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Simple Summary: Microvascular invasion (MVI) is an independent risk factor for postoperative
recurrence of hepatocellular carcinoma (HCC). Preoperative knowledge of MVI would assist with
tailored surgical strategy making to prolong patient survival. Previous radiological studies proved the
role of noninvasive medical imaging in MVI prediction. However, hitherto, deep learning methods
remained unexplored for this clinical task. As an end-to-end self-learning strategy, deep learning may
not only achieve improved prediction accuracy, but may also visualize high-risk areas of invasion
by generating attention maps. In this multicenter study, we developed deep learning models to
perform MVI preoperative assessments using two imaging modalities—computed tomography (CT)
and gadoxetic acid-enhanced magnetic resonance imaging (EOB-MRI). A head-to-head prospective
validation was conducted to verify the validity of deep learning models and achieve a comparison
between CT and EOB-MRI for MVI assessment. The findings put forward a better understanding of
MVI preoperative prediction in HCC management.

Abstract: Microvascular invasion (MVI) is a critical risk factor for postoperative recurrence of
hepatocellular carcinoma (HCC). Preknowledge of MVI would assist tailored surgery planning in
HCC management. In this multicenter study, we aimed to explore the validity of deep learning (DL)
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in MVI prediction using two imaging modalities—contrast-enhanced computed tomography (CE-CT)
and gadoxetic acid-enhanced magnetic resonance imaging (EOB-MRI). A total of 750 HCCs were
enrolled from five Chinese tertiary hospitals. Retrospective CE-CT (n = 306, collected between March,
2013 and July, 2019) and EOB-MRI (n = 329, collected between March, 2012 and March, 2019) data
were used to train two DL models, respectively. Prospective external validation (1 = 115, collected
between July, 2015 and February, 2018) was performed to assess the developed models. Furthermore,
DL-based attention maps were utilized to visualize high-risk MVI regions. Our findings revealed that
the EOB-MRI-based DL model achieved superior prediction outcome to the CE-CT-based DL model
(area under receiver operating characteristics curve (AUC): 0.812 vs. 0.736, p = 0.038; sensitivity:
70.4% vs. 57.4%, p = 0.015; specificity: 80.3% vs. 86.9%, p = 0.052). DL attention maps could visualize
peritumoral high-risk areas with genuine histopathologic confirmation. Both DL models could
stratify high and low-risk groups regarding progression free survival and overall survival (p < 0.05).
Thus, DL can be an efficient tool for MVI prediction, and EOB-MRI was proven to be the modality
with advantage for MVI assessment than CE-CT.

Keywords: hepatocellular carcinoma; microvascular invasion; magnetic resonance imaging; com-
puted tomography; deep learning

1. Introduction

Hepatocellular carcinoma (HCC) is globally the sixth most prevalent malignancy
and third leading cause of cancer-related death [1]. Despite extensive efforts made in the
surveillance and treatment of HCC, postoperative recurrence at five years still remains a
major challenge [2,3]. Microvascular invasion (MVI), a histological feature indicative of
more aggressive biological behavior, is an independent risk factor for the postoperative
recurrence [4,5]. The presence of MVI suggests an extended surgical margin in early-stage
HCCs, and prompts bridging therapy/resection in patients awaiting liver transplanta-
tion [6-10]. Thus, gaining preoperative knowledge of MV1 is of great clinical relevance in
HCC treatment management.

Current diagnosis of MVI relies on histopathologic examination, which hinders its
influence on preoperative treatment planning [11]. Additionally, noninvasive imaging plays
an increasingly important role in MVI assessment. Radiological indicators including non-
smooth tumor margins, incomplete capsule and peritumoral hypointensity on hepatobiliary
phase (HBP) were proven to be correlated with MVI [9-11]. Quantitative radiomics analysis
via extracting textural features improves the predictive accuracy using either contrast-
enhanced computed tomography (CE-CT) or gadoxetic acid-enhanced magnetic resonance
imaging (EOB-MRI) [12-15]. These efforts showed the potential of noninvasive imaging
for MVI preoperative prediction.

Deep learning (DL) has shown excellent performance in liver mass differentiation and
fibrosis classification, providing comparable diagnostic accuracy with the pathological gold
standard [16,17]. However, this technique has not yet been tried for MVI histopathologic
outcome prediction. Other than traditional radiological and radiomics methods, DL is
worth being explored to heighten MVI predictive accuracy. Furthermore, DL could provide
a novel way for visualization of MVI-related high-risk areas via generation of attention
maps [18]. Previous studies mainly focused on prediction of whether MVI exists. DL may
detail the radiological characteristics of MVI and offer additional fundamental information
for oncologists or surgeons [6,7]. However, to the best of our knowledge, visualization of
high-risk areas of MVI is unrealized in current phase studies.

In addition, although CE-CT and EOB-MRI were both proven to be efficient for
MVI prediction, rare evidence was achieved to weigh their assessment powers [9-15].
Compared with CE-CT, EOB-MRI was preferable for detection of subtle morphological
and functional changes but was more time and cost-consuming [19,20]. So far, whether
quantitative imaging analysis on CE-CT would compete EOB-MRI for MVI prediction is
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still unrevealed. Considering patient benefit and cost efficiency, a head-to-head comparison
between the two imaging modalities is necessary to optimize the pretreatment management
for MVI assessment.

To address above challenges, we totally enrolled 750 HCCs from five independent
hospitals in China to construct DL models for MVI preoperative assessment using CE-CT
and EOB-MRI, respectively. A head-to-head comparison between CE-CT and EOB-MRI
was performed on a prospective cohort with dual-modality imaging acquisition. To the
best of our knowledge, this was the first study to achieve MVI prediction via DL, which
would push forward the role of noninvasive imaging in MVI preoperative management.

