the ‘emmeans’ package of R, with Tukey’s method for comparing the
estimates. A significant difference was declared at p < 0.05, while a tendency was declared at p < 0.10.

3. Results

3.1. Herbage Characteristics

In CH pastures, mean CH herbage accounted for an average of 821 ± 21 g/kg of the biomass,
while ryegrass accounted for 612 ± 32 g/kg on a dry weight basis in RGWC pastures. Chicory swards
were at reproductive stage, with the reproductive stem accounting for an average of 394 ± 14 g/kg DM
of the CH herbage. The reproductive stem in ryegrass herbage accounted for 121 ± 5.9 g/kg of DM.
Chicory swards had less than 50 g/kg white clover, while ryegrass swards had 93 ± 8.7 g/kg of DM
white clover. In RGWC swards, dead material accounted for 192 ± 11 g/kg and weed content accounted
for 114 ± 7.8 g/kg of DM. The corresponding proportions of dead material and weed content were less
than 50 and 101 ± 6.6 g/kg of DM, respectively, on CH pastures.

Herbage mass and pre-grazing chemical composition are presented in Table 1. Treatment did
not affect pre- and post-graze mass. However, CH herbage was grazed to a lower residual height
than RGWC herbage (1387 kg/ha DM vs. 1700 kg/ha DM; p < 0.001). Water-soluble carbohydrates,
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ADF, crude fat and digestibility were similar for all treatments, whereas CP, NDF, and NFC differed
between treatments. There was an interaction between herbage type and time of allocation for DM,
NDF, DOMD, and NFC (p < 0.05). Generally, CH herbage had greater NFC, but less DM, OM, CP, NDF,
and ADF contents than RGWC (p < 0.05). Herbage offered in the afternoon had greater concentrations
of DM, NFC, and DOMD than herbage allocated in the morning, regardless of herbage type.

Time of allocation did not affect total diet FA (Table 1; p > 0.05), but CH herbage had a greater
concentration of total FA than RGWC herbage (24.3 vs. 18.4 ± 1.89 mg/g DM). The predominant FAs in
the herbage were LA and ALA, which accounted for 27.1 and 47.9%, respectively in CH and 16.9 and
57.6% in RGWC herbage, respectively.

The reproductive stem in the herbage after grazing doubled, highlighting selection against these
plant components by cows as stem accounted for an average of 703 ± 24 g/kg DM in CH swards
and 225 ± 6.2 g/kg DM in RGWC swards. Post grazed CH herbage had 389, 103, and 635 g/kg,
NDF, CP, and DOMD, while RGWC herbage had 559, 110, and 634 g/kg, NDF, CP, and DOMD,
respectively. The complete chemical composition of post grazing residuals is presented in Table S1.

3.2. Dry Matter Intake and Grazing Behaviour

Feeding regime did not affect apparent DMI (Table 2). On average, CH accounted for 55% and
58% of total DMI for cows offered the CHAM and CHPM, respectively. Total time spent grazing
per day was also unaffected by feeding regime (499 ± 15 min/cow per day; p = 0.167), but cows
offered RGWC spent more time ruminating (446 ± 9.34 min/cow per day) than those offered CHAM
(379 ± 9.69 min/cow per day) or CHPM (359 ± 10.13 min/cow per day; p < 0.0001). Irrespective of
treatment, cows consumed the majority of forage during two major grazing bouts (0900–1300 h and
1600–2000 h; Figure 2). When cows were grazing CH, the intensity (min/h) and duration of their
grazing was greater than on RGWC. Cows offered CHAM grazed more intensely in the morning,
spending nearly 211 vs. 109 and 150 min/5 h between 0900–1300 h compared with CHPM and RGWC,
respectively. Whereas cows offered CHPM grazed more intensely during the afternoon, spending 212
min vs. 140 and 167 between 1600–2000 h compared with CHAM and RGWC, respectively.
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Table 1. Herbage mass, pre-grazing chemical composition and fatty acid (FA) profile of chicory and ryegrass/white clover (RGWC) sampled to ground level.

