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a b s t r a c t 

Recent epidemiological data report that worldwide more than 53 million people have been infected by 

SARS-CoV-2, resulting in 1.3 million deaths. The disease has been spreading very rapidly and few months 

after the identification of the first infected, shortage of hospital resources quickly became a problem. In 

this work we investigate whether artificial intelligence working with chest X-ray (CXR) scans and clini- 

cal data can be used as a possible tool for the early identification of patients at risk of severe outcome, 

like intensive care or death. Indeed, further to induce lower radiation dose than computed tomography 

(CT), CXR is a simpler and faster radiological technique, being also more widespread. In this respect, we 

present three approaches that use features extracted from CXR images, either handcrafted or automat- 

ically learnt by convolutional neuronal networks, which are then integrated with the clinical data. As 

a further contribution, this work introduces a repository that collects data from 820 patients enrolled 

in six Italian hospitals in spring 2020 during the first COVID-19 emergency. The dataset includes CXR 

images, several clinical attributes and clinical outcomes. Exhaustive evaluation shows promising perfor- 

mance both in 10-fold and leave-one-centre-out cross-validation, suggesting that clinical data and images 

have the potential to provide useful information for the management of patients and hospital resources. 

© 2021 The Authors. Published by Elsevier B.V. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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. Introduction 

According to data reported by the European Centre for Disease 

revention and Control 1 as of 13 November 2020 almost 53 million 

atients worldwide have been infected with the new coronavirus 

ARS-CoV-2, causing 1.3 million deaths. Since the identification of 

atient zero in China, the situation dramatically worsened world- 

ide, saturating the healthcare system resources. With a shortage 

f beds available in intensive and sub-intensive care, the need for 

 quick and effective triage system became an urgency. 

Chest imaging examinations, as chest X-ray (CXR) 

 Schiaffino et al., 2020 ) and computed tomography (CT) ( Ai et al.,

020 ) play a pivotal role in different settings. Indeed, imaging 

s used during triage in case of unavailability, delay of or the 

rst negative result of reverse transcriptase-polymerase chain 

eaction (RT-PCR) ( Lu et al., 2020 ). Moreover, imaging is used to 

tratify disease severity. Generally, the findings on chest imaging 

n COVID-19 are not specific and overlap with other infections. CT 

hould not be used to screen for or as a first-line test to diagnose

OVID-19 and should be used sparingly and reserved for hospi- 

alized, symptomatic patients with specific clinical indications for 

T ( American College of Radiology, 2020 ). CXR most frequent 

esions in COVID-19 patients are reticular alteration (up to 5 

ays from the symptoms onset), and ground-glass opacity (after 

ore than 5 days from the onset of the symptoms). In COVID-19 

atients’ consolidation gradually increase over time. Bilateral, 

eripheral, middle/lower locations are the most frequent location 

 Vancheri et al., 2020 ). In some hospitals, the CXR examination is 

eplaced or accompanied by CT scan, which showed a sensitivity 

f 97% for COVID-19 diagnosis ( Ai et al., 2020 ), albeit with a

imited specificity of 25%. Both CXR and CT have specific pros and 

ons, but the latter poses several logistic issues, such as the lack of 

vailability of machines’ slots, the difficulty of moving bedridden 

atients, and the long sanitization times. Furthermore, patients 

ollow-up with CXR is simplified because it can be acquired at the 

atient’s bed and, when required, directly at home ( Zanardo et al., 

020 ). 

Recently, artificial intelligence (AI) has been widely adopted 

o analyse CXR for several purposes, such as tuberculosis de- 

ection ( Liu et al., 2017 ), abnormality classification and image 

nnotation ( Yan et al., 2019 ), pneumonia screening in pediatric 

nd non pediatric patients ( Radiological Society of North Amer- 

ca, 2018 ), edema and fibrosis ( Xu et al., 2018 ). Obviously, the chal-

enge of COVID-19 pandemic has boosted the research effort s of 

I in medical imaging and, according to the work presented by 

reenspan et al. (2020) , such applications may have an impact 

long three main directions, namely, detection and diagnosis, pa- 

ient management and predictive modelling. 

Regarding detection and diagnosis, AI is mainly used to detect 

he presence of COVID-19 patterns by processing CXR and/or CT 

mages with deep neural networks (DNNs), such as convolutional 

eural networks (CNNs). DNNs were also applied to lesions seg- 

entation or to produce a coarse localization map of the impor- 

ant regions in the image. For instance, Zhang et al. (2020) anal- 

sed CT scans collected from 4695 patients to differentiate novel 

oronavirus pneumonia from other types of pneumonia (bacte- 

ial, viral and mycoplasma pneumonia) and from healthy subjects. 

he classification was based on the combination of the segmented 

ung-lesion map and the normalized CT volumes. Experimental 

ests were performed on 260 patients, achieving an overall accu- 

acy equal to 92.49%. Minaee et al. (2020) analysed 50 0 0 chest X-

ay images from publicly available datasets using four well known 

onvolutional neural networks: ResNet-18, ResNet-50, SqueezeNet, 
1 https://www.ecdc.europa.eu/en/geographical- distribution- 2019- ncov-cases 

b

s

s

2 
nd DenseNet-121. Two thousand images were used for training, 

hilst the models were tested on the other 30 0 0, attaining a sen- 

itivity rate equal to 98%, and a specificity rate of around 90% in 

etecting COVID-19 patients from their CXR. 

The development of systems supporting patient management 

uring hospitalization is mainly concerned with the monitoring of 

isease evolution in time. For instance, Gozes et al. (2020) pro- 

osed an image-based tool supporting the measurement of dis- 

ase extent within the lungs. This severity biomarker is intended 

o help physicians in the decision-making process by tracking the 

isease severity over time. 

Finally, predictive modelling mainly concerns with the devel- 

pment of models able to predict the progression of the dis- 

ase. These approaches usually make use of both imaging and 

linical data to predict the severity of the infection or the pro- 

ression time, i.e. the time from the initial hospital admission 

o severe or critical illness, defined by death or the need for 

echanical ventilation or the need for being transferred to the 

ntensive care unit (ICU) ( Zhang et al., 2020 ). Few applications 

ave been recently developed within this category. For example, 

reenspan et al. (2020) in their position paper presented prelim- 

nary and unconsolidated results on predicting the probability for 

 patient to be admitted to the ICU by exploiting quantitative fea- 

ures extracted from the lung region of the CXR images, vital pa- 

ameters, comorbidities, and other clinical parameters. These data 

ed a random forest, which attained an area under the ROC curve 

AUC) equal to 0.83. A survey offered by Wynants et al. (2020) , 

ompared 16 papers presenting prognostic models (8 for mortality, 

 for progression to severe/critical state and 3 for length of stay), 

nd the AUC ranged from 0.85 up to 0.99. Nine of such papers 

sed only clinical data for the analysis, whilst the others used clin- 

cal data and features extracted from CT images. The authors also 

rgued that all 16 papers have a high risk of bias ( Moons et al.,

019 ) due to the high probability of model overfitting and un- 

lear reporting on intended use of the models. Still using CT im- 

ges, two multicentric studies have been recently presented by 

ue et al. (2020) and Chassagnon et al. (2020) . The former in- 

luded a cohort of 52 patients from five hospitals to predict short- 

r long-term hospital stays in patients with COVID-19 pneumonia. 

irst, the CT scans were semi-automatically segmented and then 

or each lesion patch the authors extracted 1218 features, account- 

ng for first-order, shape, second-order and wavelet measures. Sec- 

nd, a logistic model and a random forest were trained on the data 

rom four hospitals, being tested on patients belonging to the fifth 

linic. They attained balanced accuracies equal to 0.94% and 0.87%, 

espectively. The work presented by Chassagnon et al. (2020) aims 

o predict patient outcomes (severe vs. non-severe) prior to me- 

hanical ventilation support and to suggest a possible prognosis 

ithin three available groups (short-term deceased, long-term de- 

eased, long-term recovered). To these goals, they searched for a 

ubset of discriminative features from several image texture de- 

criptors computed from CT scans and a few clinical data (i.e. age, 

ender, high blood pressure, diabetes, body mass index). On a co- 

ort of 693 patients, an ensemble of classifiers separated patients 

ith severe vs. non-severe outcomes and it correctly identified the 

rognosis with balanced accuracies equal to 70% and 71%, respec- 

ively. 

This analysis of the literature shows that the development of 

I-based models predicting the outcomes of COVID-19 patients still 

eserves further research effort s. On the one side, in the context 

f COVID-19 prognosis, except for the very preliminary results an- 

icipated by Greenspan et al. (2020) , all the works in literature 

sed CT scans although CXRs are considered a viable alternative 

y the American College of Radiology (2020) . On the other side, 

haring patient data from studies as well as creating new data 

ets collected in clinical practice is fundamental for the AI com- 

https://www.ecdc.europa.eu/en/geographical-distribution-2019-ncov-cases
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Fig. 1. Overview of the method for automatic prognosis of COVID-19 in two classes, namely mild and severe. Our works includes data collected in 6 independent cohorts, 

resulting in 820 COVID-19 patients. For each, we collected several clinical attributes, combined with quantitative imaging biomarkers computed by handcrafted features or 

automatically computed by CNNs. 
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unity ( Leeuwenberg and Schuit, 2020 ), since many researchers 

o not have the possibility of collecting clinical data and images 

rom different clinical centres. To address both concerns, this work 

nvestigates three AI-based approaches to predict clinical outcome 

ntegrating clinical and imaging data. Indeed, in addition to clini- 

al information consisting of general information, laboratory data 

nd comorbidities, such approaches use quantitative information 

xtracted from the CXR images, which are also referred to as im- 

ge features or quantitative biomarkers in the following. The first 

pproach computes handcrafted texture features to be used by a 

ommon classifier, the second approach automatically extracts im- 

ge descriptors by using a CNN, while the third approach is fully 

ased on DNNs, processing both clinical and image data ( Fig. 1 ). As

 further contribution, this work introduces a novel dataset includ- 

ng clinical data and CXR images from 820 patients with COVID-19 

ho were hospitalized in six hospitals in Italy. To each patient we 

ssociated prognostic information related to the clinical outcome. 

ur work therefore offers also a first quantitative analysis of this 

ew repository that can be used by other researchers and practi- 

ioners as a baseline reference. 

