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Abstract

Staphylococcus aureus formed bacterial aggregates in the plasma fraction of the hemo-

lymph of silkworm, the larva of Bombyx mori, in a growth-dependent manner. The addition

of arabinose or galactose inhibited the formation of S. aureus aggregates in the silkworm

plasma. Formation of the bacterial aggregates depended on S. aureus genes required for

the synthesis of bacterial surface polysaccharides–ypfP and ltaA, which are involved in lipo-

teichoic acid synthesis, and the tagO gene, which is involved in wall teichoic acid synthesis.

These findings suggest that S. aureus forms bacterial aggregates in the silkworm plasma

via bacterial surface teichoic acids.

Introduction

Staphylococcus aureus is a human pathogenic bacterium that exists in the nares of 30% healthy

persons and causes various diseases such as pneumonia, meningitis, and sepsis in immuno-

compromised patients. Since the 1960s, methicillin-resistant S. aureus (MRSA) has infected

many people in hospitals and clinical care facilities, and a new type of MRSA, called commu-

nity-acquired MRSA, has emerged in the last two decades, infecting healthy persons in the

general population [1]. Overcoming S. aureus infectious diseases will require a comprehensive

understanding of the detailed molecular mechanisms underlying S. aureus virulence.

S. aureus forms aggregates in mammalian blood plasma, which is called the “coagulase reac-

tion” [2]. The coagulase reaction is an important clinical feature for identifying S. aureus [3–

5]. S. aureus aggregation caused by the coagulase reaction facilitates bacterial escape from host

immune responses and contributes to S. aureus virulence [6–8]. Thus, clarification of the

molecular mechanism of the aggregation reaction of S. aureus in animal blood plasma is

important for understanding S. aureus virulence. Although many molecular aspects of the

coagulase reaction in mammalian plasma have been studied, it has remained unclear whether

S. aureus forms aggregates in the plasma fraction from animals other than mammals.

Animal infection models are essential for investigating the virulence mechanism of human

pathogenic bacteria, but the use of mammals such as mice is limited due to ethical and eco-

nomical issues. On the other hand, large numbers of invertebrate animals such as silkworms,

fruit flies, and nematodes, which share similar innate immune systems with mammals, can be
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used more easily, and have been used as animal models of human pathogenic bacterial infec-

tion [9, 10]. We have used silkworms to investigate the virulence system of S. aureus and the

host innate immune system against S. aureus [9, 11]. S. aureus novel virulence factors identi-

fied by using a silkworm infection model contribute to S. aureus virulence in mice [12–15].

Lipid carrier proteins of both silkworms and mice suppress S. aureus virulence [16–18]. These

findings suggest the usefulness of the silkworm infection model to investigate S. aureus-host

interactions [19]. In the present study, we investigated whether S. aureus forms aggregates in

silkworm plasma. We observed S. aureus aggregation in silkworm plasma and demonstrated

the requirement of S. aureus genes involved in synthesis of teichoic acid, an S. aureus cell sur-

face polysaccharide, for S. aureus aggregation.

Materials and methods

Bacterial strains and culture conditions

S. aureus was aerobically cultured in tryptic soy broth (TSB) at 37˚C using an air shaker at a

speed of 150 rpm (BR-3000LF, TAITEC, Tokyo, Japan). To culture S. aureus gene knockout

strains, TSB was supplemented with 10 μg/ml erythromycin. The bacterial strains and plas-

mids used in this study are shown in Table 1.

Construction of S. aureus gene knockout strains

S. aureus gene-knockout mutant was constructed as we previously reported with minor modi-

fications [12]. An internal region of the ypfP or ltaA gene was amplified by polymerase chain

reaction (PCR) from the RN4220 genome as a template using oligonucleotide primers

(Table 2). The amplified DNA fragment was inserted into pMutinT3, resulting in pT0875R or

pT0874. S. aureus RN4220 strain was electroporated with pT0875R or pT0874 by using an

Table 1. List of bacterial strains and plasmids used.

