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Background: Small cell lung cancer (SCLC) is an aggressive malignancy characterized
by initial chemosensitivity followed by resistance and rapid progression. Presently, there
are no predictive biomarkers that can accurately guide the use of systemic therapy in
SCLC patients. This study explores the role of radiomic features from both within and
around the tumor lesion on pretreatment CT scans to a) prognosticate overall survival (OS)
and b) predict response to chemotherapy.

Methods: One hundred fifty-three SCLC patients who had received chemotherapy were
included. Lung tumors were contoured by an expert reader. The patients were divided
randomly into approximately equally sized training (Str = 77) and test sets (Ste = 76).
Textural descriptors were extracted from the nodule (intratumoral) and parenchymal
regions surrounding the nodule (peritumoral). The clinical endpoints of this study were
OS, progression-free survival (PFS), and best objective response to chemotherapy.
Patients with complete or partial response were defined as “responders,” and those
with stable or progression of disease were defined as “non-responders.” The radiomic risk
score (RRS) was generated by using the least absolute shrinkage and selection operator
(LASSO) with the Cox regression model. Patients were classified into the high-risk or low-
risk groups based on the median of RRS. Association of the radiomic signature with OS
was evaluated on Str and then tested on Ste. The features identified by LASSO were then
used to train a linear discriminant analysis (LDA) classifier (MRad) to predict response to
chemotherapy. A prognostic nomogram (NRad+Clin) was also developed on Str by
combining clinical and prognostic radiomic features and validated on Ste. The Kaplan–
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Meier survival analysis and log-rank statistical tests were performed to assess the
discriminative ability of the features. The discrimination performance of the NRad+Clin

was assessed by Harrell’s C-index. To estimate the clinical utility of the nomogram,
decision curve analysis (DCA) was performed by calculating the net benefits for a range of
threshold probabilities in predicting which high-risk patients should receive more
aggressive treatment as compared with the low-risk patients.

Results: A univariable Cox regression analysis indicated that RRS was significantly
associated with OS in Str (HR: 1.53; 95% CI, [1.1–2.2; p = 0.021]; C-index = 0.72) and
Ste (HR: 1.4, [1.1–1.82], p = 0.0127; C-index = 0.69). The RRS was also significantly
associated with PFS in Str (HR: 1.89, [1.4–4.61], p = 0.047; C-index = 0.7) and Ste (HR:
1.641, [1.1–2.77], p = 0.04; C-index = 0.67). MRad was able to predict response to
chemotherapy with an area under the receiver operating characteristic curve (AUC) of 0.76 ±
0.03 within Str and 0.72 within Ste. Predictors, including the RRS, gender, age, stage, and
smoking status, were used in the prognostic nomogram. The discrimination ability of the
NRad+Clin model on Str and Ste was C-index [95% CI]: 0.68 [0.66–0.71] and 0.67 [0.63–0.69],
respectively. DCA indicated that the NRad+Clin model was clinically useful.

Conclusions: Radiomic features extracted within and around the lung tumor on CT images
were both prognostic of OS and predictive of response to chemotherapy in SCLC patients.
Keywords: radiomics, computed tomography, small cell lung cancer (SCLC), chemotherapy, overall survival,
progression-free survival
1 INTRODUCTION

Lung cancer remains the leading cause of cancer-related
mortality worldwide. Traditionally, primary lung cancers have
been divided into non-small cell lung cancer (NSCLC) and small
cell lung cancer (SCLC), with majority of them (85%) being of
the NSCLC subtype (1). SCLC is an aggressive neuroendocrine
(NE) malignancy that accounts for 13% to 15% of all lung
cancers and is strongly associated with smoking. Besides
Tumor-Node-Metastasis (TNM) staging, SCLC can be
classified into limited-stage disease (LS-SCLC—tumor confined
to single radiation port with or without loco-regional
adenopathy) and extensive-stage disease (ES-SCLC—tumor not
confined to single radiation port) (2). This two-stage system has
therapeutic and prognostic implications with 5-year relative
survival rates of 31% for LS-SCLC and 2% for ES-SCLC (3).

The current treatment modalities for SCLC include systemic
chemotherapy, immunotherapy, thoracic radiation, and
prophylactic cranial irradiation, depending on the tumor stage.
While SCLC is very responsive to initial treatment, most patients
develop early resistance to conventional therapies, show rapid
progression, and relapse with decreased sensitivity to further
pharmacological treatment (4, 5); and fewer than 10% patients
enjoy long-term survival (6–8). There has been little
improvement in outcome over the past few decades with the
addition of immunotherapy to chemotherapy in an unselected
patient population, and thus, platinum-based chemotherapy
remains the mainstay of systemic treatment (9). While younger
age, good performance status (PS), normal creatinine level, and
2

normal lactate dehydrogenase (LDH) are favorable prognostic
factors (10), there are no reliable predictive biomarkers that can
identify SCLC patients who will benefit from cytotoxic
chemotherapy or patients at a high risk of relapse, although
recently it has been shown that patients with wild-type
retinoblastoma gene are chemotherapy-refractory (11).