Herbage Chicory Herbage Ryegrass/White Clover Herbage
SEM 5 p-Value

Treatments CHAM 1 CHPM 1 CHAM 1 CHPM 1 RGWC 1 Treatment Herbage T x H

Pre-graze mass (kg/ha DM) 2985 3150 2958 2960 3277 175 0.375 0.541 0.645
Post-graze mass (kg/ha DM) 1372 1402 1670 1740 1687 83 0.282 <0.001 0.812
Organic matter (g/kg DM) 868 881 922 921 918 5.1 <0.001 <0.001 0.152

Dry matter (g/kg DM) 119 135 220 194 212 5.4 <0.001 <0.001 0.004
Water soluble carbohydrates (g/kg DM) 145 197 233 210 206 7.8 0.196 0.011 0.075

Crude protein (g/kg DM) 146 127 157 153 165 6.4 0.024 0.014 0.293
Neutral detergent fibre (g/kg DM) 296 246 446 473 455 9.4 <0.001 <0.001 <0.001

Acid detergent fibre (g/kg DM) 230 214 263 268 262 4.2 0.1 <0.001 0.191
Dry matter digestibility (g/kg DM) 782 798 743 736 748 5.2 0.373 <0.001 0.281

DOMD 2 (g/kg DM) 710 757 737 706 729 10.4 0.579 0.112 <0.001
Crude fat (g/kg DM) 38.8 41.8 41.8 45.1 42.6 0.8 0.248 0.099 0.942

NFC 3 (g/kg DM) 401 454 277 250 256 11.5 <0.001 <0.001 0.002
Fatty acids (mg/g DM)

C14:0 0.06 0.062 0.10 0.09 0.08 0.01 0.501 <0.001 0.503
C16:0 4.76 4.62 3.51 3.35 3.14 0.3 0.034 <0.001 0.968
C18:0 0.23 0.23 0.32 0.31 0.29 0.02 0.562 <0.001 0.692

C18:1 c9 0.39 0.39 0.39 0.38 0.41 0.03 0.844 0.902 0.921
C18:2 c9,12 6.71 6.48 3.23 3.13 2.99 0.38 <0.001 <0.001 0.864

C18:3 c9,12,15 11.1 12.2 10.9 10.8 10.1 1.25 0.438 0.295 0.395
Saturated FA 5.49 5.34 4.33 4.14 3.91 0.33 0.056 0.002 0.968

Monounsaturated FA 0.53 0.53 0.61 0.58 0.58 0.46 0.86 0.20 0.81
Polyunsaturated FA 18.8 17.7 14 14.1 13.1 1.56 0.137 0.005 0.471

Others 4 0.65 0.62 0.66 0.64 0.610 0.03 0.530 0.705 0.869
Total FA 24.9 23.6 19 18.8 17.5 1.89 0.122 0.005 0.561

1 RGWC = perennial ryegrass/white clover only; CHAM = ryegrass/white clover + morning allocation of chicory; CHPM = ryegrass/white clover + afternoon allocation of chicory. 2 DOMD
= Digestibility of the organic matter in the dry matter. 3 NFC = Non-fibre carbohydrates (1000- (NDF + CP + Fat + Ash)). 4 Others = C15:0; C16:1 c9; C17:0; C18:1 c11; C20:0; C20:2 c11,14;
C20:3 c11,14,17; C22:0; C23:0; C24:0. 5 SEM = standard error of the mean.
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Table 2. Estimated dry matter intake (DMI; kg/cow per day of DM), milk yield and milk composition
from cows fed grazing CHAM, CHPM, and RGWC.

Item CHAM 1 CHPM 1 RGWC 1 SEM 2 p-Value

Chicory intake 9.00 9.31 - 0.57 0.578
Ryegrass intake 7.34b 6.81b 16.6a 0.23 <0.0001

Total DMI 16.3 16.1 16.6 0.25 0.122
Milk yield (kg/cow per day) 21.0ab 22.0a 19.9b 0.43 <0.0001

Milk solids (kg/day) 1.84b 1.96a 1.71c 0.03 <0.0001
Fat (g/100 g of milk) 4.95 5.14 4.92 0.10 0.051