2. Materials and Methods
2.1. Patients

This was a multi-institutional study conducted at 5 independent hospitals with a total
collection of 750 patients. The clinical trial was registered at Chinese Clinical Trial Registry
(ChiCTR1900027103). The institutional review boards approved the retrospective collection
of the data and the requirements for informed consent were waived. Prospective patient
enrollment was approved by the ethics committee and informed consent from all patients
was obtained before the start of the recruitment. The inclusion and exclusion criteria for the
retrospective and prospective data collection are shown in Table 1. The retrospective and
prospective data were used for model development and independent external validation,
respectively (Figure 1).

Table 1. Eligibility criteria.

Prospective Cohort. Retrospective Cohort (EOB-MRI or CE-CT)

Inclusion Criteria

1. Age > 18 years

2. High risk for HCC (cirrhosis and/or chronic hepatitis

B virus infection)

1. Age > 18 years
2. Patients with surgically confirmed HCC

3. No previous treatment for hepatic lesions 3. Histopathological examination with proven MVI status recorded

4. Patients with Child-Pugh class A liver function

4. Preoperative EOB-MRI or CE-CT were performed within one
month prior to surgery

Exclusion Criteria

1. Non-HCC patients

1. Patients without important clinical data

2. Patients with any previous antitumoral treatment 2. Patients with any previous antitumoral treatment
3. Patients with any contraindication of gadoxetate 3. Patients without conclusive histopathological confirmation of
disodium-enhanced MRI MVI status

4. Patients with insufficient image quality to perform
reliable qualitative or radiomics analysis

4. Patients with unequivocal macrovascular invasion

5. Patients without conclusive histopathological

confirmation of MVI status

5. Patients with insufficient image quality to perform reliable

6. Patients with unequivocal macrovascular invasion qualitative or radiomics analysis
7. The time interval between preoperative EOB-MRI and

surgery exceeded one month

CE-CT, contrast-enhanced computed tomography; EOB-MRI, gadoxetic acid-enhanced magnetic resonance imaging; HCC, hepatocellular

carcinoma.

Clinical data, including patient age, gender and etiology of liver disease were recorded.
Serological examinations within two weeks prior to the surgery, including total bilirubin,
alanine aminotransferase, aspartate aminotransaminase, platelets and «-fetoprotein (AFP),
were performed.

2.2. Histopathologic Diagnosis of MVI

Histopathologic examinations of the surgical specimens were conducted by two
experienced pathologists at each site. Using a multiple-site sampling method, MVI was
defined as the presence of tumor thrombi within small peritumoral vessels (branches of
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Beijing Youan
Hospital

n=156
(2013.08-2019.07)

portal vein, hepatic vein or a large capsular vessel of the surrounding hepatic tissue lined
by endothelium) detected only on microscopy. The sites of positive MVI were documented.
All disagreements were resolved by consensus. Details of histopathologic diagnosis for
MVI are shown in Supplementary File S1.

Retrospective cohort to

train the models

CE-CT (n=306) EOB-MRI (n=329)

The First Affiliated
Hospital of China
Medical University

Shanghai Zhongshan Henan Provincial
Hospital People’s Hospital

n=207 n=122

n=150 e IR R e ST
(2012.03-2017.09) (2013.11-2019.03)

(2013.03-2019.07)

J

CE-CT Based DL Models EOB-MRIBased DL Models

T T

Prospective cohort to validate the models

West China Hospital. Sichuan University

=115 (CE-CT + EOB-MR)
(2015.07-2018.02)

Figure 1. Distribution of the enrolled cohorts. The collected cohorts included two retrospective training cohorts (1 = 635)
and one external prospective validation cohort (n = 115). The retrospective training cohort for CE-CT based models was
collected from Beijing Youan Hospital (7 = 156) and the first affiliated hospital of China Medical University (n = 150);
for EOB-MRI-based model training, it was collected from Shanghai Zhongshan Hospital (n = 207) and Henan Provincial
People’s Hospital (1 = 122). The prospective cohort contained 115 patients who underwent both CE-CT and EOB-MRI. The
validation cohort was used for model validation, as well as the head-to-head comparison.

2.3. Imaging Acquisition

Liver CE-CT scans were obtained using various multi-detector CT scanners. CT
images were acquired before and after administration of contrast medium during arterial
phase (AP), portal venous phase (PVP) and delayed phase. Among them, pre-contrast, AP
and PVP images were used for subsequent analyses.

All EOB-MRI examinations were performed with either 1.5T or 3.0T scanners. A total
of 5 MR sequences, including T2-weighted imaging (T2WI) and T1-weighted imaging
(T1IWI) before and after intravenous injection of EOB at AP, PVP, transitional phase (TP)
and hepatobiliary phase (HBP) were used for subsequent analyses.

Detailed descriptions of imaging acquisition protocols are summarized in Supplemen-
tary File S2.
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2.4. Image Analysis

All CE-CT and EOB-MRI images were evaluated by experienced abdominal radi-
ologists at each site (at least 2 radiologists for the retrospective cohorts and 3 for the
prospective cohort), who were blinded to the clinical information and the final histopatho-
logic diagnosis of MVI. The reviewers independently annotated a total of 14 MVI-related
descriptors of the largest measurable intrahepatic lesion, including multifocality, tumor
margin, peritumoral enhancement, etc. (complete descriptor list in Supplementary File S3).

For patients in the prospective cohort who underwent both preoperative CE-CT and
EOB-MRI examinations, CT and MRI images were assessed in a random order in two
sets, with at least a one-month washout period between sets to minimize recall bias. All
disagreements between the reviewers were resolved via consensus by majority vote.