CT is a routinely used clinical diagnostic tool for tumor
staging and monitoring treatment response. The common
presentation of SCLC on a CT scan is a centrally located large
parenchymal mass or a mediastinal mass involving at least one
hilum. In recent years, computational imaging approaches such
as “radiomics” (12) can provide a more detailed feature-based
characterization of the disease than possible by visual
examination. Radiomics-based biomarkers have been shown to
be prognostically useful in different types of therapies for various
cancers, including NSCLC (13–16). However, there are no data
regarding the role of radiomics in predicting response to
chemotherapy or prognosticating outcome for SCLC.

In this study, we sought to identify chemotherapy response as
well as prognostic biomarkers for overall survival (OS) and
progression-free survival (PFS) in SCLC patients treated with
chemotherapy by interrogating the tumor and tumor
microenvironment on CT imaging. We hypothesize that
quantitative subvisual phenotypic differences in SCLC tumors
on CT imaging can be characterized non-invasively to develop
predictive and prognostic biomarker signatures to improve
decision support in SCLC treatment. With the use of a cohort
of 153 patients with SCLC, 77 were used for training the classifier
and constructing a radiomic risk score (RRS), whereas the
October 2021 | Volume 11 | Article 744724
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remaining 76 were used for the test set. The choice of an equal
split of training and test sets has been employed in previous
approaches involving radiomics (14, 15, 17). In addition, a novel
prognostic nomogram was constructed by integrating RRS
and clinical biomarkers, and its performance for predicting
high-risk patients was evaluated by the decision curve analysis
(DCA) model.
2 MATERIALS AND METHODS

2.1 Datasets and Patient Selection
This study was conducted in full accordance with the Health
Insurance Portability and Accountability Act (HIPAA)
regulations after approval from the Institutional Review Board
(IRB) at Case Western Reserve University (Cleveland, OH), and
the IRB waived the requirements for informed consent of all
patients because of the retrospective, non-interventional, and
non-therapeutic nature of this study. A total of 305 consecutive
patients with LS-SCLC or ES-SCLC treated with platinum-based
chemotherapy from April 2004 to March 2018 in University
Hospitals Cleveland Medical Center (UHCMC) were identified.
All patients that met the following criteria were included: a)
availability of pathological confirmation of SCLC, b) presence of
diagnostic thoracic CT scan in axial view, and c) presence of a
solitary pulmonary nodule/mass. To this cohort of 180 patients,
the exclusion criteria were applied to remove scans with CT
artifacts and poor image quality not suitable for feature
extraction. The final cohort had 153 patients. The training set
imbalance has been discussed extensively as an issue in training
machine classifiers. To reduce the possible impact of imbalanced
data on the machine classifier, the patients were randomly
divided into an equal number for training set (Str) that
Frontiers in Oncology | www.frontiersin.org 3
consisted of 77 patients (age: 39–87 years) and a test set (Ste)
of 76 patients (age: 47–90 years). Patient selection and overall
experimental design for this study are shown in Figure 1.

The non-contrast CT scan images were acquired from all
participants at baseline before initiation of chemotherapy from
Siemens, GE Medical Systems, Philips, or Toshiba machine
utilizing a tube voltage of 100 to 120 kVp. The median time
between cancer diagnosis and CT scan acquisition was 10.4 days,
and that between diagnosis and first-line therapy was 33.5 days
(range: 2–220 days). The dataset also had images acquired from
multiple reconstruction kernels. It is known that the different slice
thickness and reconstruction kernels of the CT image acquisition
affect radiomic feature expression and measurements (18).
Therefore, precaution was taken to sample cases from both Str

and Ste. The slice thickness ranged from 1 to 5 mm (mean = 2.82
mm, SD = 0.71 mm), and the pixel sizes ranged from 0.42 × 0.42
mm to 0.97 × 0.97 mm with an average size of 0.73 × 0.73 mm.
Table 1 shows CT acquisition parameters involving all scanner
types, slice thicknesses, kVp, and reconstruction kernels for both
the training and test sets.