Protein (g/100 g of milk) 3.85a 3.75b 3.71b 0.03 0.002
Lactose (g/100 g of milk) 5.06 5.05 5.07 0.02 0.662

Protein: Fat 0.79a 0.74b 0.76b 0.01 0.004
Fat yield (kg/day) 1.04b 1.13a 0.97b 0.02 <0.0001

Protein yield (kg/day) 0.82a 0.83a 0.74b 0.02 <0.0001
Lactose yield (kg/day) 1.06ab 1.11a 1.01b 0.02 <0.0001

a–c Means within a row with different letters differ (p < 0.05). 1 RGWC = perennial ryegrass/white clover only;
1 CHAM = ryegrass/white clover + morning allocation of chicory; CHPM = ryegrass/white clover + afternoon
allocation of chicory. 2 SEM = standard error of the mean.Animals 2020, 9, x 1 of 17 
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Figure 2. Diurnal variation of time spent grazing and time spent ruminating (min/h). Solid lines
denote CHAM (ryegrass/white clover + morning allocation of chicory), short dashed line denotes
CHPM (ryegrass/white clover + afternoon allocation of chicory), and long dashed line denote RGWC
(perennial ryegrass/white clover only). Shaded areas represent AM and PM milking events. Error bars
are standard error of the mean. Abbreviation; CH, chicory.

3.3. Milk Production and Composition

When compared with RGWC, including CH increased milk production (Table 2). Although CHPM
and CHAM had similar milk yield, elevated milk fat percent (p = 0.051) and milk fat yield for CHPM
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resulted in greater milk solids than CHAM. Milk protein percent was increased in cows offered the
CHAM compared with those offered the CHPM or RGWC.

Cows on CHAM and CHPM feeding regimes had milk with similar concentrations of LA and
ALA, but greater than the RGWC (Table 3). Cows on RGWC increased vaccenic acid (VA; C18:1 t11)
compared with the CHAM or CHPM regimes. Conjugated linoleic acid (c9, t11 C18:2; CLA) was similar
for cows on CHAM and RGWC, but tended to be greater for those on RGWC than those on CHPM
(p = 0.05). Odd and branched-chain FA such as isoC15:0, anteisoC15:0, C17:0, and isoC17:0 were greater
in cows fed RGWC than those fed CH. The sum of saturated fatty acids was not affected by feeding
regime (p = 0.60), but CH inclusion increased the concentration of PUFA in the milk, regardless of the
time of allocation (p < 0.0001).

Table 3. Milk fatty acid (FA) composition (g/100 g of FA) from cows fed CHAM 1, CHPM 1, and
RGWC 1.

Item CHAM CHPM RGWC SEM 4 p-Value

C4:0:C12:0 17.2 15.8 15.5 0.44 0.406
C14:0 11.5 11.1 11.0 0.3 0.131

C14:0iso 0.09b 0.10b 0.11a 0.004 0.003
C15:0iso 0.28b 0.27b 0.32a 0.007 <0.0001

C15:0 1.19 1.15 1.17 0.025 0.368
C15:0anteiso 0.56 0.56 0.62 0.053 0.589

C16:0 31.9 32.8 32.8 0.67 0.369
C16:0iso 0.23 0.23 0.24 0.007 0.512

C17:0 0.55b 0.55b 0.59a 0.026 0.02
C17:0iso 0.43b 0.44b 0.49a 0.036 0.008

C17:0anteiso 0.56 0.55 0.54 0.014 0.611
C18:0 11.2 11.7 12.3 0.5 0.723

C18:1t11 2.49b 2.43b 3.02a 0.333 0.007
C18.1c9 16.4 17.1 16.7 0.563 0.553

C18:2 c9,12 1.16a 1.21a 0.90b 0.059 <0.0001
C18:3 c9,12,15 1.12a 1.18a 0.94b 0.04 <0.0001

c9 t11 CLA 0.94 0.87 1.10 0.068 0.059
C20:0 0.12 0.11 0.26 0.005 0.0007
C22:0 0.08 0.08 0.08 0.008 0.945

C20:5 c5,8,11,14,17 0.11a 0.10b 0.10b 0.003 0.033
C22:5 c7,10,13,16,19 0.12 0.12 0.11 0.004 0.619