Strain or plasmid Genotypes or characteristics Source or reference

Strains

S. aureus
RN4220 NCTC8325-4, restriction mutant [41]

M0875 RN4220 ΔypfP::pT0875R This study

M0874 RN4220 ΔltaA::pT0874 This study

M0702 RN4220 ΔtagO::pT0702 [42]

MSSA1 Methicillin-sensitive clinical isolate [43]

NCTC8325-4 NCTC8325 cured of ϕ11, ϕ12, and ϕ13 [41]

COL Methicillin-resistant clinical isolate [44]

Plasmids

pMutinT3 Suicide vector for gene-disruption; Ampr, Ermr [45]

pT0875R pMutinT3 with partial ypfP gene from RN4220 This study

pT0874 pMutinT3 with partial ltaA gene from RN4220 This study

pT0702 pMutinT3 with partial tagO gene from RN4220 [42]

pHY300 E. coli-S. aureus shuttle vector; Ampr Tetr Takara Bio

pypfP pHY300 with intact ypfP from RN4220 [42]

pltaA pHY300 with intact ltaA from RN4220 This study

ptagO pHY300 with intact tagO from RN4220 [42]

Amp: ampicillin, Erm: erythromycin, Cm: chloramphenicol, Tet: tetracyclin.

https://doi.org/10.1371/journal.pone.0217517.t001
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electroporator (Gene Pulser Xcell, BIO-RAD) in 0.2 cm cuvette at 2.3 kV, 25 microfarads, and

100O, of which condition was slightly modified from our previous method [20]. The electro-

porated cells was immediately suspended in B2 broth (Casamino acids, 10g/l; Yeast extract,

25g/l; K2HPO4, 1g/l; Glucose, 5g/l; NaCl, 25g/l)[21] and incubated for 1 h at 37˚C. The cells

were spread on TSB agar plates containing 10 μg/ml erythromycin and the plates were incu-

bated at 37˚C for more than 2 days and colonies were obtained. The single colony was cultured

overnight in TSB medium supplemented with 10 μg/ml erythromycin at 37˚C and the prolifer-

ated bacterial cells were treated with 10 μg/ml lysostaphin. The genomic DNA was extracted as

reported previously [22]. The gene knockout was confirmed by Southern blot analysis.

Construction of a plasmid carrying the ltaA gene

To construct pltaA containing the ltaA gene with the native promoter, DNA fragment contain-

ing the native promoter and the ypfP-ltaA operon was amplified by PCR from the RN4220

genome using oligonucleotide primer pairs (ypfPltaAcomp-F and ypfPltaAcomp-R) and KOD

plus DNA polymerase (TOYOBO co. ltd., Osaka, Japan) (Table 2). The amplified DNA frag-

ment was inserted into pHY300, resulting in pypfP-ltaA. To remove the ypfP region from

pypfP-ltaA, DNA fragment without the ypfP region was amplified by PCR from pypfP-ltaA

using ologonucleotide primer pairs (ypfPdel-F and ypfPdel-R) (Table 2) and self-ligated,

resulting in pltaA.

Preparation of silkworm plasma

Fertilized eggs of silkworms (Hu/Yo × Tsukuba/Ne) were purchased from Ehime Sansyu

(Ehime, Japan). Hatched silkworms were raised in a laboratory as previously described [15,

23]. Prolegs of fifth instar silkworms at day 2 after molting were cut and the dropped hemo-

lymph was collected into ice-cold 50 mL conical tubes (Falcon) using a funnel. The collected

hemolymph was supplemented with 0.05 mM phenylthiourea and centrifuged at 8,600 g at

4˚C for 10 min. The centrifuged supernatant was frozen in liquid nitrogen and stored at

-80˚C. The frozen supernatant was melted and used as silkworm plasma.