2.2 Clinical Endpoints
The primary endpoints of this study were response to
chemotherapy, OS, and PFS. The OS was measured from the
date of diagnosis to the date of death and censored at the date of
last follow-up for survivors. PFS was defined as the length of time
during the treatment that a patient survives with cancer but
without evidence of disease progression or death, whichever
occurred earlier. The objective response to chemotherapy was
evaluated based on RECIST 1.1. The target lesions were
evaluated to assess response, and the following definitions were
used: complete response (CR), i.e., the disappearance of all the
lesions; partial response (PR), i.e., ≥30% decrease in the sum of
FIGURE 1 | Patient selection and overall experimental design for this study.
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the longest diameters of target lesions compared with baseline;
progressive disease (PD), i.e., at least 20% increase in the sum of
the longest diameters of target lesions with an absolute increase
of ≥5 mm; and stable disease (SD), i.e., neither PR nor PD (19).
For our study, patients with CR or PR were classified as
“responders,” and those with SD or PD were classified as
“non-responders.”
2.3 Tumor Segmentation
The tumor was identified by a two-board-certified cardiothoracic
radiologist (PR) with 20 years of experience and Reader 2 (VV, a
physician with 2 years of experience in cardiothoracic radiology
research), blinded to each other; and the region of interest (ROI)
was manually segmented across all the 2D CT slices of the nodule
via a hand-annotation tool in axial view on 3D-Slicer software.
Frontiers in Oncology | www.frontiersin.org
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The radiologist was blinded to clinical data and given the option
to vary the window and level setting within the software to
efficiently annotate the nodule. The segmented nodules were
used to extract the intratumoral texture and shape features.
The intratumoral mask was then dilated out to a 20-mm
peritumoral radius. The definition of the extent of the
peritumoral zone was based on a previous publication (20),
which showed that patients with SCLC exhibit a tendency to
develop peritumoral edema to a region of 20-mm extent around
the tumor. Peritumoral masks were inspected manually and
adjusted to include only lung tissue when masks extended into
chest wall soft tissues.

2.4 Radiomic Feature Extraction
For a given tumor, 2D manual segmentations were assessed in a
slice-by-slice basis to pick all representative slices that had the
tumor. Since there was an unequal slice spacing (ranging from 1
to 5 mm), 2D radiomic analysis provides for a more consistent
approach as compared with 3D analysis, which in turn would
have been impacted by the non-uniform z-axis slice spacing.
From these slices, 2D texture features were extracted from the
intratumoral and peritumoral regions on a per-pixel basis.
Within the intratumoral and peritumoral regions, a total of 99
2D radiomic texture descriptors were extracted. These
descriptors consisted of features that were selected to capture
textural structure of intra- and peritumoral regions. In this study,
we extracted 13 Haralick features from gray-level co-occurrence
matrix (GLCM) that can extract textural pattern and show
variation in tumor microarchitecture, heterogeneity, and local
appearance of nodules. In addition, we extracted 25 Laws, 25
Laws–Laplacian, and 48 Gabor features from intra- and
peritumoral regions. Laws and Laws–Laplacian are filter-based
descriptors that capture combinations of five textural patterns,
such as levels (L), edges (E), spots (S), waves (W), and/or ripples
(R). The Gabor filter bank was used to capture texture responses
at six different spatial frequencies (f = 0, 2, 4, 8, 16, or 32) within
the image at eight directional orientations (q = 0, p/8, p/4, 3p/8,
p/2, 5p/8, 3p/4, and 7p/8). A total of 24 shape features were also
automatically extracted from the annotated nodules and
investigated in the study. Shape features are used to describe
the 3D geometrical composition of the segmented nodule
structure including size (volume and diameter) and shape
measures (sphericity, compactness, and radial distance). First-
order statistics (mean, median, standard deviation, skewness,
and kurtosis) for each descriptor were computed within the
tumor and peritumoral region, resulting in 495 statistical features
per region. Each feature was normalized to a mean of zero and
standard deviation of 1 across patients before feature selection.
All shape and texture features were extracted using an in-house
software that was developed on MATLAB 2018 platform
(MathWorks Inc., Natick, MA), an approach very similar to
implementations of radiomic features like CERR and
PyRadiomics (21, 22). To mitigate the effect of different
acquisition parameters, only features that were stable in the
context of the test–retest RIDER lung CT dataset (23) were
selected for more analysis.
TABLE 1 | CT image acquisition parameter distribution over the training set and
test set.

Training set Test set

Patients 77 76
Scanner
GE 6 4
Siemens 43 45
Philips 23 21
Toshiba 5 6

Thickness
1 1 2
1.5 2 0
2 10 12
2.5 0 2
3 10 11
3.2 2 0
5 42 49

Kernel
GE Med
Standard 6 4

Siemens
B20f 1 2
B30f 0 0
B35f 5 7
B35s 0 0
B40f 13 10
B41f 0 0
B50f 10 7
B60f 3 1
B70f 14 18

Philips
A 0 0
B 0 0
C 11 8
D 12 13
E 0 0
L 0 0

Toshiba
FC02 0 0
FC08 5 6
FC10 0 0

kVp
100 34 31
110 23 27
120 20 18
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2.5 Statistical Analysis
2.5.1 Feature Selection
To avoid overfitting due to high complexity of features, least
absolute shrinkage and selection operator (LASSO) Cox
regression model was used to identify the most prognostic
features to OS from highly stable features in Str. LASSO
iteratively shrinks the feature coefficient estimates toward zero
and involves identification of an optimal tuning parameter
lambda (l) via a 100 cross-validation setup. The process that is
only run on the training set allows for identification of only those
features with non-zero coefficients.