In synthesis, the main objectives of this work are: 

1. to present an evaluation of three state-of-the-art learning ap- 

proaches to predict future severe cases at the time of hospi- 

talization, which are specifically designed to use either hand- 

crafted or learned image features, together with clinical data; 

2. to boost the research on AI-based prognostic models to support 

healthcare systems in the fight against COVID-19 pandemic by 

making publicly available a repository of CXR images and clin- 

ical data collected in a true environment during the first wave 

of the pandemic emergency, which include common real-world 

issues such as missing data, outliers, different imaging devices, 

poorly standardized data. The repository would also facilitate 

external validation of learning models developed in this field. 

The rest of this manuscript is organized as follows: next section 

escribes the dataset we collected and that we are making publicly 

vailable. Section 3 introduces the methodology we adopted, whilst 

ection 4 presents the classification results achieved. Section 5 dis- 

usses our findings providing also concluding remarks. 

. The AIforCOVID dataset 

This study includes the images and clinical data collected in six 

talian hospitals at the time of hospitalization of symptomatic pa- 

ients with COVID-19, during the first wave of emergency in the 
3 
ountry (March–June 2020). Such data was generated during the 

linical activity with the primary purpose of managing COVID-19 

atients within the daily practice and they were retrospectively re- 

iewed and collected, after patients’ anonymization. Ethics Com- 

ittee approval was obtained (Trial-ID: 1507; Approval date: April 

th, 2020) and all data were managed in accordance with the 

DPR regulation. Furthermore, we randomly assigned to each cen- 

re a symbolic label, from A up to F. 

The 820 CXR examinations reviewed in this study were per- 

ormed in COVID-19-positive adult patients at the time of hospi- 

al admission ( Table 1 ): all the patients resulted positive for SARS- 

oV-2 infection at the RT-PCR test ( Yang et al., 2020 ). In 5% of

uch cases, the positivity to the swab was obtained only at the 

econd RT-PCR examination. In the different centres, CXR exam- 

nations were performed using different analog and digital units, 

nd the execution parameters were settled according to the pa- 

ient conditions. Paired with CXR examinations, we collected also 

elevant clinical parameters listed in Table 2 . 

According to the clinical outcome, each patient was assigned to 

he mild or the severe group. The former contains the patients sent 

ack to domiciliary isolation or hospitalized without ventilatory 

upport, whereas the latter is composed of patients who required 

on-invasive ventilation support, intensive care unit (ICU) and de- 

eased patients. Fig. 2 shows four difficult examples of CXR images 

ithin the dataset: indeed, panels A and B show two images of 

atients with severe outcome whilst the radiological visual inspec- 

ion may suggest severe and mild prognoses, respectively. Similarly, 

anels C and D show two images of patients with mild outcome 

hilst a radiologist may report severe and mild prognosis, respec- 

ively. 

During an initial data quality cleaning, we double-checked with 

he clinical partners the anomalous data and the outliers, i.e. those 

alues lying outside the expected clinical range or identified ap- 

lying the interquartile range method, which were then corrected 

hen needed. Categorical variables values were homogenized to a 

oherent coding, such as 0 and 1 values for binary variables like 

omorbidities and sex, and we adopted the string “NaN” to denote 

issing data. No exclusion rule was applied for images based on 

evice type or brand (e.g. digital or analog devices) or patient po- 

itions (standing or at bed), whereas X-ray images taken with lat- 

ral projection were excluded because they were not available for 

atients whose images were acquired in the lying position. In the 

ase of multiple CXR images delivered for the same patient, the 

ataset contains only the first one. It is worth noting that the pres- 

nce of missing entries in the clinical data mostly depends upon 
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Table 1 

Patient distribution across the hospitals where the data were collected. 

Hospital Number of patients Mild class prior probability Anterior posterior (AP) projection prior probability 

A 120 29.2% 81.67% 

B 104 56.7% 97.12% 

C 31 25.8% 90.32% 

D 139 54.7% 38.85% 

E 101 54.5% 87.13% 

F 325 46.5% 98.46% 

Overall 820 46.8% 83.72% 

Fig. 2. Examples of CRX images of patients with COVID-19 available within the 

dataset. Panels A and B show two images of patients with severe outcome whilst 

the radiological visual inspection may suggest severe and mild prognoses, respec- 

tively. Similarly, panels C and D show two images of patients with mild outcome 

whilst a radiologist may suggest severe and mild prognosis, respectively, based on 

the visual interpretation. 
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he procedures carried out in the individual hospitals as well as 

pon the pressure due to the overwhelming number of patients 

ospitalized during the COVID-19 emergency. For the sake of com- 

leteness, the rate of missing data is reported in the last column 

f Table 2 . 

CXR images were collected in DICOM format and, for 

nonymization constrains, all the fields but a set of selected meta- 

ata related to acquisition parameters were blanked in the DICOM 

eader (e.g. image modality, allocated bits, pixel spacing, etc.). 

All the images in the repository are currently stored using 16 

its, while acquisition precision varies: 13.5% were acquired at 10 

its precision, 35.4% at 12 bits, 46.6% at 14 bits and 4.5% using the 

ull 16 bits precision. Furthermore, all the images were acquired 

ith isotropic pixel spacing ranging from 0.1 mm to 0.2 mm. The 

ost common pixel spacing is 0.15 mm, 0.1 mm and 0.16 mm 

or 43.9%, 13.7% and 13.6% of images respectively. Image sizes, 

n pixels, are distributed as follows: 33.4% of the images have 

336 × 2836 pixels, 13.5% of images have 3520 × 4280 pixels and 

0.1% of the images have 3480 × 4240 pixels. The other images 

ave a number of rows ranging from 1396 up to 4280, whilst the 

umber of columns ranges from 1676 up to 4280. 

.1. Statistical analysis of clinical data 

We performed a statistical analysis applying the Mann–Whitney 

 test to compare mild- and severe-groups in case of continuous 

ariables, whereas we used the z test with Yates continuity correc- 

ion for analysing proportions. 
4 
Summary statistics are reported in Table 2 . For continuous vari- 

bles median and interquartile range (IQR) were reported. For cat- 

gorical variables we reported patients’ proportions expressed as 

ercentage. For statistical analysis a p-value lower than 0.05 was 

onsidered significant. 

The analysis evidenced that females represented the 32% ( n = 

66 ) of the total population and they were significantly ( p < 0 . 001 )

lder (median age 70 years, IQR 57–80 years) than males (median 

ge 64 years, IQR 53–74 years). Furthermore, 522 out of 820 (63%) 

atients had at least one comorbidity ( Fig. 3 ). 

In agreement with widely reported demographic data show- 

ng that older patients had more severe outcome, in our dataset, 

he patients of severe-group (70 years, IQR 60–79) were signifi- 

antly ( p < 0 . 001 ) older than those belonging to the mild-group

60 years, IQR 49–72 years). Three hundred twenty patients out of 

36 (73%) of the severe group had at least one comorbidity; in the 

ild-group they were 194 out of 384 (51%). 

Moreover, 47% (384/820) of patients belonged to the mild- 

roup, of which 157 (41%) were females and significantly ( p = 

 . 015 ) older (median 63 years, IQR 50–76 years) than males (me- 

ian 59 years, IQR 48–69 years). In the severe-group were 436 

ut of 820 (53%) patients, of which 109 (25%) were females and 

ignificantly ( p < 0 . 001 ) older (median age 78 years, IQR 67–85

ears) than males (median age 67 years, IQR 57–76 years). Se- 

ere group consisted of 43% (189/436) of patients hospitalized with 

on-invasive ventilation support, 18% (79/436) of patients in ICU, 

nd 38% (168/436) of dead patients. Regarding the dead patients’ 

ubgroup, the mean age was 78 (IQR 68–84) years: the youngest 

as 43yo while the oldest was 97yo. Among dead patients, 97% 

f them had at least one co-morbidity, while 17% had five comor- 

idities reported. The majority (72%, 121 out 168) of dead patients 

ere male. 

. Methods 

We investigated three AI-based prognostic approaches covering 

ell-known methodologies with the intent to offer to researchers 

nd practitioners a reference baseline to process the data available 

ithin the AIforCovid dataset. Furthermore, for the sake of an easy 

nd fair comparison and to foster further research in this field, we 

etail also the adopted validation procedures, recommending oth- 

rs to measure models performance at least as reported here. 

As schematically depicted in Fig. 1 , the first learning approach 

mploys first order and texture features computed from the im- 

ges, which are mined together with the clinical data feeding a su- 

ervised learner. In the following, it is shortly referred to as hand- 

rafted approach , and it is presented in Section 3.6 . 

In the last decade, we have assisted to the rise of deep artificial 

eural networks, which have attained outstanding performance in 

any fields. Recently, DNNs such as convolutional neural networks 

ave been applied also to COVID-19 imaging mostly for diagnos- 

ic purposes ( Greenspan et al., 2020 ). On this basis, the second 

pproach presented here mixes automatic features computed by a 

NN with the clinical data. Shortly, we used a pre-trained CNN as a 



P. Soda, N.C. D’Amico, J. Tessadori et al. Medical Image Analysis 74 (2021) 102216 

Table 2 

Description of the clinical data available within the repository. First and second columns report variables label and description. Summary statistics for the overall popula- 

tion and for the two patients groups are reported in the following columns. For continuous variables median and interquartile range are reported, for categorical variables 

proportions are reported. Feature names followed by ‘ + ’ were not used for the analysis described in this work. P -values lower than 0.05 were considered significant. ∗

Mann–Whitney U test. † z -test for proportions with Yates continuity correction. ‡ Fisher exact test. 