S. aureus aggregation in silkworm plasma

A single colony of S. aureus was aerobically cultured in TSB at 37˚C overnight. The overnight

culture (50 μl) was inoculated into silkworm plasma (2 ml) in 50 mL conical tubes (Falcon),

and aerobically cultured at 37˚C at a speed of 150 rpm. After 7 h culturing, aggregates were col-

lected by centrifugation at 70 g at room temperature for 5 min (RL-131, TOMY SEIKO CO.,

Tokyo, Japan). The aggregates were suspended with 2 ml of phosphate buffered saline (PBS)

and centrifuged at 70 g at room temperature for 5 min. The washing was repeated one more

Table 2. PCR primers used in the study.

Target Primer Sequence (5’-3’)

ypfP ypfP-F AAGAAGCTTTTACAGCCGCCCAGATAAAC

ypfP-R GGAGGATCCCCAGGTGCAGGATTTAGGAA

ltaA ltaA-F AAGAAGCTTAAAATTCGGCACAAAAATCG

ltaA-R GGAGGATCCTAGCATCGAAACTGCACAGC

ltaA (complementation) ypfPltaAcomp-F TCCAACTGAAGCGACAAAAA

ypfPltaAcomp-R CGTTTTGACGATGACGAAGA

ypfPdel-F CGGTCATTCATCACAACCAC

ypfPdel-R ATGACCGTTACCGAATGAGC

https://doi.org/10.1371/journal.pone.0217517.t002
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time. The aggregates were suspended in 1 ml PBS and poured into 10 x 35 mm dishes (Corn-

ing). The dishes were photographed by using a scanner (LiDE 210, CANON Inc., Tokyo,

Japan). To measure the amount of the aggregates, the aggregates were dried in 1.5 ml tubes

using a centrifuge evaporator (CC-105, TOMY SEIKO CO., Tokyo, Japan) and the dry weight

was measured. We used 7 h cultured sample for measurement of bacterial aggregates, because

enough bacterial aggregates were observed at 7 h culturing.

Microscopy of S. aureus aggregates

S. aureus aggregates were suspended in PBS, placed on slide glass, and Gram-stained (Merck).

The slide glass was observed under a light microscope (DM4000B, Leica).

Requirement of bacterial growth for S. aureus aggregation in silkworm

plasma

A single S. aureus colony was aerobically cultured in TSB at 37˚C overnight. The S. aureus
overnight culture was autoclaved at 121˚C for 15 min. The autoclaved or non-autoclaved cul-

ture (2 ml) was centrifuged at 21,400 g at 4˚C for 5 min, and the precipitated S. aureus cells

were suspended in 1 ml of PBS. The cells were collected by centrifugation at 21,400 g at 4˚C for

5 min, and were used as heat-killed cells or viable cells, respectively. The heat-killed or viable S.

aureus cells were suspended in 2 ml of silkworm plasma, and were aerobically incubated at

37˚C using an air shaker at a speed of 150 rpm. After 7 h incubation, the aggregates were ana-

lyzed as described above.

Examination of the inhibitory effect of monosaccharides on S. aureus
aggregation in silkworm plasma

S. aureus overnight culture (50 μl) was inoculated into 2 ml of silkworm plasma supplemented

with 200 mM of monosaccharide (glucose, galactose, mannose, maltose, arabinose, or N-ace-

tyl-glucosamine) and cultured at 37˚C using an air shaker at a speed of 150 rpm. After 7 h cul-

turing, the aggregates were analyzed as described above.

Silkworm infection experiment

A single colony of S. aureus was aerobically cultured in TSB at 37˚C overnight. The S. aureus
overnight culture was serially diluted with PBS. To concentrate the bacterial solution, the over-

night culture was centrifuged at 8,600 g at 4˚C for 5 min, and bacterial cell pellet was sus-

pended in an appropriate amount of PBS. Fifth instar silkworms were fed an antibiotic-free

artificial diet (Katakura Industries, Tokyo, Japan) for 1 day, and were injected with bacterial

solution via the intra-hemolymph route. Silkworm survival was examined at 24 h after the bac-

terial injection. Because the S. aureus gene knockout strains used in this study produced fewer

colony forming units than the parent strain, we performed an ATP-based assay to measure the

viable bacterial cell number, as described previously [24]. Briefly, the ATP concentration in

the S. aureus overnight culture was measured using firefly luciferase and the substrate (Kikko-

man Corp., Tokyo, Japan), and S. aureus viable cell number per culture volume was calculated.