2.5.2 Radiomic Risk Score Generation
The RRS signature was built based on linear combination of non-
zero coefficients-selected features. The association of the RRS
with OS was first assessed in Str and then validated in Ste by using
the Kaplan–Meier survival analysis. According to the rad-score
threshold identified by the median of RRS, patients were
classified into the high-risk or low-risk categories.

2.5.3 Prognostic Analysis
OS and PFS for univariate analysis were estimated by the
Kaplan–Meier method. The multivariable survival analysis with
RRS and clinicopathologic biomarker was also employed. A
DCA was also used to determine the clinical utility of the RRS
in predicting OS by evaluating the net benefit of high-risk
patients receiving treatment at different threshold probabilities
(24). Net benefit was defined as the summation of benefits minus
loss results (false-positive findings) weighted by a factor related
to the relative harm of not identifying a high-risk patient who
might have low OS versus the relative harm of subjecting a lower-
risk patient to more aggressive therapy, when the more intense
therapy was not needed.

In addition, a nomogram (NRad+Clin) was constructed as an
individualized OS prediction model in Str. Predictors, including
the RRS and clinical parameters like gender, age, stage, and
smoking status, were added to the prognostic nomogram. The
prognostic performance of NRad+Clin was estimated in Str and then
evaluated in Ste. The consistency between the actual and predicted
probabilities survival was evaluated by a calibration plot.

2.5.4 Classification
A linear discriminant analysis (LDA) classifier (MRad) was
trained with the same set of features identified by LASSO.
Within Str, the LDA classifier was trained over 100 iterations of
threefold cross-validation. The classifier was finally locked
down and then evaluated for prediction of response on Ste.
The ability to identify response was primarily assessed by
an area under the receiver operating characteristic (ROC)
curve (AUC).

2.5.5 Implementation and Statistical Test
The “glmnet” package in R was used for executing the LASSO
algorithm. Analysis of OS and PFS outcomes was utilized with
survival methods, primarily Cox regression. The model was
included indicators for the categorical low- and high-risk OS
Frontiers in Oncology | www.frontiersin.org 5
from RRS along with clinical factors. The survival probabilities of
patients classified as low or high risk based on RRS was estimated
and illustrated by the Kaplan–Meier curves, and relative HRs
with 95% CIs were calculated using the Wald test and the G-rho
rank test, in R, version 3.6.3. Survival differences were compared
by the log-rank test. A multivariable Cox PH model was used to
investigate the independent prognostic effect of the RRS model in
comparison with clinical variables, and the likelihood ratio test
was applied to confirm the independent prognostic effect of
each variable.

The final selection of the model for the nomogram was
conducted using a backward step-down selection process based
on the Akaike information criterion (25), while internal validation
was conducted through 1,000 bootstrap resamples. Harrell’s
concordance index (C-index), a quantitative measurement of
the performance of the nomogram, was used to assess the
discriminative ability of the model in survival analysis. The
nomogram and calibration plots were constructed using
the “rms” and “SvyNom” packages.

A heatmap dendrogram was used to display unsupervised
hierarchal clustering using the radiomic texture features. A
consensus clustering approach was also used to determine the
number and affiliation of possible clusters within all the patient
studies. Nodules belonging to different clusters may have
minimal correlation, while nodules within a cluster are likely
to have a high intra-class correlation.

Accuracy, precision, sensitivity, specificity, and kappa
agreement between the predicted response of classifier and
actual response were also computed at the optimal operating
point of the ROC curve, while the operating point was defined as
the threshold that maximized overall accuracy.