2.5. Development of DL Models

We adopted the ResNet18 convolutional neural network (CNN) as the primary branch
for DL modelling. Each ResNet18 branch was pretrained by ImageNet dataset and re-
trained by retrospective CE-CT cohort on three CT phases, respectively [21,22]. The input
region of interest (ROI) was defined as follows: The manually placed squared ROIs that
contained the entire tumor on three continuous maximum axial planes. Thereafter, three
corresponding single CT phased based DL signatures were generated. Fully connected
layers were then added to integrate the three single signatures with clinical and radio-
logical factors to construct the final combined DL model, CDLM“F-¢T. Predictive clinical
and radiological factors were selected via uni- and multi-variable logistic regression. An
EOB-MRI-based model, CDLMEOB-MRI 'yag constructed in a similar process based on
5 MRI sequences. The detailed architecture and construction process of the CDLMs are
provided in Supplementary File S4.

2.6. Model Assessment and Inter-Modality Comparison

A prospectively collected cohort was used to assess the two constructed CDLMs. The
comparison between CDLM“E-CT and CDLMEOBMRI wag conducted on paired CE-CT and
EOB-MRI images. Stratification analyses in subgroups were performed to explore whether
different age, gender, level of AFP and tumor size influenced the predictive abilities of
the CDLMs.

2.7. Visualization and Confirmation of the MV1 High-Risk Areas

To visualize regions at high risk of MVI, we applied a gradient-based localization
method to generate attention maps in the validation cohort [23,24]. The calculated gradients
of the predicted values with respect to the input image would infer areas that contributed
most to MVI prediction, and were shown as hot-spots on the attention maps, which was
defined as CDLM-predicted high-risk areas.

To further validate CDLM-predicted high-risk areas, we performed true histopatho-
logic confirmations. In patients of whom the postoperative sampling sites could be rigor-
ously co-localized on preoperative radiological images, histopathologic results were used
as referable confirmation for the predicted high-risk areas.

2.8. Prognostic Power Evaluation

Prospective collected patients were followed-up after surgery every three to six months
with AFP and imaging modalities (CT, MRI or ultrasound). The time after resection of
disease-specific progression (local recurrence or distant metastasis) or death was recorded.
Patients were censored in case of death, loss to follow-up or on 1 July 2019, whichever came
first. Cox proportional hazard regression models were constructed based on outputs of
the CDLMCE-CT and CDLMEOB-MRL respectively, regarding progression free survival (PFS)
and overall survival (OS). Kaplan Meier curve was plotted based on cox regression models,
in order to stratify the PFS and OS. The log-rank test was used to determine statistical
differences between the low-risk and high-risk groups.
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2.9. Statistical Analysis

We applied area under the receiver operating characteristic (ROC) curve (AUC),
specificity and sensitivity for model evaluation. DeLong and McNemar tests were used to
compare the diagnostic measures, where applicable. Decision curve analysis (DCA) was
applied to estimate the clinical usefulness of all developed models. All statistical analyses
were performed with PASW Statistics, version 18.0 (SPSS Inc., Chicago, IL, USA) and R
software, version 3.4.1 (www.R-project.org (accessed on 30 June 2017)). The threshold for
statistical significance was a 2-sided p < 0.05.

3. Results
3.1. Baseline Characteristics

In the training cohorts, 43.7% (114 /329) and 33.3% (102/306) of lesions were histopatho-
logically confirmed as MVI-positive in the EOB-MRI and CE-CT groups, respectively. In
the validation cohort, 47% (54/115) HCC lesions were confirmed as MVI-positive. There
was no significant difference in MVI either between the retrospective and prospective
cohorts in CT group (both p > 0.05), or between EOB-MRI and CE-CT groups within the
retrospective cohort (p > 0.05). There was a slight difference in MVI distribution between
training and validation cohorts in EOB-MRI group (p = 0.025). Baseline characteristics of
the cohorts included are summarized in Table 2.

Table 2. Baseline characteristics of enrolled cohorts.

CE-CT Cohort

Training Dataset (n = 306) Validation Dataset (1 = 115)

Characteristics
MVI Present  MVI Absent p Value MVI Present  MVI Absent p Value
Age (years) 55+ 11 59+9 0.544 48 £11 52+11 0.288
Gender 0.630 0.140
Male 77 (75.5) 159 (77.9) 39 (72.2) 51 (83.6)
Female 25 (24.5) 45 (22.1) 15 (27.8) 10 (16.4)
Etiology of liver disease 0.850 0.286
HBV 95 (93.1) 191 (93.6) 53 (98.1) 61 (100)
HCV 3(29) 4(2.0) 1(1.9) 0
None or other 4 (3.9) 9(4.4) 0 0
Total bilirubin 0.05 0.926
<20.4 pmol/L 52 (51.0) 128 (62.7) 43 (79.6) 49 (80.3)
>20.4 umol/L 50 (49.0) 76 (37.3) 11 (20.4) 12 (19.7)
Alanine aminotransferase 0.515 0.485
<40U/L 42 (41.2) 92 (45.1) 32 (59.3) 40 (65.6)
>40U/L 60 (58.8) 112 (54.9) 22 (40.7) 21 (34.4)
Aspartate aminotransaminase 0.001 0.019
<35U/L 25 (24.5) 90 (44.1) 20 (37.0) 36 (59.0)
>35U/L 77 (75.5) 114 (55.9) 34 (63.0) 25 (41.0)
Platelet 0.001 0.067
<125 x 10°/L 14 (13.7) 63 (30.9) 5(9.3) 1(1.6)
>125x10% /L 88 (86.3) 141 (69.1) 49 (90.7) 60 (98.4)
a-fetoprotein 0.007 0.067
<20 ng/mL 39 (38.2) 117 (57.4) 17 (31.5) 23 (37.7)
20-400 ng/mL 32 (31.4) 44 (21.6) 12 (22.2) 22 (36.1)
>400 ng/mL 31 (30.4) 43 (21.1) 25 (46.3) 16 (26.2)
Edmondson-Steiner grade * 0.356 0.002
Gradel 4(9.5) 24 (15.3) 0 5(8.2)
Grade Il 21 (50.0) 86 (54.8) 29 (53.7) 44 (72.1)
Grade III 17 (40.5) 47 (29.9) 25 (46.3) 12 (19.7)
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Table 2. Cont.