To determine the half-maximal lethal dose (LD50), the survival curve was determined by logis-

tic regression based on the dose-response survival plots [25].

In vitro bacterial aggregation in insect plasma
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Results

S. aureus forms bacterial aggregates in silkworm plasma

Overnight culture of S. aureus RN4220 strain was inoculated into silkworm plasma and aerobi-

cally cultured at 37˚C. After 7 h incubation, precipitates were observed at the bottom of the

culture tube (Fig 1A). The precipitates were not observed when S. aureus was cultured in TSB

or S. aureus was not inoculated into silkworm plasma (Fig 1A). The precipitates were collected

by low centrifugation (70 g for 5 min), whereas the planktonic S. aureus cells in TSB was not

collected by this centrifugation condition (Fig 1B). The precipitates were Gram-stained and

analyzed under a microscope. The precipitates contained many numbers of S. aureus cells (Fig

1C), suggesting that S. aureus forms bacterial aggregates in silkworm plasma. In the beginning

of incubation, the bacterial growth curves were not much different between plasma and TSB,

but in the later stage of incubation, S. aureus growth in silkworm plasma was decreased com-

pared to that in TSB (Fig 1D), when the bacterial aggregates were observed. The weight of bac-

terial aggregates was 5% of the total bacterial weight (Fig 1E).

We examined whether the S. aureus aggregation activity was observed in other S. aureus
strains. S. aureus NCTC8325-4 strain formed a large amount of aggregates, whereas S. aureus
MSSA1 and COL strains formed few aggregates (Fig 1F). The result indicates that the aggrega-

tion activities are different among S. aureus strains. We used S. aureus RN4220 strain for the

subsequent analysis of this study.

S. aureus aggregation in silkworm plasma requires bacterial growth

To understand the molecular mechanism for S. aureus aggregation in silkworm plasma, we

examined whether S. aureus growth is required for the formation of S. aureus aggregates in the

silkworm plasma. S. aureus cells were inoculated into silkworm plasma with or without antibi-

otics (chloramphenicol or erythromycin) and incubated for 7 h. The addition of antibiotics

completely abolished the S. aureus aggregation in silkworm plasma (Fig 2A). To further

address whether bacterial growth or presence of enough number of viable cells are required

for the S. aureus aggregation, we examined the aggregation capacities of heat-killed S. aureus
cells or S. aureus viable cells in silkworm plasma, in which cell concentration is corresponding

to that at full growth phase. Viable S. aureus cells from 2 mL overnight culture or heat-killed S.

aureus cells from 2 mL overnight culture was inoculated into 2 mL of silkworm plasma, and

aerobically cultured at 37˚C. After 7 h incubation, both the viable cells from 2 mL culture and

the heat-killed cells severely decreased the formation of the bacterial aggregates (Fig 2B). On

the other hand, viable S. aureus cells from 0.05 mL overnight culture did produce bacterial

aggregates (Fig 2B). These findings suggest that S. aureus growth in silkworm plasma is

required for S. aureus aggregation in silkworm plasma.

S. aureus aggregation in silkworm plasma is inhibited by the addition of

monosaccharides

Lectin binds to polysaccharides of foreign substances and functions in host defense. Monosac-

charides inhibit lectin binding [26]. We examined whether the addition of monosaccharides

inhibits S. aureus aggregation in silkworm plasma. S. aureus was aerobically cultured in silk-

worm plasma supplemented with or without several monosaccharides (arabinose, galactose,

glucose, maltose, mannose, and N-acetyl-glucosamine) at 37˚C. Addition of arabinose and

galactose decreased the amount of S. aureus aggregates in silkworm plasma, whereas glucose,

maltose, mannose, and N-acetyl-glucosamine did not decrease the amount of S. aureus aggre-

gates (Fig 3A and 3B). We measured the S. aureus growth curves in silkworm plasma