Saturated FA 73.4 72.2 72.4 0.581 0.954
Monounsaturated FA 22.2 23.5 23.7 0.588 0.6
Polyunsaturated FA 4.28a 4.38a 3.9b 0.074 <0.0001

de novo 2 25.9 24.9 24.7 0.69 0.051
Omega-3 1.35a 1.39a 1.15b 0.042 <0.0001
Omega-6 1.16a 1.21a 0.90b 0.059 <0.0001

Trans 3.74ab 3.51b 4.11a 0.16 0.025
Others 3 6.01 6.2 5.3 0.89 0.114

a,b Means within a row with different letters differ (p < 0.05). 1 RGWC = perennial ryegrass/white clover only;
CHAM = ryegrass/white clover + morning allocation of chicory; CHPM = ryegrass/white clover + afternoon
allocation of chicory. 2 de novo includes fatty acids with <16 carbon atoms. 3 Others include C14:1c9, C16.1t9,
C16.1c7, C16.1c9, C18.1c6, C18.1c11, C18.1c12, C18.1c15, C18.1t9, C18.1t10, C18.2t9c12, C18.2c9t13, C20.1c8. 4 SEM =
standard error of the mean.

3.4. Rumen Fermentation Parameters

Major VFAs (acetic, propionic and butyric acid) accounted for nearly 97% of total VFA.
The four-hourly diurnal variations in the individual VFAs demonstrate the time× treatment interaction
and reflect the variation in feeding patterns of the different regimes (Figure 3). However, on average
cows offered CH (CHAM and CHPM) had greater total concentrations of VFA than animals grazing
RGWC (140 vs. 128 ± 4.3 mmol/L; p < 0.0001).
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Figure 3. Diurnal variation of rumen fermentation parameters. Solid lines denote CHAM
(ryegrass/white clover + morning allocation of chicory), short dashed line denotes CHPM (ryegrass/white
clover + afternoon allocation of chicory), and long dashed line denote RGWC (perennial ryegrass/white
clover only). BC-VFA (branched chain-volatile fatty acids; iso-valerate + iso-butyrate). Error bars are
standard error of the mean (n = 3).

Fluctuations in VFA profiles corresponded with changes in rumen pH (Figure 3). For all feeding
regimes, ruminal pH was highest (pH = 7.1 ± 0.17) at the end of the allocation period between 0400
and 0800 h. Rumen samples taken at 1200 h, four hours after the morning allocation of fresh herbage,
indicated significant reductions in pH of all treatments. However, pH was more reduced for cows on
CHAM (pH = 5.72 ± 0.15), intermediate for cows on CHPM (pH = 6.11 ± 0.17) and least affected for
cows on RGWC (pH = 6.53 ± 0.15). The complete VFA concentration in ruminal contents in cannulated
cows is presented in Table S2.
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3.5. Rumen Long-Chain FA Composition

The mean concentration of LA in the rumen was 6.99, 7.71, and 6.08± 0.45 g/100 g of total FA, while
that of ALA was 7.61, 7.76, and 6.11 ± 1.1 g/100 g of total FA for cows on CHAM, CHPM, and RGWC
feeding regimes, respectively. Diurnal patterns of selected rumen FA are depicted in Figure 4. There
was a significant feeding regime × sampling time interaction for LA, ALA, VA, and stearic acid (C18:0).
Rumen LA and ALA concentrations were 34% and 56% greater for cows on CHAM than cows on
RGWC or CHPM at 1200 h. Cows on CHPM had 90% greater rumen ALA at 2000 h compared with cows
on RGWC or CHAM. The increase in these plants derived PUFA corresponded with a sharp decline in
biohydrogenation intermediate VA and biohydrogenation end-product stearic acid. The complete list
of rumen FA is presented in Tables S3 and S4.
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4. Discussion 

Figure 4. Diurnal variation of rumen fatty acids (g/100 g of total FA). Solid lines denote CHAM
(ryegrass/white clover + morning allocation of chicory), short dashed line denotes CHPM (ryegrass/white
clover + afternoon allocation of chicory), and long dashed line denote RGWC (perennial ryegrass/white
clover only). Error bars are standard error of the mean (n = 3).
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4. Discussion

This is the second study in a series of experiments investigating the effect of high moisture
forages on the production and quality of milk and associated environmental impacts in pastoral dairy
systems. Our first proof-of-concept study showed that under pastoral grazing feeding high moisture,
herb diets altered milk FA composition without affecting production [19]. The results of the present
study confirm the positive effect of feeding CH on PUFA and demonstrate that producers can influence
FA composition through changes in feeding regimes.