Name Description 

Overall- 

population 

Mild-group 

(A) 

Severe- 

group 

(B) 

A vs. B 

p -value 

Missing 

data (%) 

Active cancer in the last 5 years Patient had active cancer in the last 5 years 

(% reported) 

7% 5% 8% < 0.05 † 1.4 

Age Patient’s age (years) 64; 54–77 60; 49–72 70; 60–79 < 0.001 ∗ 0 

Atrial Fibrillation Patient had atrial fibrillaton (% reported) 9% 5% 11% < 0.01 † 2.2 

Body temperature ( ◦C) Patients temperature at admission (in ◦C) 38; 37 and 

38 

38; 37 and 

38 

38; 37 and 

38 

0.171 8.8 

Cardiovascular Disease Patient had cardiovascular diseases (% 

reported) 

35% 23% 40% < 0.001 † 1.7 

Chronic Kidney disease Patient had chronic kidney disease (% 

reported) 

6% 4% 9% < 0.01 † 1.4 

COPD Chronic obstructive pulmonary disease (% 

reported) 

7% 4% 10% < 0.01 † 1.4 

Cough Cought (%yes) 54% 59% 50% < 0.05 † 0.5 

CRP C-reactive protein concentration (mg/dL) 57; 24–119 42; 17–75 103; 

48–163 

< 0.001 ∗ 3.5 

Days Fever Days of fever up to admission (days) 3; 2–4 3; 2–4 3; 2 and 3 0.289 10.96 

D-dimer D-dimer amount in blood 632; 

352–1287 

549; 

262–909 

820; 

438–2056 

< 0.001 ∗ 77.6 

Death + Death of patient occurred during 

hospitalization for any cause 

168 0 168 – –

Dementia Patient had dementia (% reported) 4% 3% 6% 0.087 1.8 

Diabetes Patient had diabetes (% reported) 16% 10% 21% < 0.001 † 1.4 

Dyspnea Patient had intense tightening in the chest, 

air hunger, difficulty 

50% 37% 62% < 0.001 † 0.4 

breathing, breathlessness or a feeling of 

suffocation (%yes) 

Fibrinogen Fibrinogen concentration in blood (mg/dL) 607; 

513–700 

550; 

473–658 

615; 

549–700 

< 0.001 ∗ 73.6 

Glucose Glucose concentration in blood (mg/dL) 110; 

96–130 

104; 

93–121 

114; 

101–139 

< 0.001 ∗ 20.6 

Heart Failure Patient had heart failure (% reported) 2% 1% 3% 0.157 2.3 

Hypertension Patient had high blood pressure (% reported) 46% 38% 54% < 0.001 † 1.4 

INR International Normalized Ratio 1.13; 

1.07–1.25 

1.11; 

1.06–1.20 

1.15; 

1.08–1.28 

0.004 ∗ 28.8 

Ischemic Heart Disease Patient had ischemic heart disease (% 

reported) 

15% 11% 18% < 0.01 † 18.3 

LDH Lactate dehydrogenase concentration in blood 

(U/L) 

320; 

249–431 

271; 

214–323 

405; 

310–527 

< 0.001 ∗ 24.6 

O 2 (%) Oxygen percentage in blood (%) 95; 90–97 96; 94–98 92; 87–96 < 0.001 ∗ 16.5 

Obesity Patient had obesity (% reported) 9% 6% 11% 0.058 36.1 

PaCO 2 Partial pressure of carbon dioxide in arterial 

blood (mmHg) 

33; 30–36 34; 30–37 33; 30–35 0.116 15.4 

PaO 2 Partial pressure of oxygen in arterial blood 

(mmHg) 

69; 59–80 73; 67–81 64; 54–76 < 0.001 ∗ 15.3 

PCT Platelet count (ng/mL) 0.19; 

0.09–0.56 

0.09; 

0.05–0.26 

0.28; 

0.13–0.72 

< 0.001 ∗ 71.8 

pH Blood pH 7; 7 − 7 7; 7 − 7 7; 7 − 7 < 0.001 ∗ 17.3 

Position + Patient position during chest X-ray (%supine) 78% 68% 87% < 0.001 † 0 

Positivity at admission Positivity to the SARS-CoV-2 swab at the 

admission time (% positive) 

95% 94% 96% 0.142 4.7 

Prognosis Patient outcome, see Section 2 (% cases) – 46.8% 53.2% 0.468 † 0.0 

RBC Red blood cells count (10 ̂ 9/L) 4.65; 

4.26–5.07 

4.70; 

4.34–5.11 

4.59; 

4.13–5.03 

< 0.001 ∗ 3.0 

Respiratory Failure Patient had respiratory failure (% reported) 1% 100% 2% 0.131 19.0 

SaO 2 arterial oxygen saturation (%) 95; 91–97 96; 94–98 92; 87–96 < 0.001 ∗ 59.2 

Sex Patient’s sex (%males) 68% 59% 75% < 0.001 † 0 

Stroke Patient had stroke (% reported) 4% 3% 4% 0.447 2.3 

Therapy Anakinra + Patient was treated with Anakinra (%yes) 100% 0% 0% – 10.8 

Therapy anti-inflammatory + Patient was treated with anti-inflammatory 

drugs therapy (%yes) 

55% 53% 57% 0.243 13.5 

Therapy antiviral + Patient was treated with antiviral drugs 

(%yes) 

47% 44% 50% 0.129 10.7 

Therapy Eparine + Patient was treated with eparine (no; yes; 

prophylactic 

56.6%; 

11.5%; 

73.3%; 

8.3%; 

39.9%; 

14.7%; 

< 0.001 ‡ 13.4 

treatment; therapeutic treatment) 28%; 3.9% 17.2%; 1.1% 38.8%; 6.6% 

Therapy hydroxychloroquine + Patient was treated with hydroxychloroquine 

(%yes) 

59% 56% 62% 0.118 11.6 

Therapy Tocilizumab + Patient was treated with Tocilizumab (%yes) 9% 2% 15% < 0.001 † 12.4 

WBC White blood cells count (10 ̂ 9/L) 6.30; 

4.73–8.42 

5.58; 

4.32–7.17 

7.10; 

5.25–9.80 

0.012 0.7 

5 
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Fig. 3. Comorbidity distributions between groups. For all data, value and percentage referred to the total population was indicated. 

Table 3 

Summary of the operations common to the three AI approaches. 

Method Operations 

Data imputation Image standardization Lung segmentation Feature selection 

Handcrafted � � � � 

Hybrid � � � � 

End-to-end DL � � 
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XR feature extractor. The output of the last fully-connected layer 

as then provided as input for a SVM classifier, together with the 

linical features. 

In the following, it is shortly referred to as hybrid approach , and 

t is presented in Section 3.7 . 

The third approach exploits together the clinical data and the 

aw CXR using a multi-input convolutional network to predict 

atients’ outcome. In order to handle data from such different 

ources, the network consists of two dedicated input branches, 

hile higher-level features from both sources are concatenated in 

he last layers before the classification output. In the following, 

his approach is shortly referred to as end-to-end deep learning ap- 

roach , and it is detailed in Section 3.8 . 

Note that all such approaches do not use the therapy-related 

ariables included in the dataset because, albeit therapy could in- 

uence the final outcome, it is also dependent on the outcome (i.e. 

atients who required intensive care were administered with spe- 

ific therapies). Furthermore, the classification task defined con- 

iders only the data collected at the time of hospitalization and, 

herefore, in a true clinical scenario, information on the adminis- 

ered therapy would not be available. For this reason, the use of 

hose variables could be misleading. 

Before presenting in detail each of the three approaches, follow- 

ng Sections 3.1 and 3.2 describe data imputation and image stan- 

ardization. Furthermore, Section 3.3 presents the framework used 

o segment the lung, whereas Section 3.4 describes the feature se- 

ection approach and the classifiers adopted, which are the same 

cross the three methods to facilitate their comparison. Table 3 

ummarize the common operations applied by each of the three 

I methods and Section 3.5 introduces the procedure adopted to 

alidate the learning models. 

.1. Data imputation 

To deal with missing data, univariate data imputation estimates 

issing entries by using the mean of each column in which the 
6 
issing values are located. We preferred this approach to multi- 

ariate or prediction-based imputation methods since it is known 

o work well when the data size is not very large, and it can pre-

ent data loss which results from brute force rows and columns re- 

oval. Furthermore, preliminary results not shown here confirmed 

uch observations. As reported in the second column of Table 3 , 

mputation was performed before each learning paradigm worked 

n the data. 

.2. Images standardization 

CXR images collected for this study were acquired with differ- 

nt devices and acquisition conditions, as mentioned in Section 2 . 

or this reason, we applied image normalization that, to a large ex- 

ent, is the same for all the three methods. Indeed, for the hand- 

rafted approach pixels values were normalized to have zero mean 

nd unit standard deviation, whilst the images were resized to 

024 × 1024 pixels using bilinear interpolation. For the hybrid ap- 

roach, a segmentation network was used to identify the square 

ox containing the lungs, in a way to crop only the region of in- 

erest, as detailed in the next section. The images were then nor- 

alized and resized to a dimension equal to 224 × 224 pixels, as 

e employed early processing layers pre-trained on the ImageNet 

ataset, which consists of images of this size. Similarly, in the end- 

o-end DL approach images were resized to 224 × 224 pixels, with- 

ut prior cropping, and normalized as in the previous cases. 

.3. Lung segmentation 

When needed, to segment the lung we apply a semi-automatic 

pproach that initially delineates the lung borders using a U-Net, 

hich is a convolutional neural network architecture for fast and 

recise segmentation of images. In this respect, it is well known 

hat the semantic segmentation provided by this deep network has 

roven to have very satisfactory performance when using medical 
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Fig. 4. Example of the lung segmentation results. Green line: manual segmentation, 

red line: segmentation returned by the U-Net, blue line: bounding box from U-Net 

segmentation. For interpretation of the references to colour in this figure legend, 

the reader is referred to the web version of this article. 
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mages ( Zhou et al., 2018; Hesamian et al., 2019; Rajaraman et al., 

020a ). 