Differences between clinical categories were assessed using
Fisher’s exact test, while a two-sided Wilcoxon test was used for
continuous variables. For continuous variables, the interquartile
range (IQR), a measure of statistical dispersion, was also
reported. IQR was calculated as the difference between the
75th and 25th percentiles.
3 RESULTS

3.1 Patient Analysis
A total of 153 patients with SCLC were included for analysis with
a median age of 66 years (34−90), with 72.8% men, median OS of
9.37, and median PFS of 8.35 months. All patients with LS or ES
were treated with platinum-based chemotherapy. Of these, 86%
patients had extensive-stage disease, and 14% were of limited
stage. No statistically significant difference was found in baseline
clinical characteristics between responders and non-responders,
chemotherapy agents (carboplatin and cisplatin), or time
between CT acquisition and first-line chemotherapy.
Chemotherapy response was achieved in 100 (66%) patients,
who were labeled as responders (R), and the remaining 53 (34%)
were labeled as non-responders (NR). All clinical characteristics
are listed in Table 2.
October 2021 | Volume 11 | Article 744724
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3.2 Radiomic Features From Pretreatment
CT Scans Were Associated With Overall
Survival in Small Cell Lung Cancer
The median OS was 8.27 months (IQR = 12.55, [10.10–16.40]). A
univariable Cox regression analysis in training set identified that
OS was not significantly different for gender (male vs. female; HR:
0.78 [0.48–1.25]; p = 0.3; C-index = 0.52 [0.45–0.58]) or race (HR:
0.86 [0.53–1.4]; p = 0.54; C-index = 0.51 [0.44–0.57]) but was
significantly different for clinical stage (LS vs. ES; HR: 1.4 [1.3–
1.7]; p = 0.0002; C-index = 0.58 [0.52–0.6]). Especially, patients
with brain metastasis demonstrated poorer survival, but in our
dataset, this finding was not significantly associated with OS (HR:
0.52; [0.27–0.98]; p = 0.069; C-index = 0.57). Figures 2A–C
illustrate the Kaplan–Meier curves for different clinical factors.

The radiomic score was calculated as a linear combination of
the six selected features weighted by their respective coefficients.
These features were identified as entropy of intratumoral
Haralick feature, median of intratumoral Laws texture feature,
peritumoral laws texture feature, intratumoral low-frequency
Gabor feature, and peritumoral high-frequency Gabor feature.
The optimum cutoff value (the median) for the RRS was found to
be 0.17, and patients were stratified into high- and low-risk
groups based on this value (Figure 2D). A univariable Cox
regression analysis developed using textural features indicated
that RRS was significantly associated with OS in Str (HR: 1.53
[1.1–2.2]; p = 0.021; C-index = 0.72 [0.63–0.81]) and Ste (HR: 1.4
[1.1–1.82]; p = 0.0127; C-index = 0.69 [0.60–0.77]). The
corresponding Kaplan–Meier survival curves showed a
significant difference in OS between patients with low and high
RRS (p-value <0.05). The Kaplan–Meier survival curves for Str

and Ste are shown in Figures 2E, F, respectively.
A multivariable Cox regression analysis identified the RRS

and cancer staging (limited or extensive stage) as two major risk
factors in OS for patients in Str (RRS: HR = 2.1 [1.53–2.85], p =
0.0076; clinical stage: HR = 1.66 [1.01, 2.7], p = 0.048; race:
HR = 0.37 [0.12, 1.1], p = 0.071; and age: HR = 1.04 [0.99–1.09],
p = 0.071; C-index = 0.75 [0.68–0.81]) and Ste (RRS: HR = 1.9
[1.23–2.2], p = 0.0012; clinical stage: HR = 1.61 [1.2–2.17], p =
Frontiers in Oncology | www.frontiersin.org 6
0.041; race: HR = 0.86 [0.52–1.42], p = 0.56; and age: HR = 1.01
[0.99–1.03], p = 0.22; C-index = 0.71 [0.64–0.77]).

3.3 Integrating Clinical Parameters With
Radiomic Features From Pretreatment CT
Scans for Prediction of Overall Survival in
Small Cell Lung Cancer
The C-index for NRad+Clin to predict OS in Str was 0.68 [0.66–
0.69]. In Ste, the C-index was 0.67 [0.63–0.68], a value that was
greater than that of the conventional clinical-based model (0.54
[0.52–0.56]; p = 0.0024) and RRS alone (0.62 [0.60–0.64]; p =
0.041). The nomogram and the corresponding calibration curve
are illustrated in Figures 3A, B, respectively. The calibration plot
demonstrates an optimal consistency between NRad+Clin

predicted and actual observed OS in Ste.
Moreover, Figure 4 shows a DCA for three models (clinical

model, radiomic model, and integrated Rad+Clin model). As can
be seen, the Rad+Clin model had the highest net benefit in
predicting which high-risk patients should receive more
aggressive treatment as compared with the low-risk patients.
The Rad+Clin model yielded a greater net benefit compared with
the “treat-all” or “treat-none” strategies.