4.1. Milk Production and Rumen Fermentation

It is interesting that feeding reproductive CH at 55–58% of the diet of mid lactating dairy cows
increased milk production compared to the control-feeding regime, a result similar to previous findings
when CH was fed while vegetative [19,20]. Muir et al. [30], on the other hand, did not observe any
differences in milk production between the control ryegrass and reproductive CH at 50% of the diet in
summer. In their experiment, Muir et al. [30] attributed the lack of milk production response of cows
fed CH compared with RGWC on the stem material, which influenced DM, NDF, and metabolizable
energy; and therefore, intake and milk production responses. Farmers may need to consider refusal
of stems in feed allocation of second year chicory to avoid underfeeding. In the current experiment,
total DMI did not differ between treatments, suggesting that the differences in milk response observed
are explained by other factors such as grazing behavior, forage utilization, and/or nutritive value of
the forages.

Cows increased their grazing intensity during the CH feeding periods (Figure 2). Chicory herbage
consisted of 39% reproductive stem before grazing and 70% of reproductive stem after grazing,
suggesting that the cows selected leaf over stem material. Clark et al. [31] reported enhanced animal
performance at high leaf allowances from reproductive CH swards, a result similar to our experiment.
The ratio of non-structural to structural carbohydrates was also greater for CH compared to RGWC
herbage, which might have improved energy supply. Ruminants get nearly 70–80% of their energy
supply from VFAs [32]. The mean concentration of total VFA was 10% greater for cows on CHAM and
CHPM than those on RGWC were, which likely explains their increased milk production.

When comparing the two CH treatments, afternoon allocation of CH increased milk solid yield by
7.6% compared with the morning allocation. This reflects the greater fat percent (p = 0.051) and daily fat
yield (p < 0.001) from cows offered CH in the afternoon than those offered CH in the morning and can be
explained by the increased proportion of branched chain-VFA (iso-butyrate + iso-valerate) in the rumen
of CHPM cows than CHAM cows (Figure 3). Increased proportion of branched chain-VFA in the rumen
is associated with improved milk FA composition and milk yield in dairy cows [33]. Although studies
have looked into the timing of fresh herbage allocation and its effect on milk production [26,34,35],
this is the first experiment to demonstrate the impact of timing of allocation of two different forage
species on milk FA composition. The findings from the current study suggest that cows are more
responsive to timing of allocation of herbage of some species (CH) more than others (RGWC) on milk
yield and milk composition.

Another interesting observation arose from the evident synchrony between grazing behavior
and rumen fermentation. Rumen VFAs, especially acetate and propionate, increased during peak
grazing periods, with greater concentrations occurring when cows grazed CH than RGWC (Figure 3).
The increase in the concentration of total VFA in rumen corresponded with declines in rumen pH in all
treatment cows. pH values less than 5.8 are regarded as harmful to ruminal cellulolytic bacteria [36],
whereas pH less than 5.5 is said to be detrimental to the ruminal epithelium and VFA absorption in
cows fed a high-concentrate diet [37]. Cows fed RGWC were able to maintain their rumen pH above
5.8 likely because they ruminated more. Rumination increases saliva production rate and increases the
supply of bicarbonate to the rumen to enhance total ruminal buffering capacity [38]. Although ruminal
pH was below 5.8 in cows offered CH between 1200 h and 2000 h in the current experiment, they were
within a normal range of 5.6 to 6.4 previously reported in a review of 23 studies for dairy cows fed
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high-quality herbage [11]. High-quality herbages are highly digestible and their ruminal fermentation
is associated with increased VFA, but low lactic acid [39]. Since VFAs provide most of the energy
requirement of ruminants, it is not surprising that cows fed high-quality herbage diets produce more
milk even at lower pH values [38].