The network adopted here was already trained on non-COVID- 

9 lung CXR datasets, 2 namely the Montgomery County CXR set 

MC) ( Jaeger et al., 2014 ) and the Japanese Society of Radiological 

echnology (JSRT) repository ( Shiraishi et al., 20 0 0 ), using an Adam

ptimizer and with a binary cross-entropy loss function. Further- 

ore, during training, a random augmentation phase composed 

f rotation ( ±10 ◦), horizontal and vertical shift ( ±25 pixels), and 

oom (0–0.2) was applied. Furthermore, the batch size was set to 

 and the number of epochs was equal to 100. The MC dataset 

ontains 7470 CXR collected by the National Library of Medicine 

ithin the Open-i service, whereas the JSRT repository is com- 

osed of 247 CXR with and without a lung nodule. The U-net re- 

uires input images represented as 3-channel 256 × 256 matri- 

es and, hence, grayscale images were copied to all the channels 

nd then resized. Furthermore, we normalized the pixel intensities 

s detailed in Section 3.2 . After these transformations, each image 

as passed through the convolutional network and all the pixels 

ere classified as foreground (i.e. the lung) or as background. To 

heck if the network worked well, all the images in the reposi- 

ory were segmented by two expert radiologists working in paral- 

el using a consensus strategy ( Fig. 4 ), permitting us to assess the

-Net segmentation performance. We found that the network pro- 

ides a Jaccard index and a Dice score equal to 0.896 and 0.942, 

espectively. We deem that such performance are satisfactory since 

t is only needed to recover the bounding box, as in the hybrid ap-

roach presented below, while it would not be sufficient for exact 

ung delineation needed by the following handcrafted approach. 

.4. Feature selection and classifiers 

In general, we had a large number of descriptors that suggested 

s to apply a feature selection stage, which was set up in two 

teps. The first is a coarse step that runs a univariate filtering 

ased on mutual information as a score function to pre-select a 

educed set of image descriptors, whatever the approach used for 
2 The network is available as detailed in the reference denoted as Imlab- 

IIP (2020) . 

t

F

d

f

7 
heir computation. The calculation of mutual information between 

ontinuous features with the discrete class variable was addressed 

y estimating the entropy from the k-nearest neighbours distances 

 Ross, 2014 ). 

The second feature selection step merges the pre-selected imag- 

ng features with the clinical data. To this end, we applied a wrap- 

er approach, namely the Recursive Feature Elimination and Cross- 

alidated selection (RFECV) method ( Guyon et al., 2002 ), which re- 

eives as input the pre-selected imaging descriptors and the 34 

linical features. Indeed, the RFECV is fed by an increasing num- 

er of pre-selected imaging descriptors ( D pr ): fine-grained sam- 

ling was carried out for D pr ≤ 10 applying a step of 2; for 10 <

 pr ≤ 50 , D pr was sampled with step of 5; finally, RFECV was fed

ith all the image features. RFECV applies a pruning procedure 

hat starts considering all features in the dataset and recursively 

liminates the less important according to a feature’s importance 

core calculated using a classifier. Note that the optimal number of 

eatures is selected by RFECV using nested 5-fold cross-validation 

n the training set. With reference to the base learner we evalu- 

ted three different computational paradigms: Logistic Regression 

LGR); Support Vector Machines with a linear kernel (SVM); and 

andom Forests (RF). For all parameters in the adopted models we 

sed the default values provided by the libraries, without any fine 

uning. Indeed, we were not interested in the best absolute per- 

ormance. Moreover, Arcuri and Fraser (2013) empirically observed 

hat in many cases the use of tuned parameters cannot signifi- 

antly outperform the default values of a classifier suggested in the 

iterature. 

.5. Models validation 

Model validation for the three tested methods consists of k-fold 

nd leave-one-centre-out cross validation. For each cross-validation 

un, the training fold was used for data normalization, parame- 

ers’ estimation and/or features’ selection depending on the ap- 

lied method. Classification performance assessment was carried 

ut using testing fold data only; k-fold cross-validation was re- 

eated with k equal to 3 and 10 with 20 repetitions. In leave-one- 

entre-out (LOCO) cross validation, in each run the test set is com- 

osed of all the samples belonging to one centre only, while the 

thers were assigned to the training set. When needed, the vali- 

ation set was extracted from the training set using any policies 

such as random selection, hold-out, nested cross validation, etc.), 

nd considering also the computational burden. 

Performance of the learning models was measured in terms of 

ccuracy, sensitivity and specificity, reporting the average and stan- 

ard deviation of each experiment. When needed, we ran the pair- 

ise two-sided Mann Whitney U test to compare the results pro- 

ided by two methods, whereas we performed the Kruskal–Wallis 

est followed by the Dunn’s test with Bonferroni correction for 

ultiple comparisons. In the rest of the manuscript we assume 

hat the pairwise two-sided Mann Whitney U test was performed 

y default, otherwise we will specify the test used. 

.6. Handcrafted approach 

The handcrafted approach first computes parametric maps of 

he lungs segmented in the CXR image; second it extracts several 

eatures that are then provided together with the clinical data to a 

upervised learner. 

To segment the lung we applied the approach presented in 

ection 3.3 but, as mentioned there, we deem that the segmen- 

ation performance is not satisfactory for exact lung delineation. 

or this reason, the lung masks are then reviewed by expert ra- 

iologists and then used to compute the handcrafted features as 

ollows. 
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From the segmented lungs we computed the parametric maps 

sing a pixel-based approach as proposed by Penny et al. (2011) . 

ixels values of the parametric maps were obtained by comput- 

ng first- and second-order radiomic features on a 21 × 21 sliding 

indow running over each pixel of the entire lung region. First- 

rder measures describe the statistical distribution of tissue den- 

ity inside the kernel; from its grey levels’ histogram, we extracted 

8 descriptors, whose formal presentation is offered in the dedi- 

ated section of the supplementary file. Second-order descriptors 

re based on the Grey Level Co-occurence Matrix (GLCM): at each 

ocation, we got a GLCM image, where we computed 24 Haral- 

ck descriptors ( Haralick et al., 1973 ) detailed in the same section 

f the supplementary file, as before. This procedure returned 42 

arametric images (18 First-order + 24 GLCM) for each CXR im- 

ge, where we finally computed seven statistics, namely: mean, 

edian, variance, skewness, kurtosis, energy and entropy. This re- 

ulted in 294 image features (i.e. 7 statistics by 42 parametric 

aps). 

To cope with the large number of descriptors we proceeded as 

escribed in Section 3.4 , adopting the base learners already de- 

cribed there. Then, for each tested classifier, given the set and 

umber of descriptors selected by the wrapper approach in the 

ested cross-validation fashion, we trained the same classifier on 

he whole training fold and measured recognition performance on 

he test fold. 

.7. Hybrid approach 

The hybrid approach integrated the output of a pre-trained 

eep network and the set of clinical measures. The pipeline 

orked as follows: first, we applied a pre-trained deep neural net- 

ork to segment the lungs; second, a convolutional neural net- 

ork was trained to extract relevant features from the CXR im- 

ges; third, we concatenated the deep features with the clinical 

nes; fourth, we performed a feature selection step as reported 

n Section 3.4 ; fifth, we trained a supervised classifier to accom- 

lish the binary classification task. In the following we will illus- 

rate these steps. 

As mentioned before, the image repository is composed of CXR 

mages collected in multiple hospitals, using different machines 

ith different acquisition parameters. This resulted in a certain de- 

ree of variability among the images, where the lungs have also 

ifferent sizes. To cope with this issue, we adopted the segmen- 

ation net already discussed in Section 3.3 , which boosts the per- 

ormance of the feature extraction network by locating the lungs. 

ifferently from before, where the U-Net was used to pre-segment 

he lungs whose borders were manually refined, here we adopted 

 fully automated approach since the segmentation mask given 

y the network was used to extract the rectangular bounding box 

ontaining the ROI. Now there was no need for any manual inter- 

ention since the performance at the level of ROI bounding box 

egmentation was satisfactory, when compared with human’s an- 

otation. Indeed, the Jaccard index and the Dice score were now 

qual to 0.929 and 0.960, respectively. 3 

Next, each ROI was resized to a square so that the longest side 

f the ROI was mapped to the square side, and the other ROI side

as resized accordingly. Each cropped image was then passed to a 

eep neural network to extract the features, where we performed 

 transfer learning process as follows. Indeed, preliminary exper- 

ments showed that such an approach gave better results than 

tarting the training from scratch. 