3.4 Radiomic Features From Pretreatment
CT Scans Were Associated With
Progression-Free Survival in Small Cell
Lung Cancer
The median PFS was 7.57 months (IQR = 12.2, [9.68–17.36]). A
univariable Cox regression analysis in training set indicated that
RRS generated for OS was also significantly associated with PFS
in Str (HR = 1.89 [1.4–4.61], p = 0.047; C-index = 0.7 [0.61–0.78])
and Ste (HR = 1.64 [1.1–2.77], p = 0.04; C-index = 0.67 [0.60–
0.74]). A multivariable Cox regression analysis identified the RRS
and cancer staging as two major risk factors in PFS for patients in
Str (RRS: HR = 1.8 [1.48–2.23], p = 0.0082; clinical stage: HR =
1.35 [1.08, 1.78], p = 0.033; C-index = 0.72 [0.64–0.79]) and Ste

(RRS: HR = 1.61 [1.13, 1.96], p = 0.0046; clinical stage: HR = 1.37
[1.1, 2.01], p = 0.039; C-index = 0.70 [0.62–0.78]).
TABLE 2 | Demographics and clinical characteristics for patients, categorized by training and test sets.

Characteristics All patients (n = 153) Training set (n = 77) Test set (n = 76) p-Value

Sex Male 78 (52%) 43 (56%) 35 (46%) 0.26
Female 75 (48%) 34 (44%) 41 (54%)

Age Median (IQR)
[95% CI]

66 (13)
[64.97–68.16]

6712.5)
[64.00–68.67]

66 (14)
[64.62–68.98]

0.89

Race White 98 (82%) 48 (62%) 50 (66%) 0.73
Black 55 (18%) 29 (38%) 26 (34%)

Smoking Never 6 (4%) 3 (4%) 3 (4%) 1.00
Former/current 147 (96%) 74 (96%) 73 (96%)

Stage Limited stage 21 (14%) 10 (13%) 11 (14%) 0.81
Extensive stage 132 (86%) 67 (87%) 65 (86%)

Chemotherapy Agents Carboplatin 64 (42%) 30 (39%) 34 (45%) 0.51
Cisplatin 89 (58%) 47 (61%) 42 (55%)

Median OS Months (IQR)
[95% CI]

9.37 (12.73)
[11.63–15.77]

8.27 (12.55)
[10.10–16.40]

10.18 (12.48)
[11.46–16.85]

0.12

Median PFS Months (IQR)
[95% CI]

8.35 (11.8)
[11.2–16.84]

7.57 (12.2)
[9.68–17.36]

9.23 (11.9)
[10.37–18.68]

0.19
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A B

FIGURE 3 | (A) Integrated clinical and radiomic nomogram (NRad+Clin) for small cell lung cancer (SCLC) patients treated with systemic chemotherapy estimating the
probability of surviving for 4 years. Instructions for reading the nomogram: locate the risk score on the risk score axis. Draw a line straight up to the Points axis to
determine how many points toward the predicted probability of a 4-year overall survival (OS) that the patient receives for radiomic risk score level. Repeat this process for
the other predictors, each time drawing a line straight up to the Points axis. Sum the points achieved for each predictor and locate this sum on the Total Points axis.
Draw a line straight down to the 4-year Survival axis to determine the patient’s probability of surviving for 4 years. Variables with the greatest discriminatory value are
those with the widest point range in the nomogram. Sample data from one patient is shown (tan arrows and ovals). (B) Calibration curve for 4-year survival. The x-axis
shows the nomogram predicted probability, while the y-axis gives the actual 4-year survival as estimated by the Kaplan–Meier method. The dotted line represents an
ideal agreement between actual and predicted probabilities of 4-year survival. The solid line represents NRad+Clin nomogram, and the vertical bars represent 95% CIs.
Dots correspond to apparent predictive accuracy.
A B

D E F

C

FIGURE 2 | (A–C) Kaplan–Meier survival curves for gender, race, and clinical stage on the training set. ES, extensive stage; LS, limited stage. (D) Waterfall plot of
the length of overall survival (OS) based on radiomic risk score (RRS); higher risk score is associated with lower OS. (E) Kaplan–Meier survival curves based on the
training set and (F) test set. A significant association of the radiomic risk score with the OS is shown in the training set and test set.
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3.5 Radiomic Features From Pretreatment
CT Scans Predict Response to
Chemotherapy in Small Cell Lung Cancer
Figure 5A shows distinct response associated clusters obtained via
consensus clustering performed on a combination of features that
were found to be discriminating between responders and non-
responders. The two clusters had a preponderance of responders
(67%) and non-responders (75%). The radiomic heatmap in
Figure 5B shows an association between the radiomic features and
chemotherapy response for all the patients included in this study.

MRad was able to predict response to chemotherapy with an
AUC of 0.76 [0.75–0.79] within Str and a corresponding AUC of
0.72, an accuracy of 0.74, a precision of 0.62 (p < 0.05), a specificity
of 0.85, a sensitivity of 0.75, and kappa agreement of 0.56 within Ste.