CE-CT Cohort

Training Dataset (1 = 306)

Validation Dataset (n = 115)

Characteristics
MVI Present  MVI Absent p Value MVI Present  MVI Absent p Value
CT imaging features
Cirrhosis of background liver 0.001 0.902
Absent 31 (30.4) 30 (14.7) 18 (33.3) 21 (34.4)
Present 71 (69.6) 174 (85.3) 36 (66.7) 40 (65.6)
Number of tumors <0.001 0.210
Solitary 70 (68.6) 181 (88.7) 33 (61.1) 44 (72.1)
Multiple 32 (31.4) 23 (11.3) 21 (38.9) 17 (27.9)
Tumor size (cm) 58+43 40+3.6 <0.001 7.6 £33 47+20 <0.001
Tumor margin 0.019 0.014
Smooth margin 29 (28.4) 86 (42.2) 25 (46.3) 42 (68.9)
Non-smooth margin 73 (71.6) 118 (57.8) 29 (53.7) 19 (31.1)
Peritumoral enhancement 0.001 0.003
Absent 49 (48.0) 139 (68.1) 24 (44.4) 44 (72.1)
Present 53 (52.0) 65 (31.9) 30 (55.6) 17 (27.9)
Enhancement pattern <0.001 0.851
Typical 77 (75.5) 113 (65.4) 51 (81.9) 56 (87.2)
Atypical 25 (24.5) 91 (44.6) 3(18.1) 5(12.8)
Radiologic capsule 0.931 0.512
Absent 32 (31.4) 65 (31.9) 13 (24.1) 18 (29.5)
Present 70 (68.6) 139 (68.1) 41 (75.9) 43 (70.5)
EOB-MRI Cohort
Training Dataset (n = 329) Validation Dataset (1 = 115)
Characteristics
MVI Present  MVI Absent p Value MVI Present  MVI Absent p Value
Age (years) 55+ 10 54 +10 0.544 48 +11 52+ 11 0.567
Gender 0.331 0.140
Male 97 (85.1) 188 (87.4) 39 (72.2) 51 (83.6)
Female 17 (14.9) 27 (12.6) 15 (27.8) 10 (16.4)
Etiology of liver disease 0.637 0.286
HBV 103 (90.4) 200 (93.0) 53 (98.1) 61 (100)
HCV 5(4.4) 8(3.7) 1(1.9) 0
None or other 6 (5.3) 7 (3.3) 0 0
Total bilirubin 0.358 0.926
<20.4 pmol/L 98 (86.0) 180 (83.7) 43 (79.6) 49 (80.3)
>20.4 umol/L 16 (14.0) 35 (16.3) 11 (20.4) 12 (19.7)
Alanine aminotransferase 0.293 0.485
<40U/L 76 (66.7) 151 (70.2) 32 (59.3) 40 (65.6)
>40U/L 38 (33.3) 64 (29.8) 22 (40.7) 21 (34.4)
Aspartate aminotransaminase 0.095 0.019
<35U/L 74 (64.9) 156 (72.6) 20 (37.0) 36 (59.0)
>35U/L 40 (35.1) 59 (27.4) 34 (63.0) 25 (41.0)
Platelet 0.262 0.067
<125 x 10°/L 56 (49.1) 115 (53.5) 5(9.3) 1(1.6)
>125 x 10°/L 58 (50.9) 100 (46.5) 49 (90.7) 60 (98.4)
a-fetoprotein 0.002 0.067
<20 ng/mL 45 (39.5) 129 (60.0) 17 (31.5) 23 (37.7)
20-400 ng/mL 46 (40.4) 59 (27.4) 12 (22.2) 22 (36.1)
>400 ng/mL 23 (20.2) 27 (12.6) 25 (46.3) 16 (26.2)
Edmondson-Steiner grade <0.001 0.002
Grade 1(0.9) 16 (7.4) 0 5(8.2)
Grade Il 58 (50.9) 140 (65.1) 29 (53.7) 44 (72.1)
Grade III 55 (48.2) 59 (27.4) 25 (46.3) 12 (19.7)
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Table 2. Cont.

CE-CT Cohort

Training Dataset (1 = 306)

Validation Dataset (n = 115)

Characteristics
MVI Present  MVI Absent p Value MVI Present  MVI Absent p Value
MR imaging features
Cirrhosis of background liver 0.720 0.902
Absent 37 (32.5) 74 (34.4) 18 (33.3) 21 (34.4)
Present 77 (67.5) 141 (65.6) 36 (66.7) 40 (65.6)
Number of tumors <0.001 0.210
Solitary 75 (65.8) 178 (82.8) 33 (61.1) 44 (72.1)
Multiple 39 (34.2) 37(17.2) 21 (38.9) 17 (27.9)
Tumor size (cm) 41£3.0 23+15 <0.001 7.6 £33 47+20 <0.001
Tumor margin <0.001 0.014
Smooth margin 34 (29.8) 110 (61.2) 25 (46.3) 42 (68.9)
Non-smooth margin 80 (70.2) 105 (48.8) 29 (53.7) 19 (31.1)
Peritumoral enhancement <0.001 0.021
Absent 61 (53.5) 170 (79.1) 22 (40.7) 38 (62.3)
Present 53 (46.5) 45 (20.9) 32 (59.3) 23 (37.7)
Enhancement pattern <0.001 0.190
Typical 50 (43.9) 141 (65.6) 43 (79.6) 54 (88.5)
Atypical 64 (56.1) 74 (34.4) 11 (20.4) 7 (11.5)
Radiologic capsule 0.370 0.743
Absent 34(29.8) 59 (27.4) 6 (11.1) 8(13.1)
Present 80 (70.2) 156 (72.6) 48 (88.9) 53 (86.9)
Tumor hypointensity on HBP <0.001 0.550
Absent 53 (46.5) 152 (70.7) 3(5.6) 2(3.3)
Present 61 (53.5) 63(29.3) 51 (94.4) 59 (96.7)
Peritumoral hypomtensﬁy on <0.001 <0.001
HBP image
Absent 80 (70.2) 194 (90.7) 11 (20.4) 36 (59.0)
Present 34 (29.8) 20(9.3) 43 (79.6) 25 (41.0)