Furthermore, to alleviate the risk of overfitting and reduced 

eneralization typical of learning models working with medical 
3 In only one case the segmentation network did not segment the lungs; in this 

ase, the entire original image is used. 

f

a

8 
mages, we pre-trained several state-of-the-art network architec- 

ures previously initialized on other repositories. To this end, we 

sed the chest X-ray images dataset presented by Mooney (2017) ; 

ermany et al. (2018) , which consists of 5863 CXR images classi- 

ed as pneumonia or normal by two expert physicians. This would 

llow the networks to learn modality-specific feature representa- 

ions ( Rajaraman et al., 2020a; 2020b ). After this step, such models 

ere fine-tuned on our image dataset. In a first stage we tested in 

0-fold cross validation these networks: Alexnet ( Krizhevsky, 2014 , 

GG-11, VGG-11 BN, VGG-13, VGG-13 BN, VGG-16, VGG-16 BN, 

GG-19, VGG-19 BN Simonyan and Zisserman, 2014 ), ResNet-18, 

esNet-34, ResNet-50, ResNet-101, ResNet-152 ( He et al., 2016 ), 

esNext ( Xie et al., 2017 ), Wide ResNet-50 v2 ( Zagoruyko and 

omodakis, 2016 ), SqueezeNet-1.0, SqueezeNet-1.1 ( Iandola et al., 

016 ), DenseNet-121, DenseNet-169, DenseNet-161, DenseNet-201 

 Huang et al., 2017 ), GoogleNet ( Szegedy et al., 2015 ), ShuffleNet v2

 Ma et al., 2018 ) and MobileNet v2 ( Sandler et al., 2018 ). Then, to

educe the computational burden, the top-five networks (i.e. VGG- 

1, VGG-19, ResNet-18, Wide ResNet-50 v2, and GoogleNet) under- 

ent all the experiments described in Section 3.5 . In all the cases, 

e changed the output layer of the CNNs, using two neurons, one 

or each class. Moreover, image standardization as described in 

ection 3.2 was performed. We also augmented the training data 

y independently applying the following transformations with a 

robability equal to 30%: vertical and horizontal shift ( −7, +7), y - 

xis flip, rotation ( −175 ◦, +175 ◦) and elastic deformation ( σ = 7 ,

= [20 , 40] ). Training parameters were: a batch size of 32 with 

 cross-entropy loss, a SGD optimizer with learning rate of 0.001 

nd momentum of 0.9, with max epochs sets equal to 300 and 

n early stopping criterion fixed at 25 epochs, using the accuracy 

n the validation set. In this respect, it is worth noting that we 

lso performed a preliminary optimization of CNN hyperparame- 

ers using Bayesian Optimization ( Mockus, 2012 ), and we found 

hat the results did not statistically differ from those achieved us- 

ng the aforementioned values, according to the Wilcoxon’s test 

with p = 0 . 05 ). Furthermore, this finding agrees also with what 

eported by Arcuri and Fraser (2013) , already summarized at the 

nd of Section 3.6 . 

Once the deep networks were trained, we integrated the auto- 

atic features they computed with the clinical information. To this 

oal, we extracted the last fully connected layer for each network, 

hich was used as a vector of features for each patient; accord- 

ngly, on the basis of the network we were using, the number of 

utomatic features varied between 512 and 4096 (i.e. it is 512 for 

esNet-18, 1024 for GoogleNet, 2048 for Wide-ResNet-50 v2, and 

096 for VGG-11 and VGG-19) Each of such sets of automatically 

omputed descriptors was combined with the clinical data and, to 

void to overwhelm the latter, the number of features in the for- 

er was reduced by a coarse selection stage using the univariate 

pproach already described in Section 3.4 . Furthermore, we then 

pplied the same wrapper approach to investigate if the combina- 

ion of automatic and clinical features had a degree of redundancy. 

traightforwardly, to avoid any bias all the operations described so 

ar were performed respecting the training, validation and test split 

ntroduced before, and ensuring that the test was not used in any 

tage except for the final validation. 

Finally, the selected features were used to classify each patient 

n the two classes already mentioned, i.e. mild and severe, as re- 

orted in the last part of previous subsection, and using the same 

earners already mentioned. 

.8. End-to-end deep learning (DL) approach 

The end-to-end DL approach was designed so that clinical in- 

ormation could influence the generation of useful features in im- 

ge classification and vice-versa. Two different variants have been 
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Fig. 5. Workflow of the end-to-end deep learning approach. 
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ested: in the first, CXR images were modified with the addition 

f an extra layer, in which pixels in fixed positions would code 

roperly normalized clinical information, while the remaining pix- 

ls were filled with uniform white noise. The second variant con- 

ists in a multi-input network, which received separately CXR im- 

ges and clinical information. Eventually, the latter variant proved 

o perform slightly better and it will be described in the following. 

The architecture we adopted is composed of three main sec- 

ions: one branch for each input accepts raw data and processes 

hem to obtain a small number of relevant features, while a fi- 

al common path concatenates the output features of the previ- 

us branches and uses them to provide the actual classification. A 

epresentation of the network can be found in Fig. 5 . 

Several different image classification networks have been tested 

VGGs, ResNet, Inception and Xception variants 4 ), with the ResNet- 

0 architecture resulting either the best performer or tied for best 

erformer in all considered conditions (see Supplementary Tables 

 and 6). 

The network has been adopted up to the last convolutional 

ayer, while the final fully-connected layer and classification sec- 

ion have been removed. The number of generated output features 

as been reduced by a dropout layer with probability of 0.5, fol- 

owed by a 256-neurons fully-connected layer, a leaky ReLU and a 

nal dropout layer with probability 0.25. 

All network tested were pre-trained on the ImageNet dataset, 

hen on the same publicly available repository of CXR images in- 

roduced in Section 3.7 with the task of discriminating between 

ealthy subjects and pneumonia patients ( Mooney, 2017 ); finally, 

he network was trained on the dataset presented here. We found 

hat, with our architecture, data augmentation did not improve fi- 

al classification performance and was, therefore, excluded from 

he processing pipeline. On the other hand, pre-training led to 

ore consistent results, as discussed in Section 5 . 

The clinical information branch is a multi-layer perceptron 

MLP): it is composed of a sequence of alternating fully-connected 

nd non-linear layers; the adopted architecture consists of three 

ully-connected layers of decreasing size (32, 16 and 12 neurons), 

lternating with Rectified Linear Units (ReLUs). 

The common section of the network consists of a concatena- 

ion layer, which receives a total of 268 inputs (256 from the im- 

ge branch and 12 from the clinical information branch) and feeds 

hem to the actual classification section of the network (2-neurons 

ully-connected, softmax and classification layers). 

In order to evaluate the impact of each data source, the model 

as trained as described above, as well as in two different ver- 

ions modified to accept one data source only (i.e. changes consists 

n removal of one input branch and concatenation layer and with 

 change in the number of neurons in the final fully-connected 

ayer). All versions underwent the same training procedure: a 20- 

pochs training phase with a SGD optimizer with a momentum set 

o 0.9. The weights used on the test set correspond with the iter- 
4 Please note that when using the Inception and Xception variants the input 

mages were resized to 299 × 299 rather than 224 × 224 , as already described in 

ection 3.2 . 
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9 
tion resulting in the lowest loss. The learning rate is fixed and 

qual to 10 −4 , while the batch size is set to 16. 

. Results 

This section reports the results attained using the three ap- 

roaches mentioned so far in staging the patients with COVID-19 

n severe and mild classes. The goal is to provide a baseline char- 

cterization of the performance achieved integrating quantitative 

mage data with clinical information by using state-of-the art ap- 

roaches. 

Tables 4 and 5 present the best recognition performance at- 

ained by each of the learning methods when the experiments 

ere executed according to the 10-fold and LOCO cross validation, 

espectively (see Section 3.5 for further details). In the former case, 

he results are averaged over the 20 repetitions. Furthermore, for 

he sake of readability we omit to report the results achieved us- 

ng the 3-fold cross validation since they are consistent with those 

erformed in the 10-fold fashion. For the sake of completeness the 

nterested readers can refer to the supplementary material to nav- 

gate all the results attained (Supplementary Tables 1, 3 and 5). 

The first two rows in both tables report the performance in dis- 

riminating between patients with mild and severe prognosis at- 

ained using clinical data only. In this respect, the row denoted 

y Machine Learning (ML) shows the best performance achieved 

y the RFECV and by the learners described in the last part of 

ection 3.6 , whereas the row denoted by Deep learning (DL) re- 

orts the performance returned by the multi-layer perceptron de- 

cribed in Section 3.8 . In the case of experiments performed in 10- 

old cross validation ( Table 4 ), the best accuracy is up to 75.7%,

t is attained by an SVM retaining on average 11 clinical features, 

nd the sensitivity and the specificity are almost balanced. This 

atter observation can be expected since the a-priori class distri- 

ution is not skewed. We also notice that the use of a deep net- 

ork is sub-optimal in the classification task based on clinical in- 

ormation alone: this is likely due to the fact that, in contrast with 

he image case, pre-training of the network was impossible, due to 

he custom nature of input data. As a consequence, it is possible 

hat the available number of samples was not sufficient to train 

he network to optimal performance. The same observations hold 

lso in the case of the experiments performed in a LOCO modal- 

ty ( Table 5 ), and it is worth noticing the performance drops for 

oth the ML and DL approaches. This can be due to the variation 

f data distribution among the centres, limiting the generalization 

apability of the learners. Again, the readers can refer to the sup- 

lementary material to navigate all the results attained in LOCO 

ross-validation (Supplementary Tables 2, 4 and 6). 

In both Tables 4 and 5 , the next two sections report the perfor-

ance attained by the three methods described in Section 3 using 

nly the CXR images and merging together the images with the 

linical data, respectively. With reference to the results reported in 

he section “CXR images”, they show that the use of the images 

nly does not achieve the same performance obtained using the 

linical data, whatever the method applied ( Table 4 ). Furthermore, 

he fact that the end-to-end DL has better results than the hy- 
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rid approach suggests that the fully connected portion of the CNN 

etter exploits than a supervised classifier the information pro- 

ided by the convolutional layers. In the case of the experiments 

erformed in LOCO modality, there are still gaps with the results 

chieved using clinical data only, suggesting that all the learners 

uffer from the variability induced by the different centres. Turn- 

ng our attention to the results shown in section “Clinical data and 

XR images”, in the case of the experiments performed in 10 fold 

ross validation we notice that the integration between the two 

ources of information provides some benefits, permitting in some 

ases to improve the classification performance. Indeed, the hybrid 

pproach achieves an accuracy up to 76.9%, using the automatic 

eatures computed by the convolutional layers of the GoogleNet 

nd an SVM classifier. The end-to-end DL approach slightly im- 

roves the performance with respect to the ones attained using 

nly the images, suggesting that an approach fully based on DNN is 

ot beneficial in this case, needing for further investigation. In the 

ase of the experiments run in LOCO mode we found that the inte- 

ration of clinical data and CXR images is beneficial as the largest 

ccuracy is up to 75.2%, with improvements in terms of sensitivity 

nd specificity. 