Figures 6A, B illustrate the discriminability of the intratumoral
Haralick entropy and peritumoral Gabor feature for representative
non-responder and responder SCLC patients before
chemotherapy on the baseline CT scan. There appears to be a
higher textural pattern disorder or heterogeneity within and
around lesions on CT images before treatment in non-
responder patients as compared with responders. This trend is
also reflected in the box-and-whisker plots of the Haralick entropy
and Gabor texture, illustrated in Figure 6C.
4 DISCUSSION

SCLC is an aggressive NE tumor of the lung, which arises from
bronchial mucosa and shares many morphologic features of NE
Frontiers in Oncology | www.frontiersin.org 8
tumors (26). Chemotherapy remains the backbone of systemic
treatment in SCLC. Even though most patients respond to initial
treatment, relapse is inevitable, and a subset of patients are
chemoresistant. Historically, SCLC was considered as a
homogenous disease, and there is now preclinical evidence of
inter-tumor heterogeneity with distinct molecular subtypes. Also,
recent studies have demonstrated that switching of subtype within
the tumor could be a reason for chemotherapeutic resistance (27–
30). Currently, there are no clinically validated predictive
biomarkers to select a subpopulation of patients with primary
chemoresistance and/or early recurrence.

In this study, we presented novel, computer-extracted,
quantitative texture features from within and around the
tumor lesion from baseline CT scans that are predictive of
chemoresistance and prognostic of OS, independent of
clinicopathologic factors. Following additional multi-site
validation, these non-invasive radiomic biomarkers can be
used to predict chemoresistance upfront and orient patients to
clinical trials targeting unique therapeutic vulnerabilities to
improve clinical outcomes. The primary goal of this study was
to determine whether a durable prediction of response to
chemotherapy is possible by using radiomic texture patterns
within and outside the SCLC tumor on baseline CT scans. We
developed a novel RRS derived from computerized texture
features from pretreatment CT that was shown to be
prognostic of OS and PFS and predictive to chemotherapy
response. Additionally, we presented a novel prognostic
nomogram (NRad+Clin) that combines radiomic features with
clinicopathologic parameters to predict OS.
FIGURE 4 | Decision curve analysis (DCA) for each model (clinical model, radiomic model, and integrated Rad+Clin model). The integrated Rad+Clin model had the
highest net benefit in predicting which high-risk patients should receive more aggressive treatment, as compared with radiomic model, a clinical model, and simple
strategies such as to treat all patients or no patients. This analysis was performed across the full range of threshold probabilities at which a patient would be selected
to undergo follow-up imaging.
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In this study, we found that the entropy of the intratumoral
Haralick feature as well as the median of the intratumoral Laws
texture feature had a higher expression in non-responders
compared with the responders. These features can capture
intratumoral heterogeneity of the tumor (15). High expression
of pretreatment serum vascular endothelial growth factor (VEGF)
Frontiers in Oncology | www.frontiersin.org 9
is an important regulator of angiogenesis and vascular
permeability in the cell and is known to be associated with poor
response to treatment and unfavorable survival in patients with
SCLC treated with chemotherapy (31). CD56 is another neural cell
adhesion molecule (NCAM) expressed on the cells of tumors of
NE origin including SCLC. The overexpression of CD56 is
A

B

C

FIGURE 6 | (A) Segmented tumor regions and heatmap of intratumoral Haralick (entropy) feature in the pretreatment CT scans for representative non-responder
and responder patients. (B) Segmented tumor regions and heatmap of peritumoral Gabor feature in the pretreatment CT scans for representative non-responder
and responder patients. The middle column is a magnified view of tumor anatomy in both Figures 5A, B, and the right column is a color heatmap. (C) Box-and-
whisker plots for four features that best distinguish chemotherapy response.
A B

FIGURE 5 | (A) Consensus clustering using radiomic features. The two clusters had a preponderance of responders (67%) and non-responders (75%). (B) The
radiomic heatmap shows an association between the radiomic features and chemotherapy response for patients in the training and test sets.
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associated with lower OS in SCLC since it inhibits tubulin
polymerization and microtubule assembly, causing healthy cell
death (32). In addition, increased expression of metalloproteinases
(MMPs) is associated with poor prognosis. While we did not
explicitly confirm this association, it may be that the
overexpression of intratumoral Haralick and Laws features
reflect the overexpression of VEGF and CD56 inside a tumor,
which in turn are associated with poor OS and response to
chemotherapy. Another reason could also be that certain high-
risk radiomic features might be reflective of tumor hypoxia.
Histological examination of SCLC biopsies showed that at least
half of all newly diagnosed SCLC patients have tumor hypoxia
(33), which promotes tumor proliferation, increases the metastatic
potential, and confers resistance to therapy (34). Also, hypoxic
regions of the tumor are relatively devoid of blood vessels, making
it difficult for drugs to diffuse and reach to the tumor bed.