Qualitative variables are in 1 (%), and quantitative variables are in medians with interquartile ranges in parentheses, when appropriate. p
values were calculated between MVI-positive and MVI-negative groups via uni-variable analysis. CE-CT, contrast-enhanced computational
tomography; EOB-MRI, gadoxetic acid-enhanced magnetic resonance imaging; MVI, microvascular invasion; HBP, hepatobiliary phase.
* Note: for the retrospective cohort in CE-CT, 107 out of 156 (68.6%) of patients from Beijing Youan Hospital lacked histopathological results
of Edmondson-Steiner grade; thus, the statistical result of Edmondson-Steiner grade was calculated based on patients who had records.

3.2. Predictive Performances of Clinical and Qualitative Radiological Models

AFP was selected as the only effective clinical indicator. The AFP-based clinical model
presented with AUCs of 0.595 and 0.605 in the training CE-CT and EOB-MRI cohorts,
respectively. The AUC in the validation cohort for APF-based clinical model was 0.586
(Table 3).

Table 3. Predictive performances of the developed models.

Retrospective Training Cohort

Prospective Validation Cohort 2

Developed Models (EOB-MRI # = 329; CE-CT n = 306) (n=115)
SEN SPE ACC AUC (95% CI) SEN SPE ACC AUC (95% CI)
0.595 0.586
CE-CT 61.8%  574%  58.8% 68.5%  37.7%  52.2%
Clinical model (0.533-0.657) (0.485-0.686)
0.605 0.586
= O0 . OO . OO o O0 . 00 . 00
EOB-MRI 60.5% 60.0% 60.2% (0.546-0.664) 68.5% 37.7%  52.2% (0.485-0.686)
o ] . . 0.761 . . . 0.658
Radlolé)gllca] CE-CT 63.7% 79.9% 74.5% (0.700—0.822) 68.5% 57.4% 62.6% (0.561—0.754)
mode
EOB-MRI 711%  76.3%  74.5% 0.786 88.9%  31.2%  58.3% 0.752

(0.736-0.836)

(0.662-0.842)
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Table 3. Cont.

Retrospective Training Cohort

Prospective Validation Cohort 2

Developed Models (EOB-MRI # = 329; CE-CT n = 306) (n=115)
SEN SPE ACC AUC@95%CD SEN SPE ACC AUC (95% CI)
CT-piiaI;gel_Z d Arterial phase  68.6%  73.5%  71.9% (0. 692(.)2)2789) 44.4%  86.9%  67.0% 0. 6%;3)2779)
signature Venous phase  755%  69.6%  71.6% (0.73é—0.828) 759%  62.3%  68.7% (0.64é—0.799)
Plain phase ~ 67.6% 721%  70.6% (0.71053?805) 667% 639% 652% 6&6_%?771)
Gingle MR, Arterial phase  711%  87.9%  821% 822 422)2905) 7AN%  754%  7A8% 6%:_2)28 5)
seq;;;izzsed Venou.s Phase 702%  702%  70.2% (0.712—0.820) 61.1%  72.1%  67.0% . 601.1—0.795)
Tra;i:;i“al 68.4%  702%  696% 690(']?%)?803) 667% 672% 67.0% 5%6_3%772)
T2WI 789% 6AT%  696% 0'7355827) 778%  623% 696% 6%?3(’582 "
HBPTIWL  640%  791%  739% (0T 630%  754% 6% o o
Fusion DL model CE-CT 89.2% 57.4%  68.0% (0.7%?90?8 ) OL9%  885%  713% o 6§ 47_%%80 6
EOB-MRI 781%  953%  89.4% (0'98'29_39957) 704%  80.3%  75.7% (0'75(')%%?885)
DLM COLMCECT 667  882% 8L0% (P sman% 9% 0% T
CDLMFOB-MRL  9399%  91.6%  92.4% 0-962 70.4%  80.3%  75.7% 0812

(0.857-0.927)

(0.721-0.880)

SEN, sensitivity; SPE, specificity; ACC, accuracy; AUC, area under the curve; 95% CI, 95% confidence interval, CE-CT, contrast-enhanced
computational tomography; EOB-MRI, gadoxetic acid-enhanced magnetic resonance imaging; T2WI, T2-weighted imaging; HBP, hepatobil-
iary phase; TIWI, T1-weighed imaging; CDLM, combined deep learning model.

Regarding to predictive radiological indicators, effective CE-CT radiological features
including number of tumors, peritumoral enhancement and enhancement pattern were
identified as MVI predictive. The combined CE-CT radiological model demonstrated AUCs
of 0.761 and 0.658 in the training and head-to-head validation cohorts, respectively. EOB-
MRI features including tumor size, tumor margin, peritumoral enhancement and tumor
hypointensity on HBP were predictive for MVI. The radiological model integrating all four
EOB-MRI features achieved AUCs of 0.786 and 0.793 in the training and head-to-head
validation cohorts, respectively (Table 3).

3.3. Predictive Performances of CDLMs

For CE-CT, the PVP-based signature yielded the best predictive power among three
single-phase-derived DL signatures with AUCs of 0.785 and 0.723 in the training and
validation cohorts, respectively. The fusion CE-CT DL model reached AUCs of 0.798
and 0.734 in the training and validation cohorts, respectively. The CDLM“FCT presented
optimal predictive ability for MVI in both the training (AUC: 0.842) and validation (AUC:
0.736) cohorts.