Furthermore, to see if there exists a statistically significant dif- 

erence between the various performance, we ran the Kruskal–

allis and the Dunn test with Bonferroni correction for multiple 

omparisons ( p < 0 . 05 ): the results are reported in the supple-

entary material (Supplementary Figs. 1, 2 and 3, which refer to 

he handcrafted, hybrid and end-to-end approaches, respectively). 

n the case of the handcrafted approach, this statistical analysis 

hows that in almost all the experiments the results achieved by 

he three learners (LGR, SVM and RF) are not different, at the 

iven significance level. In the case of the hybrid approach (Sup- 

lementary Fig. 2), we find that each of the best learner reported 

n Tables 4 and 5 has performances that are statistically different 

y large part of the other learners. In the case of the end-to-end 

pproach, Supplementary Fig. 3 shows that the ResNet50 provides 

erformance statistically different from the other architectures in 

ll the cases except one. 

As a final point, the results mentioned so far were achieved 

sing the following computational resources and deep learn- 

ng frameworks. For the handcrafted approach we used Python- 

.8.3, scikit-learn-0.23.1, pandas-1.0.5, numpy-base-1.18.5, and two 

VIDIA GeForce RTX 2080 Ti, each with 11 GB of memory. In the 

ase of the hybrid approach we used Python 3.7, PyTorch-1.8.1, 

cikit-learn-0.23.1, and an NVIDIA TESLA V100 with 16 GB memory. 

inally, for the end-to-end approach we used Tensorflow 1.4, Keras 

.1.5, sklearn 0.22.2, matplotlib 3.0.3 and an NVIDIA GTX 1080 Ti 

ith 8 GB memory. 

. Discussion 

This study originated during the first wave of infection in Italy 

ccurring in early spring, 2020, when thousands of people arrived 

very day in hospitals. Despite their apparently similar conditions, 

ome lived the infection as a seasonal flu while others rapidly de- 

eriorated, making intensive care necessary. This situation is com- 

on worldwide and, to fight the pandemic, in the last months the 

hole scientific community has carried out relevant research ef- 

orts in different fields of knowledge. 

Artificial intelligence is one of the scientific disciplines that 

as been attracting more attention, offering the possibility to 

rocess and extract knowledge and insights from the massive 

mount of data generated during the pandemic, and it has mostly 

mpacted prediction, diagnosis and treatment. Within this con- 

ext, large effort s have been directed towards the analysis of ra- 

iological images and, according to the analysis presented by 

reenspan et al. (2020) , detection of COVID-19 pneumonia in both 
10 
T and CXR ( Minaee et al., 2020; Zhang et al., 2020 ) is the field

here large research has been directed to. Recently, there has been 

rowing interest in the development of AI models to predict the 

everity of the COVID-19 infections because of the pressure on the 

ospitals, where even during the second pandemic wave we have 

ssisted to an increasing demand for beds in both ordinary wards 

nd intensive care units. The few papers available in this field use 

T images, but several guidelines and statements do not encourage 

he use of CT over CXR ( Rubin et al., 2020 ) and, for several prac-

ical reasons, CXR imaging is used due to the difficulty of moving 

edridden patients, the lack of CT machine slots, the risk of cross- 

nfection, etc. 

To deal with this issue, here we have investigated different AI 

pproaches mining CXR examinations and clinical data to predict 

he prognosis of 820 patients, whose data come from a multicentre 

etrospective study including 6 Italian hospitals. The results pro- 

ide to researchers and practitioners a baseline performance refer- 

nce to foster further studies. 

With reference to the results attained by the AI approaches that 

rocess the clinical data only, using a normalized unitary scale 

ig. 6 shows the rate each clinical descriptor was included in the 

elected feature subset by the RFECV wrapper, distinguishing also 

er classifier used. The figure shows the cumulative results ob- 

erved running both the 10-fold and LOCO cross validation ex- 

eriments. We opted for this cumulative representation since the 

rend is very similar in both the experiments. Furthermore, the 

eaders can find in the figure also the set of biomarkers providing 

he best performance shown in the first section of Tables 4 and 

 , which are denoted by reporting before an “∗” or a “+” for 10- 

old and LOCO cross validation experiments, respectively. Interest- 

ngly, Fig. 6 shows that age, LDH and O 2 , were chosen in every fold

or all the classifiers. If we used only such three descriptors, the 

verage classification accuracy attained by learners in 10-fold and 

OCO cross validation is equal to 0 . 74 ± 0 . 05 and to 0 . 70 ± 0 . 10 , re-

pectively. Moreover, sex, dyspnoea and WBC were always selected 

y the wrapper with the SVM and RF, whereas the D-dimer was 

lways selected by the logistic regressor and by SVM. Oppositely, 

eart failure and cough were scarcely selected. Notably, some fea- 

ures such as LDH, D-dimer and SaO 2 were selected very frequently 

espite a high fraction of data was obtained by imputation (see 

able 2 ). We deem that is mostly related to the strong differences 

n the distributions of these features between the two classes. 

Fig. 6 also shows in dark blue the clinical feature relevance es- 

imated by the deep learning approach (DL series). In this case the 

eature relevance was estimated as the maximum across neurons 

f the absolute value of the weights in the perceptron first layer. 

esults have been averaged over cross-validation folds and repeti- 

ions and rescaled to the [0,1] interval in order to match the other 

hree series. Comparing the results with those obtained with the 

FECV wrapper, it is clear that the only feature with the max- 

mum relevance for all approaches is LDH, while sex, dyspnoea, 

BC and CRP present a score higher than 0.5 in all series. The 

mpact of the other clinical attributes appears to vary significantly 

epending on the adopted approach. For example, a high value 

f D-dimer and WBC have shown to be an important risk fac- 

or for negative outcome ( Henry et al., 2020; Petrilli et al., 2020; 

hang et al., 2020 ). Furthermore, D-dimer, WBC and other clini- 

al features like dyspnoea and LDH are indicators of pulmonary 

ompromise, infection, tissue damage ( Li et al., 2020 ) and a pro- 

hrombotic state ( Naymagon et al., 2020 ) respectively. Finally, from 

ur first statistical analysis ( Section 2.1 ) of the dataset and from 

he result is shown in Fig. 6 the patient gender showed to have 

n in important role in classifying the patient severity. The rea- 

ons behind this difference appear to be related to the stark differ- 

nce in immune system responses, with females causing stronger 

mmune responses to pathogens. This difference can be a major 
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Fig. 6. Clinical feature importance represented by the rate each descriptor was selected by the RFECV wrapper during both the 10-fold and LOCO cross validation experiments 

using the three classifiers (LGR, SVM and RF series). The DL series represents feature importance estimated as the maximum absolute value of weights in the first layer of 

the perceptron of the DL network, after averaging over folds and repetitions and rescaling in the [0,1] interval. Moreover, the “∗” or a “+” reported before each feature name 

means that it is included in the feature set used to get the best handcrafted results reported in the first section of Tables 4 and 5 , respectively For interpretation of the 

references to colour in this figure legend, the reader is referred to the web version of this article. 

Table 4 

Best recognition performance attained by each of the learning methods when the experiments were executed according to the 

10-fold cross-validation (20 repetitions). In the second column, ML and DL stands for Machine-Learning and Deep Learning, 

respectively. The last column reports the learners providing the results shown here. 

Input data Approach Accuracy Sensitivity Specificity Learner 

Clinical data ML 0 . 757 ± 0 . 008 0 . 760 ± 0 . 007 0 . 754 ± 0 . 011 SVM 

DL 0 . 684 ± 0 . 019 0 . 753 ± 0 . 020 0 . 654 ± 0 . 012 MLP 

CXR images Handcrafted 0 . 658 ± 0 . 015 0 . 676 ± 0 . 016 0 . 638 ± 0 . 019 LGR 

Hybrid 0 . 728 ± 0 . 038 0 . 769 ± 0 . 072 0 . 680 ± 0 . 076 VGG-11 + RF 

End-to-end 0 . 742 ± 0 . 010 0 . 748 ± 0 . 019 0 . 738 ± 0 . 013 Resnet50 

Clinical data and CXR images Handcrafted 0 . 755 ± 0 . 007 0 . 758 ± 0 . 008 0 . 753 ± 0 . 013 SVM 

Hybrid 0 . 769 ± 0 . 054 0 . 788 ± 0 . 064 0 . 747 ± 0 . 059 GoogleNet + SVM 

End-to-end 0 . 748 ± 0 . 008 0 . 745 ± 0 . 017 0 . 751 ± 0 . 015 Resnet50 + MLP 

Table 5 

Best recognition performance attained by each of the learning methods when the experiments were executed according to 

the LOCO cross-validation. In the second column, ML and DL stands for Machine-Learning and Deep Learning, respectively. 

The last column reports the learners providing the results shown here. 

Input data Approach Accuracy Sensitivity Specificity Learner 

Clinical data ML 0 . 734 ± 0 . 044 0 . 699 ± 0 . 158 0 . 795 ± 0 . 136 SVM 

DL 0 . 663 ± 0 . 016 0 . 709 ± 0 . 032 0 . 644 ± 0 . 018 MLP 

CXR images Handcrafted 0 . 625 ± 0 . 083 0 . 641 ± 0 . 159 0 . 644 ± 0 . 200 SVM 

Hybrid 0 . 693 ± 0 . 053 0 . 806 ± 0 . 161 0 . 549 ± 0 . 213 Vgg11 + SVM 

End-to-end 0 . 705 ± 0 . 010 0 . 720 ± 0 . 011 0 . 696 ± 0 . 015 Resnet50 

Clinical data and CXR images Handcrafted 0 . 752 ± 0 . 067 0 . 711 ± 0 . 165 0 . 824 ± 0 . 154 LGR 

Hybrid 0 . 743 ± 0 . 061 0 . 769 ± 0 . 189 0 . 685 ± 0 . 155 GoogleNet + LGR 

End-to-end 0 . 709 ± 0 . 005 0 . 734 ± 0 . 018 0 . 696 ± 0 . 009 Resnet50 + MLP 
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ontributing factor to viral load, disease severity, and mortality. 

urthermore, differences in sex hormone environments could also 

e a determinant of viral infections as oestrogen has immune- 

timulating effects while testosterone has immune-suppressive ef- 

ects ( Pradhan and Olsson, 2020 ). 