Our experiment showed that the peritumoral Laws texture
feature had higher expression in non-responders compared with
the responders and associated with lower OS. Our findings could
provide new insight into tumormicroenvironment biology, while its
appearance on radiographic imaging may be explained as follows.
SCLC can be classified into NE‐high and NE‐low tumors, based on
a different immunogenic expression. NE‐high is defined as a cold or
“immune desert” phenotype, based on low levels of immune cell
expression, whereas NE‐low is defined as a “hot” or “immune oasis”
phenotype associated with increased immunogenicity (35, 36). This
extrapolates to better therapy response in NE‐low SCLC as
compared with NE-high SCLC patients (37, 38). The differences
observed in the expression of peritumoral Laws texture features
between responders and non-responders could be related to
differential expression of immune cells around the tumor.

Our result showed that the RRS and cancer staging (limited or
extensive stage) were only two major risk factors in predicting
OS in both training (RRS: HR = 2.1, [1.53, 2.85], p = 0.0076;
clinical stage: HR = 1.66, [1.01, 2.7], p = 0.048; race: HR = 0.37,
[0.12, 1.1], p = 0.071; and age: HR = 1.04, [0.99, 1.09], p = 0.071;
C-index = 0.75) and test sets (RRS: HR = 1.9, [1.23, 2.2], p =
0.0012; clinical stage: HR = 1.61, [1.2, 2.17], p = 0.041; race: HR,
0.86, 95% CI: [0.52, 1.42], p = 0.56; and age: HR, 1.01, 95% CI:
[0.99, 1.03], p = 0.22; C-index = 0.71). Moreover, RRS and cancer
staging were also two major risk factors in predicting PFS in
training (RRS: HR = 1.8, [1.48, 2.23], p = 0.0082; clinical stage:
HR = 1.35, [1.08, 1.78], p = 0.033; C-index = 0.72) and test sets
(RRS: HR = 1.61, [1.13, 1.96], p = 0.0046; clinical stage: HR =
1.37, [1.1, 2.01], p = 0.039; C-index = 0.70). In addition, while
radiomic features were associated with response to chemotherapy,
the clinical biomarkers (age, sex, and tumor stage) were not able
to predict response to chemotherapy.

Finally, we presented a nomogram that integrated RRS with
clinical biomarkers (NRad+Clin) to further improve its prognostic
accuracy. The NRad+Clin exhibited the highest C-index value in both
training and test cohorts as compared with the clinical or radiomic
models alone. We also evaluated NRad+Clin by DCA and calculated
the net benefit of our model. The decision curve indicated that NRad

+Clin had the highest overall net benefit in predicting high-risk
patients for receiving more aggressive treatment than the
clinicopathologic measurements across all threshold probability
Frontiers in Oncology | www.frontiersin.org 10
values. With the capability to assess prognosis and response to
therapy upfront, the oncologist can be assisted with decision
making to estimate therapeutic outcomes for a given patient to
reduce ineffective treatments and/or associated toxicity.

To the best of our knowledge, this study is the first to explore
the relationship of radiomic features with chemotherapy
response and OS in SCLC patients. The convergence of these
areas provides a new radiomic model that could yield effective
non-invasive prediction of treatment response without
sacrificing transparency of biological rationale.

We acknowledge that our study did have its limitations. The
cohort sizes for both training and test are relatively small; however,
given the relatively low incidence of SCLC as compared with other
lung cancer subtypes, the number of patients in the historic studies
has been small as well. We also studied a single institution, which
may affect the results. Additionally, a couple of recent studies have
rigorously and quantitatively investigated the influence of
convolution kernels, reconstruction algorithms, and slice thickness
on radiomic features for characterization of lung nodules on CT. In
thepresent study,wedidnot explicitlyconsider the influenceof these
parameters on the extracted texture features but randomly
distributed the cases with different image acquisition parameters
between training and test sets to account for variability. Since
features pertaining to radiographic images reflect hallmarks of
tumor biology and not drug/agent specific, we expect that the
predictive aspects of these features will remain broadly similar
across different chemotherapeutic agents. We hope to address in
future studies the rigorous morphologic and molecular
underpinningof the radiomicfindings thatwere shown in this study.
5 CONCLUSION

In conclusion, our results suggest that radiomic texture features
from baseline CT scans of SCLC patients can predict resistance
to platinum-based chemotherapy. Our study highlights that
these radiomic features are also associated with OS in patients
with SCLC, and we presented an integrated nomogram that can
estimate the survival probability based on the RRS and
clinical biomarkers.
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