In vitro bacterial aggregation in insect plasma
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supplemented with these monosaccharides to see whether the effect of monosaccharide is due

to bacterial growth inhibition. The addition of all of these monosaccharides did not inhibit

bacterial growth during 0–3 h (Fig 3C). There were differences of growth curves during 4–7 h,

in which bacterial growth in the presence of arabinose and galactose were higher than that

without addition of monosaccharide, whereas bacterial growth in the presence of N-acetyl-glu-

cosamine was lower than that without addition of monosaccharide (Fig 3C). These results sug-

gest that arabinose and galactose inhibit S. aureus aggregation without inhibiting bacterial

growth.

Fig 1. S. aureus forms bacterial aggregates in silkworm plasma. A) S. aureus overnight culture (0.05 ml, 1.5 x 108 CFU) was inoculated

into 2 ml of silkworm plasma (left) or TSB (right) and was incubated at 37˚C for 7 h. Silkworm plasma without bacterial inoculation was

incubated in the same condition (center). Precipitate in silkworm plasma is indicated by a black arrow. B) S. aureus was cultured in

silkworm plasma or TSB at 37˚C for 7 h. The culture was centrifuged at 70 g for 5 min to collect precipitate and the precipitate was spread

in a Petri dish. C) S. aureus was cultured in silkworm plasma at 37˚C for 7 h. The formed precipitate were Gram-stained and examined

under a light microscope. D) S. aureus growth curves in silkworm plasma or TSB at 37˚C were measured. A fluid part of bacterial culture

was sampled during the time course of incubation and the OD600 value was measured. E) Relative weights of the bacterial aggregates and

the planktonic bacteria to the total bacterial weight were measured. S. aureus was cultured in silkworm plasma or TSB at 37˚C for 7h. The

bacterial aggregates were collected by low centrifugation and the dry weight of the aggregates was measured. The planktonic bacterial cells

in the centrifuged supernatant were collected by further centrifugation at 21,400 g for 5 min and the dry weight was measured. Vertical axis

represents the relative weight to the total bacterial weight in plasma or TSB. ND means not detected. F) S. aureus strains including RN4220,

MSSA1, NCTC8325-4, and COL were cultured in silkworm plasma at 37˚C for 7 h. Bacterial aggregates were spread in a Petri dish.

https://doi.org/10.1371/journal.pone.0217517.g001

Fig 2. S. aureus growth is required for S. aureus aggregation in silkworm plasma. A) S. aureus was cultured in

silkworm plasma or in silkworm plasma supplemented with 50 μg/ml chloramphenicol or 10 μg/ml erythromycin at

37˚C for 7 h. The aggregates were collected and spread in a Petri dish. B) S. aureus viable cells from 0.05 mL overnight

culture (left), S. aureus viable cells from 2 mL overnight culture (center), or S. aureus heat-killed cells from 2 mL

overnight culture (right) was inoculated into 2 ml of silkworm plasma, and cultured at 37˚C for 7 h. The aggregates were

collected and spread in a Petri dish.

https://doi.org/10.1371/journal.pone.0217517.g002
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S. aureus teichoic acids are required for S. aureus aggregation in silkworm

plasma

Based on the results that arabinose and galactose inhibited S. aureus aggregation, we hypothe-

sized that bacterial surface polysaccharides are involved in S. aureus aggregation in silkworm

plasma and examined the effect of knockout of S. aureus genes involved in teichoic acid syn-

thesis: ypfP, which encodes synthetase for diglucosyl-diacylglycerol, the membrane anchor of

lipoteichoic acids [27]; ltaA, which encodes translocase of diglucosyl-diacylglycerol from the

inner to the outer leaflet of the membrane [28]; and tagO, which encodes synthetase for wall

teichoic acids [29]. The ypfP, ltaA, and tagO knockout strains exhibited severely decreased

aggregation in silkworm plasma compared with the parent strain (Fig 4A and 4B). The

decreased aggregations of the ypfP, ltaA, and tagO knockout strains were respectively restored

by introducing wildtype ypfP, ltaA, tagO genes (Fig 4A and 4B). These findings suggest that

bacterial cell surface teichoic acids are required for S. aureus aggregation in silkworm plasma.