For EOB-MRI, the AP-based signature showed the best predictive power among five
single MRI-sequence-based signatures with AUCs of 0.865 and 0.788 in the training and
validation cohorts, respectively. The fusion EOB-MRI DL model achieved remarkably
increased AUCs of 0.930 and 0.802 in the training and validation cohorts, respectively. The
CDLMEFEOB-MRI qemonstrated the highest AUCs in both the training (0.962) and validation
(0.812) cohorts.

The head-to-head comparison revealed superior performance of CDLMFOBMRI gyer
CDLMCECT, with significantly higher AUCs (0.812 vs. 0.736, p = 0.039). The sensitivities of
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CDLMFOB-MRI yyere significantly higher than those of CE-CT (70.4% vs. 57.4%, p = 0.015),
and CDLM“F-CT showed a slight advantage in specificity (86.9% vs. 80.3%, p = 0.052).

Detailed diagnostic measures of all CE-CT and EOB-MRI-based models are shown
in Table 3. The ROC curves of the developed models are shown in Figure 2. The DCA
analysis showed the net benefit of 33.4% (threshold probability: 6%) for CDLM“E-CT, and
22.6% (threshold probability: 25%) for CDLMEOB-MRI i the whole cohort. The DCA curves
of the developed CDLMs are plotted in Figure 2.
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Figure 2. Predictive performance of the developed models. (A-C) ROC curves of the developed models in the CE-CT
training cohort, EOB-MRI training cohort and prospective validation cohort 2; (D,E) decision curves of CDLMECT and

CDLMEOB-MRI .

According to the stratification analyses, tumor size was identified as a significant
clinical factor which has a substantial impact on the predictive power of CDLM®FT and
CDLMFOBMRI For EOB-MRY, large tumor size (>5 cm) was associated with significantly
reduced specificities (p < 0.001), slightly increased sensitivities (p > 0.05) and comparable
AUCs (p > 0.05) in both the training and validation cohorts. However, for CE-CT, the
specificity (81.1% vs. 57.1%, p = 0.020) and AUC (0.962 vs. 0.784, p = 0.001) increased
significantly in the subgroup comprising tumors >5 cm in the training cohort, but were
comparable across different tumor sizes in the validation cohort. Detailed results of the
stratification analyses regarding to related factors are shown in Table S1.
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3.4. Identification and Confirmation of the MV High-Risk Areas

The gradient-based attention maps obtained from EOB-MRI DL network enabled
detection of suspicious portions, which were difficult to identify in traditional radiological
ways. Figure 3 depicted suspicious areas found by the DL network. Figure 3A-H demon-
strates EOB-MRI images, am attention map generated via DL and the histopathological
examination result of a 57-year-old male patient. A 7.0 cm hepatocellular carcinoma with
histopathologically proven microvascular invasion (MVI) was located predominantly in
segment VIIL. A distinctive high-risk area of MVI could be identified by heterogenous peri-
tumoral hypoenhancement (black star) on the AP image (C), by interrupted capsule (black
arrow) on the PVP image (D), and by peritumoral hypointensity (black arrowhead) on the
HBP image (F). However, it was not captured on T2WI (A), TIWI pre-contrast (B) or TP (E)
images. This area could be clearly demonstrated on the attention map (G) along the tumor
periphery (white star). This high-risk area was proved as MVI-positive by postoperative
histopathologic examination with hematoxylin eosin (HE) staining at 100x magnification
(H, white arrow). A more typical case is shown in Figure 3I-P. It demonstrates EOB-MRI
images, an attention map generated via DL and the histopathological examination result of
a 51-year-old female patient. An 8.6 cm hepatocellular carcinoma with histopathologically
proven microvascular invasion (MVI) was located predominantly in segments VI and
VIIL. None of radiological characteristics on T2ZWI(I), TIWI pre-contrast (J), AP (K), PVP
(L), TP (M) or HBP (N) images suggest high-risk areas of MVI, which inferred that the
invasion area could not be located and tagged in traditional radiological manner. However,
a distinctive high-risk area was detected on the DL attention map (O) along the tumor
periphery (white star). This high-risk area was proved as MVI-positive by postoperative
histopathologic HE staining at 100 x magnification (P, black star).