To deepen the use of semantic data as model input we take also 

nto consideration the CXR radiological severity score proposed by 

ong et al. (2020) and further investigated by Orsi et al. (2020) . 

o this goal, an expert radiologist with more than 10 years of ex- 

erience assigned such lung damage burden score to a cohort of 

40 images randomly selected from the dataset. Then, this score 
11 
s added to the clinical feature set as an additional image-derived 

eature. An SVM with the REFCV feature selection, which is the 

est performing architecture on clinical data as shown in Table 4 , 

s used to classify the samples in 10-fold cross-validation with 

0 repetitions according to the following three different experi- 

ents. First, to have a performance baseline, we ran again the 

xperiment on this subset of images using the clinical features 

nly (first row of Table 6 ); second, we test what happens us- 

ng such score only (second row of Table 6 ); third, we ran an-

ther experiment using a feature set given by the clinical de- 

criptors plus the radiological score (last row of the same ta- 
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Table 6 

Recognition performance attained on a cohort of 240 images from the whole dataset 

when the human-based CXR radiological score proposed by Wong et al. (2020) and 

Orsi et al. (2020) is added to the clinical data. 

Input data Accuracy Sensitivity Specificity 

Clinical data 0 . 728 ± 0 . 018 0 . 701 ± 0 . 039 0 . 758 ± 0 . 032 

Only radiological score 0 . 718 ± 0 . 021 0 . 682 ± 0 . 032 0 . 750 ± 0 . 023 

Clinical data + radiological score 0 . 719 ± 0 . 021 0 . 720 ± 0 . 030 0 . 724 ± 0 . 018 

Fig. 7. Importance of clinical and handcrafted (panel A) or automatically learnt features (panel B) measured as the rate each descriptor was selected by the RFECV wrapper 

during the 10-fold and LOCO cross-validation experiments considering all the three classifiers employed. The y axis scale is normalized to one. Moreover, we add a “∗” or a 

“+” before each feature name if it is included in the feature set used to get the best handcrafted or hybrid results reported in the last section of Tables 4 and 5 , respectively. 
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le). It is worth noting that in this last experiment the severity 

core is included in the set of selected features in 184 out of the 

00 runs. The results show that the CXR severity score provides 

ower performance than the use of clinical descriptors only, re- 

ardless if it is used alone or in conjunction with such descrip- 

ors. Furthermore, the accuracies are not statistically different ac- 

ording to the Kruskal–Wallis test ( p = 0 . 545 ). A Dunn’s test with

onferroni correction confirmed the result. This suggests that the 

se of a human-based score assessing lung damage burden is not 

eneficial. 

With reference to the results attained by the handcrafted ap- 

roach, we found that the best results in terms of accuracy are 

tatistically lower than those attained by the clinical descriptors 

 p < 0 . 001 and p < 0 . 05 for 10-fold and LOCO cross validation, re-

pectively). 
12 
The approach that computes handcrafted features from the im- 

ges also unfavourably compares with those using CNNs. Indeed, 

omparing with the hybrid and the end-to-end DL approaches we 

ound that the performances are statistically different in both the 

0-fold and LOCO cross validation tests, as we always got p < 0 . 05 .

o statistically different performances were found, instead, be- 

ween the end-to-end and hybrid approaches. 

Furthermore, Fig. 7 a shows the feature importance of the 40 

ost selected handcrafted descriptors by the RFECV wrapper dur- 

ng the experiments in 10-fold and LOCO cross-validation. The fea- 

ure relevance is computed as the number of times a feature is 

ncluded in the selected subset during all the experiments per- 

ormed using all the learners and, for the sake of clarity, all the 

alues are normalized in [0,1]. The plot shows that the top-five 

escriptors most frequently detected as discriminative are clini- 
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Fig. 8. Variation of the average classification accuracy (blue bars) with the number of features feeding the RFECV wrapper. The red and green curves show the number of 

clinical and texture features selected by the RFECV wrapper, respectively. The experiments plotted here refer to the best results shown in Table 4 integrating clinical and 

imaging features for the handcrafted (panel A) and hybrid approach (panel B). For interpretation of the references to colour in this figure legend, the reader is referred to 

the web version of this article. 
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al measures, followed by several texture measures almost equally 

istributed between the first- and second-order measures. For the 

ake of completeness, in this figure on the x-axis we add a “∗” or a

+” before each feature name when it is included in the feature set 

sed to get the best results by combining handcrafted measures 

rom CXR images and clinical data, reported in the last section of 

ables 4 and 5 , respectively. 

We now analyse how the performance of the handcrafted ap- 

roach vary with the number of features selected by the coarse 

tep, which fed the fine selection based on the RFECV method, 

s described in Section 3.6 . To this end, Fig. 8 a reports on the x-

xis the number of features in input to the RFECV, which ranges 

rom 36 (i.e. 34 clinical plus 2 texture measures) up to 84 (i.e. 34 

linical plus 50 texture measures), plus the last value where the 

FECV received all the clinical and all the image features. 5 The bars 

how the average classification accuracy ( y -axis, left side), while 

he curves in red and green show the average number of clinical 

nd handcrafted texture features selected by the RFECV, respec- 
5 The experiments plotted in Fig. 8 a refer to the best results shown in Table 4 in- 

egrating clinical and imaging features by the handcrafted approach. 

1  

w  

u

v

13 
ively ( y -axis, right side). As already noticed in Table 4 , the use of

exture measures does not improve the performance attained using 

he clinical descriptors; this is also confirmed by observing that, as 

he number of input features increases, the wrapper tends to select 

ore imaging biomarkers than clinical ones, dropping the perfor- 

ance. This may remark the importance of using both clinical and 

maging biomarkers since they may provide complementary infor- 

ation: while the former, and especially comorbidities, refers to 

he functional reserve of the patient, the latter may quantify the 

ctual impact on the lungs. Indeed, fit patients with severe infec- 

ion and damage are as likely as unfit-patients with less severe in- 

ections to have a poor prognosis. Although not reported, similar 

onsiderations can be derived in the case of LOCO cross-validation 

here we noticed that the best performances are attained by an 

lmost balanced number of clinical and imaging features. 

With reference to the results attained by the hybrid approach 

n the CXR images only, we found that the best results are sta- 

istically lower than those attained by the clinical descriptors for 

0-fold cross validation ( p < 0 . 001 ) but no differences were found

ith LOCO cross validation ( p = 0 . 24 ). Among the three learners

sed with the hybrid approach, the best results with 10-fold cross 

alidation are obtained with RF ( p < 0 . 001 , Kruskal–Wallis and 
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Fig. 9. Two examples of the activation maps provided by the Grad-CAM approach, using all the neurons in the dense layer of the CNN dense layer or all the 40 neurons 

selected by the RFECV wrapper. 
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unn’s test) while no differences were found with LOCO valida- 

ion. Furthermore, comparing with a full DL approach, the hybrid 

rovide lower performance ( p < 0 . 05 and p = 0 . 24 for 10-fold and

OCO cross validation, respectively), suggesting that a fully con- 

ected layer better exploits the automatic features computed by 

he convolutional layers of the CNNs. As in Fig. 7 a, we show in

ig. 7 b the feature importance of the 40 most selected descriptors 

y the RFECV wrapper during the experiments in 10-fold and LOCO 

ross-validation using the GoogleNet. The plot shows that the fea- 

ures most frequently detected as discriminative are clinical mea- 

ures with some neurons of the dense layer that, although few in 

umber, permits to improve the classification accuracy. To deepen 

he results, Fig. 9 shows how much the selected neurons contribute 

o the network predictions. To this goal, we first depict the regions 

f input that are important for outputs provided by the CNN (pan- 

ls a and c in the figure) by applying the Gradient-weighted Class 

ctivation Mapping (Grad-CAM) approach Selvaraju et al. (2017) . In 

 nutshell, Grad-CAM uses the class-specific gradient information 

owing into the final convolutional layer to produce a coarse lo- 

alization map of the relevant regions in the image. Next, we ran 

he same algorithm using only the 40 neurons in the dense layer 

hat were mostly selected by the RFECV wrapper (panels b and d in 

he same figure). The visually inspection of the figure shows that 

he regions activated by the 40 neurons cover most of the areas 

ctivated by the whole dense layer, confirming that the wrapper 

orrectly identifies the neurons carrying most of the information. 

inally, as in Fig. 8 a and b shows that using all the features auto-

atically learnt does not help the learner improving the accuracy, 

hilst a limited and small number of descriptors is beneficial. 

Still with reference to the handcrafted approach, in 

ection 3.3 we reported that lung segmentation performance 

ttained by the U-Net are satisfactory to recover the bounding 

oxes of the lungs, which are then given as input to the CNN 

erforming the feature computation. To deepen this issue we 

nvestigate if the use of lung regions automatically segmented 

ifferently impacts the final performance with respect to the use 

f lung masks manually delineated. To this goal, we use the best 

odel combination of the hybrid approach shown in Tables 4 and 

 where, however, the CNN is applied on lung regions manually 

egmented. The results are reported in Supplementary Table 7, 

nd they show that the performance attained are almost the same 

r even slightly worse than those achieved using automatically 

egmented lung regions ( Tables 4 and 5 ). Furthermore, we also 

nd that such differences are not statistically significant according 

o Wilcoxon’s test with p = 0 . 05 , except for one case where the re-

ults correspond to a classifier with lower performance than those 

eported before, and obtained using the automatic segmentation. 