S. aureus ypfP and ltaA genes are required for S. aureus virulence in

silkworms

To determine whether the ability of S. aureus to form aggregates in silkworm plasma is

involved in S. aureus virulence against silkworms, we examined the virulence activity of ypfP,

ltaA, and tagO knockout strains by measuring the LD50 value, the bacterial dose that kills half

of the silkworms. The LD50 values of the ypfP and ltaA knockout strains against silkworms

were higher than the parent strain, whereas the LD50 value of the tagO knockout strain was not

(Fig 5). The LD50 values of the ypfP and ltaA knockout strains were restored to the level of the

parent strain by introducing intact ypfP and ltaA genes, respectively (Fig 5). These findings

suggest the ypfP and ltaA genes are required for S. aureus killing activity against silkworms.

Discussion

The present study demonstrated that S. aureus forms bacterial aggregates in silkworm plasma

in vitro, which is the first indication that S. aureus bacterial aggregates in animal plasma is not

specific to mammals, but is conserved in insects.

This study revealed that S. aureus growth in silkworm plasma is required for the formation

of aggregates and that the aggregation process requires the ypfP, ltaA, and tagO gene-encoding

enzymes involved in teichoic acid synthesis. Thus, the interaction between S. aureus cell sur-

face teichoic acids and host factor(s) in the silkworm plasma during S. aureus growth causes

bacterial aggregation. Because S. aureus growth was required for the reaction, S. aureus mole-

cule(s) specific to the logarithmic growth phase is required for the aggregation. In the coagu-

lase reaction, which is evaluated by culturing S. aureus cells in rabbit plasma for 2–4 h,

coagulase secreted from S. aureus cells activates coagulase reacting factor (CRF) in the rabbit

plasma, and the activated CRF converts fibrinogen to fibrin, resulting in plasma clotting [30,

Fig 3. S. aureus aggregation in silkworm plasma is inhibited by the addition of monosaccharides. A) S. aureus was

cultured in silkworm plasma supplemented with or without monosaccharides [arabinose (Ara), galactose (Gal),

glucose (Glu), maltose (Mal), mannose (Man), or N-acetyl-glucosamine (GlcNAc)] at 37˚C for 7 h. Bacterial aggregates

were spread in a Petri dish. B) The dry weight of the aggregates observed in A) was measured. Means±standard errors

from three independent experiments are presented. Asterisks indicate Student’s t-test p-value less than 0.05 between

the absence and presence of monosaccharide. C) S. aureus growth curves in silkworm plasma supplemented with or

without monosaccharides [arabinose (Ara), galactose (Gal), glucose (Glu), maltose (Mal), mannose (Man), or N-

acetyl-glucosamine (GlcNAc)] were measured at 37˚C. This experiment was performed in parallel with the experiment

of Fig 1D and the growth curve in silkworm plasma without monosaccharide is same with the data in Fig 1D (Plasma).

https://doi.org/10.1371/journal.pone.0217517.g003
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31]. Identification of such coagulase-like molecule is important to understand the molecular

mechanism of S. aureus aggregation in silkworm plasma.

The coagulase reaction utilizes plasma clotting, a host immune reaction, to enable bacterial

escape from humoral and cellular bactericidal reactions in the host and contributes to bacterial

virulence [7, 8]. Single knockout of the coagulase gene dose not decrease S. aureus virulence in

mice or rats [32–34], although double knockout of the coagulase gene and von Willebrand fac-

tor binding protein gene, another coagulation factor, decreases S. aureus virulence in mice

[35]. The present study revealed that S. aureus gene knockout mutants of the ypfP and ltaA
genes with decreased aggregation activity in silkworm plasma exhibit attenuated virulence in

Fig 4. Knockout of the ypfP, ltaA, and tagO genes decreases S. aureus aggregation in silkworm plasma. A) The S.