Furthermore, the DL network showed good ability to automatically recognize intratu-
moral areas in accordance with biological pre-knowledge, including necrosis, intralesional
iron deposition, fat accumulation and hemorrhage. Figure 4-1 illustrates a 7.1 cm hep-
atocellular carcinoma with histopathologically proven microvascular invasion that was
located in segments VI and VII. The attention maps of both MR (A) and CT (B) were able to
identify these necrotic areas within the tumor (arrowhead). Figure 4-2 illustrates an 8.2 cm
hepatocellular carcinoma without microvascular invasion that was located predominantly
in segment V. The attention maps of both MR (A) and CT (B) were able to identify these
hemorrhagic areas within the tumor (arrowhead). Figure 4-3 illustrates a 5.0 cm hepatocel-
lular carcinoma without microvascular invasion that was located in segments VI and VII.
The attention maps of both MR (A) and CT (B) were able to identify these fat-rich areas
within the tumor (arrowhead). Figure 4-4 illustrates a 3.5 cm hepatocellular carcinoma with
histopathologically proven microvascular invasion that was located predominantly in seg-
ment IV. The attention maps of both MR (A) and CT (B) were able to identify these smaller
inner nodules presenting different imaging features within the tumor (arrowhead). Note
that all the biological/radiological characteristics were better depicted on the attention
map of EOB-MRI compared with CE-CT.
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Figure 3. EOB-MRI images and EOB-MRI-based attention map. 3-1. Gadoxetic acid (EOB)-enhanced MR images (A-F) and
the attention map (G) of a 57-year-old male patient. A 7.0 cm hepatocellular carcinoma (HCC) with histopathologically
proven microvascular invasion (MVI) was detected in segment VIII. A distinctive high-risk area was detected on the
attention map (G) along the tumor’s periphery (white star). This high-risk area could be confirmed radiologically by
peritumoral enhancement (black star) of the arterial phase image (C), by interrupted capsule (black arrow) on the portal
venous phase image (D) and by peritumoral hypointensity (F, black arrowhead) on the hepatobiliary phase image (G).
However, it was not captured on T2-weighted (A), T1-weighted pre-contrast (B), or transitional phase (E) images. This
high-risk area was proved as MVI-positive by postoperative histopathologic examination with hematoxylin eosin (HE)
staining at 100 x magnification (H, white arrow). EOB-MR images (I-P) and the attention map (O) of a 51-year-old female
patient. An 8.6cm HCC with a histopathologically proven MVI was detected in segments VI and VII. A distinctive high-risk
area was detected on the attention map (O) along the tumor periphery (white star). However, this high-risk area was not
captured on T2-weighted (I), T1-weighted pre-contrast (J), arterial phase (K), portal venous phase (L), transitional phase
(M) or hepatobiliary phase (N) images. This high-risk area was proved as MVI-positive by postoperative histopathologic
examination with hematoxylin eosin (HE) staining at 100x magnification (P, black star).
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Figure 4. Attention maps derived from EOB-MRI and CE-CT. (4-1). Attention maps (A,B), contrast-enhanced CT (CE-CT;
C-E) and gadoxetic acid-MRI (EOB-MRI; F-J) of a 43-year-old male patient with hepatocellular carcinoma (HCC). Distinctive
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intratumoral necrosis (black star) was demonstrated on the pre-contrast (C), arterial phase (D) and portal venous phase (E)
images of CE-CT, as well as on the T2-weighted (F), T1-weighted pre-contrast (G), arterial phase (H), portal venous phase
(I) and hepatobiliary phase (J) images of EOB-MRI, respectively. The attention maps of both EOB-MRI (A) and CE-CT (B)
were able to identify these necrotic areas within the tumor (arrowhead). Note that both the tumor and intratumoral necrotic
areas were better depicted on the attention map of EOB-MRI (A) compared with CE-CT (B). (4-2). Attention maps (A,B),
CE-CT(C-E) and EOB-MRI (F-J) of a 38-year-old male patient with HCC. Distinctive intratumoral hemorrhage (arrow) was
demonstrated on the pre-contrast (C), arterial phase (D) and portal venous phase (E) images of CE-CT, as well as on the
T2-weighted (F), T1-weighted pre-contrast (G), arterial phase (H), portal venous phase (I) and hepatobiliary phase (J) images
of EOB-MR], respectively. The attention maps of both EOB-MRI (A) and CE-CT (B) were able to identify these hemorrhagic
areas within the tumor (arrowhead). Note that both the tumor and intratumoral hemorrhagic areas were better depicted
on the attention map of EOB-MRI (A) compared with CE-CT (B). (4-3). Attention maps (A,B), CE-CT (C-E) and EOB-MRI
(F-J) of a 59-year-old male patient with HCC. Distinctive intratumoral fat accumulation (arrow) was demonstrated on
the pre-contrast (C), arterial phase (D) and portal venous phase (E) images of CE-CT, as well as on the T2-weighted (F),
T1-weighted pre-contrast (G), arterial phase (H), portal venous phase (I) and hepatobiliary phase (J) images of EOB-MR],
respectively. The attention maps of both EOB-MRI (A) and CE-CT (B) were able to identify these fat-rich areas within the
tumor (arrowhead). (4-4). Attention maps (A,B), CE-CT (C-E) and EOB-MRI (F-J) of a 35-year-old female patient with HCC.
Distinctive “nodule-in-nodule” appearance (star) was demonstrated on the pre-contrast (C), arterial phase (D) and portal
venous phase (E) images of CE-CT, as well as on the T2-weighted (F), T1-weighted pre-contrast (G), arterial phase (H),
portal venous phase (I) and hepatobiliary phase (J) images of EOB-MRI, respectively. The attention maps of both EOB-MRI
(A) and CE-CT (B) were able to identify these smaller inner nodules presenting different imaging features within the tumor
(arrowhead). Note that both the tumor and smaller inner nodules were better depicted on the attention map of EOB-MRI
(A) compared with CE-CT (B).

3.5. Prognostic Implications of CDLMs

14 of 19

The median follow-up period for the patients in the validation cohort was 26.3 months
(range: 1-46 months). Eight patients dropped out during the follow-up period. Therefore,
complete PFS data were available in 107 (93%) patients. The overall progression rate of the
115 prospectively collected patients was 66.4% (71/107) with a median PFS of 13.0 months.
In MVI-positive subpopulation, the median PFS was 10.0 months, and in MVI-negative
subpopulation, it was 15.5 months (p = 0.019). The overall death rate was 19.1% (22/115)
with a median OS of 26.0 months. For patients with MVI, the median OS was 26.5 months,
whereas for those without MVI, the median OS was 26.0 months (p = 0.585).

According to the output scores of the developed CDLMs, patients could be stratified
into MVI-present and MVI-absent subpopulations. The postoperative PFS and OS were
significantly different between CDLM-predicted MVI-present and MVI-absent groups in
the prospective cohort for both EOB-MRI (median PFS, 13 vs. 19 months, p = 0.024; median
OS: 25 vs. 30 months, p = 0.005) and CE-CT (median PFS, 12 vs. 18 months, p = 0.006;
median OS: 25 vs. 29 months, p = 0.003). The Kaplan—Meier curves are shown in Figure 5.
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Figure 5. Prognostic analysis using Kaplan-Meier curves on PFS and OS via CDLMFOBMRI gnd CDLMF-CT. PFS (A,C) and
OS (B,D) Kaplan-Meier curves scaled by CDLMECBMRI and CDLMCECT, respectively. The optimal threshold of CDLM

models was determined by the maximum Youden index of ROC curve.
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4. Discussion

In this multicenter study, we performed a DL analysis to realize preoperative predic-
tion of MVI against histopathologic results based on CE-CT and EOB-MRI images. The
head-to-head comparison revealed that EOB-MRI showed superior predictive power over
CE-CT. In parallel with predicting whether MVI existed, we further achieved localization of
high-risk portions of the tumor for MVI with true histopathologic confirmations. Substan-
tial prognostic power of CDLMs in stratifying both PFS and OS may also offer potential to
aid in personalized management in HCC.