4.2. Milk and Rumen Digesta FA Composition

Our results confirm that, regardless of time of allocation, feeding CH at up to half the ration
increases concentrations of beneficial FA; LA and ALA, in the milk of dairy cows compared
with the traditional feeding regime of RGWC [19,24,30]. The increase in the concentration of
these is particularly important given their human health benefits. Alpha linolenic acid for
example, has demonstrated potential to exert neuroprotective, anti-inflammatory, and antidepressant
properties [40,41]. de Goede [42] recently reported that increased ALA intake lowered the risk of stroke.
In the body, ALA is converted to eicosapentaenoic acid, a FA that is known for its cardio-protective
and other human health benefits [43]. The concentration of these LA and ALA in milk mainly depends
on their concentration in the diet and intake, level of biohydrogenation in the rumen, and amount
absorbed in the duodenum [44]. The higher concentration of LA in CH diets, compared with RGWC,
is likely to explain its elevated concentration in the milk, though other mechanisms are also likely to be
involved in the increased milk ALA concentrations, as concentrations in herbage were not different to
the control. Mean concentrations of LA and ALA were 21% and 26% greater in the rumen digesta of
cows grazing CH than those on RGWC, respectively, with peak concentrations occurring four hours
after allocation of CH herbage (Figure 4). The greater concentration of LA and ALA in rumen digesta
of cows grazing CH corresponded with lower concentration of VA and stearic acid. This suggests
that the level of biohydrogenation was reduced when cows grazed CH, which increased their rumen
outflow and subsequently their inter alia availability in the mammary gland, a similar premise shared
by Szczechowiak et al. [45] in milk of cows, fed condensed tannins and fish-soybean oil blend mixture.

There are two plausible explanations for the decreased biohydrogenation when cows grazed CH,
with the first being due to lower pH. Lower ruminal pH is known to inhibit the activity of lipase thus
limiting lipolysis [46]. Given that lipolysis is a prerequisite for ruminal biohydrogenation, it is not
surprising that more PUFA were recovered in milk of cows grazing CH. The other likely reason could
be a faster rumen passage rate as a result of reductions in microbial contact with dietary FA [44,47].
This premise is supported by the decreased concentration of odd and branched-chain FA in the rumen
(Figure 4) and milk (Table 3) of cows grazing CH-based diets, as their lower concentrations in the
rumen and milk of cows on CH indicate reduced microbial colonization of CH than RGWC herbage.

Milk from cows on RGWC had greater concentrations of VA (22% higher; p = 0.007) than cows on
CHAM or CHPM (Table 2). Similarly, the RGWC regime elevated the concentration of CLA by 17%
(p = 0.24) and 26% (p = 0.059) compared to cows on CHAM and CHPM feeding regimes, respectively.
About 70% to 90% of CLA in the milk of cows originates from the oxidation of the precursor VA in
the mammary gland and other tissues by enzyme ∆9 desaturase [48], hence, the strong relationship
between the VA and CLA in cow milk. The concentration of VA was 2.6, 2.79, and 2.75 times that of
CLA for cows grazing CHAM, CHPM, and RGWC, respectively in the current study, which is a little
greater than the 2 to 2.5 reported by Elgersma and Tamminga [49].

5. Conclusions

Allocation of mature CH herbage to dairy cows at 50% of their ration improved both milk yield
and the FA profile of the milk. Furthermore, offering CH in the afternoon compared with that in
the morning increased the milk concentration and yield of desirable polyunsaturated fatty acids.
Changes in milk yield were associated with increased utilization of high-quality leaf components
of CH herbage compared with RGWC herbage. While changes in milk FA composition related to
CH feeding, appear to be linked to reduced biohydrogenation of dietary FA, at lower rumen pH,
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which subsequently increased their concentration in milk of cows fed CH. Allocating CH herbage
during the afternoon is a useful strategy that can translate to improved milk production and quality.

Supplementary Materials: The following are available online at http://www.mdpi.com/2076-2615/10/1/169/s1.
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