The end-to-end deep learning approach was built with the in- 

uition that, through joined training of clinical information and im- 

ges, it would be possible to generate better features for classifica- 

ion than by using either source alone. This idea was at least partly 

indicated, as the classification results for the fully-DL approach 
14 
roved higher for the combined approach than from either single 

ource in the 10-fold cross-validation scenario ( p = 0 . 02 ) and, ar-

uably, for the LOCO case, as well ( p = 0 . 06 ). 

Furthermore, as already mentioned, classification accuracy from 

mages alone is better than other methods, confirming the well- 

stablished finding that CNNs are powerful approaches for im- 

ge classification. Oppositely, a neural network-based approach 

uffered particularly in achieving good performance with clini- 

al information as inputs. The most likely cause for this under- 

erformance is the fact that the clinical information structure is 

ot standard and, therefore, it was impossible to adopt already 

ested network models and, more importantly, to pre-train the net- 

ork on other datasets. It is likely that further fine-tuning of the 

esign and training procedure of the custom multi-layer percep- 

ron adopted for clinical-info classification could further improve 

esults both with this specific input source, as well as for the com- 

ined model. A similar result is expected with an increase in size 

f the available dataset, as this section of the network did not un- 

ergo any pre-training, as mentioned above. 

We now delve into the effect of pre-training the CNNs 

n another CXR dataset, that would help the models learning 

odality-specific feature representations, as already mentioned in 

ections 3.7 and 3.8 . In the case of the hybrid approach we did not

nd any significant difference in the performance achieved with 

nd without this step: for instance, when using pre-training and 

he same configuration providing the best result using CXR images 

n 10-fold cross-validation (fourth line in Table 4 ) we get an accu- 

acy equal to 0 . 712 ± 0 . 047 . Similarly, in the case of using clinical

ata and CXR images (seventh line in Table 4 ) we get an accuracy 

qual to 0 . 768 ± 0 . 036 when we pre-trained the CNN. In the case

f the end-to end approach, as already mentioned in Section 3.8 , 

re-training led to more consistent, but not better results. In fact, 

ccuracy over 20 repetitions averages to 0 . 742 ± 0 . 001 when pre- 

raining on Mooney’s database, while training directly from the 

mageNet weights result in 0 . 741 ± 0 . 002 average accuracy; me- 

ian values are not statistically different (Wilcoxon’s rank sum test 

-value: 0.45), but results are more consistent across repetitions 

hen pre-training is introduced (standard deviation of accuracy 

cross repetitions is almost halved). 

Let us now discuss how performances vary when Anterior Pos- 

erior (AP) and Posterior-Anterior (PA) projections are used. To this 

oal, we measure the performance for each of the best learn- 

rs reported in Tables 4 and 5 distinguishing between the accu- 

acies achieved on AP and PA images belonging to the different 

ross-validation instances of the test sets or to the different cen- 

res involved. The results, detailed in the supplementary mate- 

ial, show that in most of the cases the accuracies obtained on 

he AP images are larger than those achieved on the PA images; 

evertheless, the AP scores are not so larger than the average re- 

ults shown in Tables 4 and 5 . Although AP images were mainly 

sed for acquisitions of bedridden patients using portable ma- 

hines producing a poorer quality image when compared with a 
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6 We offer Reviewers the possibility to navigate within the dataset using this 

anonymous link. 
A chest radiograph performed in a dedicated radiography facility 

 Cleverley et al., 2020 ), we deem that the larger accuracies they 

rovide are due to their larger prior probability than the PA pro- 

ections in the available repository ( Table 1 ). This should support 

he proposed approach because the use of AI has revealed the pos- 

ibility to predict the prognosis of the patients even in spite of the 

imitations of AP CXR scans, e.g. their more difficult interpretation 

nd the sub-optimal imaging resulting from patient’s positioning 

hat may reduce inspiratory effort ( Cleverley et al., 2020 ). 

Finally, let us now focus on the population characteristics, 

here we found interesting reports on the age and gender distri- 

ution. Women were both less and older, suggesting that they be- 

ome less ill and suffer from more serious conditions at an older 

ge than men; also the women mortality was lower, as 72% were 

ale confirming the male mortality reported in China (73%) by 

hen et al. (2020) . The male-related susceptibility and the higher 

ale-mortality rate was also reported by Borges do Nascimento 

t al. (2020) , who analyses the data of 59254 patients from 11 

ifferent countries. The second main finding was that 87% of pa- 

ients had at least one comorbidity ( Fig. 3 ), suggesting that, in 

ost cases, the conditions leading to hospitalisation occur in pa- 

ients with coexisting disorders. The most common disease (in 

5% of cases) was hypertension, confirming the results reported by 

ang et al. (2020a) , who meta-analysed the data of 1576 infected 

atients from seven studies and reported an hypertension preva- 

ence of 21%. 

This study has also some limitations. First, patient enrolment 

as not globally randomized but instead conducted to populate 

he two classes with a roughly homogeneous number of cases. This 

mplies that training data do not reflect the true a-priori proba- 

ilities of the target classes. On the other hand, sampling within 

he mild and severe classes is unbiased because patients were ran- 

omly enrolled. 

Although this may bias the estimate of classification accuracy, 

here exist methods for adjusting the outputs of a trained classi- 

er with respect to different prior probabilities without having to 

etrain the model, even when these probabilities are not known in 

dvance ( Latinne et al., 2001 ). 

A further limitation but, from another point of view a key fea- 

ure of the study, is the lack of full standardization of images and 

linical data in the dataset. The dataset was built during spring 

020 when Italy was under lockdown and Italian hospitals and 

octors were under pressure due to the huge amount of patients 

equiring hospitalization. Under these circumstances, full standard- 

zation of clinical data collection and images acquisition could not 

e achieved, and we decided to collect CXR images gathered under 

ny conditions and all the clinical data most commonly acquired 

t the time of patients hospitalization. This led to a dataset that 

eflects these circumstances with many missing values among clin- 

cal data and images acquired with unstandardized clinical proto- 

ol (i.e. patient position and breath holding) and various devices. 

lthough on the one side this may represent a limitation, on the 

ther side it may be an advantage because this dataset could chal- 

enge the AI community on real data collected under critical cir- 

umstances. Another limitation may be the ever-changing land- 

cape of the pandemic. Compared to the first wave, in many coun- 

ries, and especially in Europe, the second wave has been charac- 

erised by younger patients with early symptoms in the emergency 

epartment. This may suggest to periodically re-train the learners 

o follows the disease evolution, or to investigate the use of meth- 

ds able to cope with concept drifts ( Lu et al., 2018 ). 

.1. Take-home messages and future works 

In this preliminary analysis the use of image-derived data pro- 

ide reduced predictive performance improvement with respect to 
15 
he use of clinical data alone. The analysis of clinical data, instead, 

howed that a number of measures have robust predictive poten- 

ial. Clinical data such as Age, LDH, O 2 , Dyspena, Sex, WBC, D- 

imer, SaO 2 are consistently selected across the different validation 

onditions and classifiers tested in this work, representing a set of 

iomarkers that can have impact in the clinical practice helping 

hysicians and care-managers planning the bed allocations. Fur- 

hermore, the use of experts based score of lung damage burden 

as not found to be beneficial. 

The poor standardization of images in the dataset could be a 

ossible cause of the results attained here, as it has led to a clas- 

ification problem hard to be addressed by the tested approaches. 

ndeed, beyond the variability introduced by non-standardized ac- 

uisition conditions such as patient positions and imaging device, 

he number of various medical devices, metal objects and other 

rtefacts (e.g. pacemakers, catheters, prosthesis, etc.) that can be 

bserved within the field of view are additional sources of diffi- 

ulty for the learners. This suggests to further explore the dataset 

y using methods that can manage such variability, for instance by 

isregarding those images not meeting some quality criterion that 

an be learnt in parallel with the classification task. With reference 

o the approaches investigated here, deepening how data augmen- 

ation impact network training, performing ablation studies on the 

ybrid approach as well as on network sizes for the end-to-end 

L procedure are future directions of investigation. Furthermore, 

o improve the quality of DNNs we deem that joint learning could 

e another direction of investigation, enabling the possibility to ex- 

ract correlated information across clinical and imaging data to the 

sed to enforce the network weights to be shared across these net- 

orks. 

In conclusion, the dataset presented here is unique, offering a 

arge number of CXR for prognostic purposes, placing side by side 

ith similar effort s that use CT images ( Chassagnon et al., 2020 ),

nd making available even more images. While this repository lets 

he machine learning community to challenge their methods with 

oorly standardized data, the efforts to collect a large repository 

annot be afforded by such community, asking for the collabora- 

ion of researchers from different backgrounds, clinicians, and in- 

titutes. This is what we have started to carry out by promoting 

his long-term initiative that is still collecting other images to be 

dded to the repository used here, as described in the next sec- 

ion. Furthermore, the quantitative results reported offer a prelim- 

nary evaluation of the prognostic performance attainable using AI 

pproaches spanning from the use of handcrafted image descrip- 

ors to a fully automatic approach based on DNNs. The use of AI in 

his domain can open the chance to develop fast and low-cost clin- 

cal protocols, and the future availability in the repository of more 

nnotated images will foster further research to obtain consistent 

esults from the imaging contribution to the outcome prediction. 

ata availability 

The dataset generated and analysed in this study is publicly 

vailable to members of the scientific community upon request at 

iforcovid.radiomica.it . 6 Beyond that, we encourage other hospitals 

nd clinical centres to join the network to share their data; in this 

ase, contacts for data sharing are also available on the website. 

s mentioned in Section 2 , the dataset contains the CXR images, 

he clinical data listed in Table 2 , the labels, the blind association 

etween each image and the acquisition centre, and the acquisi- 

ion information. The manual segmentation masks mentioned in 

ection 3.6 are not publicly available at the time this manuscript 

s submitted, and they will be added later on. 
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