Remarkable efforts have been undertaken to achieve noninvasive imaging prediction
of MVI, in which the most promising results came from studies on CE-CT and multi-
parametric MRI—in particular, EOB-MRI [12-15,18-20,25-28]. The AUCs of CE-CT-based
conventional radiological /radiomics models ranged between 0.801 and 0.889 [19,20,25]. As
for EOB-MRI, several qualitative features, including large tumor size, non-smooth tumor
margin, peritumoral enhancement and HBP peritumoral hypointensity have shown correla-
tions with MVI, and radiomics models integrating EOB-MRI-based features could achieve
predictive AUCs of up to 0.864 [12-14,18]. In our study, the head-to-head collected prospec-
tive cohort provided solid evidence for the comparison, which manifested that EOB-MRI
presented superior MVI assessment power over CE-CT via the DL models. The underpin-
nings for the higher sensitivity and predictive power of the developed CDLMEOB-MRI may
be that MVI can block minute peritumoral vessels and result in hemodynamic changes and
impaired function of the hepatocytes surrounding the tumor, hence giving rise to decreased
EOB uptake via the organic anion-transporting polypeptide transporters in the tumor
periphery [13,14]. EOB-MRI could better capture these perfusion and functional alterations,
and hence be more sensitive and accurate in predicting MVI compared with CE-CT.

We also found that quantitative DL models yielded significantly higher specificities,
but relatively lower sensitivities compared with qualitative radiological models. These
results revealed the complementary roles of conventional qualitative imaging analysis
and quantitative DL analysis in MVI assessment. Qualitative radiological features can be
used together as a sensitive screening method for MVI, whereas DL-based evaluation is
required to ensure an adequate positive predictive value. This comparison sheds light on a
potential synergistic effect when integrating the multilayered imaging data at qualitative
and quantitative levels to achieve improved preoperative MVI prediction.

Besides identification of high-risk MVI areas, DL models could also capture areas
with characteristic HCC imaging features including necrosis, iron deposition and blood
products (Figure 4) [29]. Most of these regions were identified as “low-risk” areas for MVI
status in color blue, which underscored the remarkable learning capacity of the DL models
for distinguishing the genuine high-risk tumors and peritumoral compartments from the
relatively “normal” ones. It manifested that, even with hundred-level data driven, the deep
learning network was still “smart” enough to dig out the underlying knowledge from the
radiological images, which was perfectly matched with clinical pre-knowledge.

Previous studies have validated the adverse impact of MVI on prognosis in HCC
patients [4,5,11,14,15,20,25], and analogous results were obtained in our study. Interestingly,
albeit a significantly shorter median PFS was observed in patients with histopathologically-
confirmed MVI than those without, no difference in OS was detected between these
two groups. Nonetheless, postoperative PFS and OS were significantly different between
CDLM-predicted MVI-present and MVI-absent groups for both EOB-MRI and CE-CT. These
results revealed a superior capacity of the CDLMs for stratifying postoperative survival
than histopathology, likely due to the improved capability of CDLMs in profiling the entire
tumor and tumor periphery. Collectively, these underscored the potential prognostic values
of the developed CDLMs for personalized risk-stratification and long-term management.

Towards a goal of goof interpretation of deep learning models, we visualized the
feature patterns extracted via the convolutional layers [23,24,30]. The feature pattern maps
of CDLM®FCT and CDLMEOBMRI are shown in Figure S3. They showed that shallow
convolutional filters reflected simple imaging characteristics, such as horizontal or vertical
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texture (Conv_1), whereas deeper convolutional layers otherwise figured out features
closer to radiological pre-knowledge, such as tumor shape and more complex and de-
tailed textural patterns (Con_13). More specifically, filter Conv_13 reflected circle or arch
characteristics of the tumor’s shape. Earlier findings revealed that MVI-positive HCCs
were characterized with a more aggressive tendency to invade the tumor capsule and
peritumoral liver parenchyma, and hence were more frequently observed with irregular
tumor shapes and non-smooth margins [14,18]. This may in part help to better understand
the underlying patterns that the deep network has learnt for the MVI prediction.

This study had several limitations. First, even though the multi-institutional nature
of this study ensured the application of DL techniques, the included patient population
had an inevitable bias in the inter-center distribution. To explore the impact of the baseline
bias, we performed stratification analyses in subgroups on our developed DL models
regarding tumor size, AFP and hepatic function. Future larger-scale studies with more
balanced populations are needed to validate our findings. Second, patients that acquired
histopathological samples to perfectly match with radiological images in location were few.
Since this was the first study to establish point-to-point correlations between histopatho-
logic and DL predicted high-risk MVI areas, continuous efforts are needed to explore
underlying histopathologic explanations for DL findings. Third, considering collecting
scalable medical imaging data was difficult, we here adopted shallow networks to avoid
overfitting. If provided with larger medical imaging dataset, deep networks would likely
increase the predictive accuracy via more powerful model training.

5. Conclusions

In conclusion, our study demonstrated that the DL method was useful for preoperative
MVI prediction in HCC. EOB-MRI presented overall superiority over CE-CT. In addition,
DL-based attention maps provided insights into detecting the high-risk MVI areas, leading
to aiding the personalized treatment decision-making of HCC patients. Importantly, the
established CDLMs showed ability in stratifying postoperative survival regarding both PFS
and OS. These comprehensive results offered the great potential of DL-based analysis—in
particular, using EOB-MRI, for MVI assessment and HCC patient management.
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