aureus parent strain (WT) transformed with an empty vector (pHY300) and knockout strains of the ypfP, ltaA, and

tagO genes (ΔypfP, ΔltaA, ΔtagO), which were transformed with an empty vector or a plasmid carrying respective

wildtype gene (pypfP, pltaA, and ptagO), were cultured in silkworm plasma at 37˚C for 7 h and aggregates were

observed. B) The dry weights of the aggregates observed in C) were measured. Means±standard errors from three

independent experiments are presented. Student’s t-test p-value less than 0.05 are shown (�, the gene-knockout strain

vs. the parent strain; ��, the complemented strain vs. the gene-knockout strain).

https://doi.org/10.1371/journal.pone.0217517.g004
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silkworms, whereas the tagO-knockout mutant with decreased aggregation activity does not

attenuate virulence. Because the decreased aggregation activities were indistinguishable

between the three mutants, it cannot conclude the involvement of the aggregation activity in S.

aureus virulence in silkworms. To clarify the physiological role of S. aureus aggregation in silk-

worm plasma, further studies are needed such as constructing a gene-knockout mutant with

severely decreased aggregation, or evaluating detailed infection processes in the silkworm

model.

Nodule formation is an aggregate of insect hemocytes encapsulating invading microorgan-

ism, a cellular immune reaction in insects [36]. Carbohydrate binding proteins in the insect

hemolymph called lectins, such as hemocytin and BmMBP, are involved in nodule formation

[37, 38]. Because S. aureus aggregation in silkworm plasma was inhibited by the addition of

monosaccharides, lectins in the silkworm plasma are presumed to be involved in the S. aureus
aggregation formation. Thus, nodule formation and S. aureus aggregation both involve lectins,

raising the possibility that the S. aureus aggregation in silkworm plasma is one of the aspects of

nodule formation. However, there are several different features between nodule formation and

the S. aureus aggregation in silkworm plasma. First, nodule formation requires insect hemo-

cytes, whereas the S. aureus aggregation occurs in silkworm plasma lacking hemocytes. Sec-

ond, S. aureus aggregation requires bacterial growth, but nodule formation does not require

bacterial growth, because nodule formation occurs by formaldehyde-treated E. coli or Micro-
coccus luteus [37, 39]. Third, nodule formation is a rapid reaction that occurs within minutes

after bacterial invasion [40]. When Saccharomyces cerevisiae or E. coli was injected into the

silkworm haemocoel, transparent nodules formed within 1 min [37], and black aggregates

Fig 5. Knockout of the ypfP and ltaA genes attenuates S. aureus virulence against silkworms. Silkworms (n = 5/

dose) were injected with serial dilutions of S. aureus overnight cultures of the parent strain (WT/pHY300), the

knockout strains of the ypfP, ltaA, and tagO genes (ΔypfP/pHY300, ΔltaA/pHY300, ΔtagO/pHY300), and the

complemented strains (ΔypfP/pypfP, ΔltaA/pltaA, ΔtagO/ptagO). The silkworm survival was evaluated at 24 h after the

injection and the LD50 values were determined by logistic regression. The mean LD50 values with standard errors from

three independent experiments are presented. Student’s t-test p-value less than 0.05 are shown (�, the gene-knockout

strain vs. the parent strain; ��, the complemented strain vs. the gene-knockout strain). NS means not significant.

https://doi.org/10.1371/journal.pone.0217517.g005
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were observed after 30 min [39]. On the other hand, S. aureus aggregation in silkworm plasma

was not observed for at least 5 h. Based on these differences between nodule formation and S.

aureus aggregation in silkworm plasma, we assume that S. aureus aggregates are formed via
different molecular mechanisms than nodules.

This study unveiled a new ability of S. aureus to form bacterial aggregates in silkworm

plasma and identified teichoic acids as a key factor. This finding will facilitate our understand-

ing of S. aureus versatile ability to act not only on mammalian system but also on insect system,

and enables future studies to investigate the conserved molecular mechanism of bacterial

aggregation between mammals and insects.
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